

 Document control number： JSSEC-TECA-SC-GD20250129B

Android Application

Secure Design/Secure Coding

Guidebook

January 29, 2025 Edition

Japan Smartphone Security Association（JSSEC）

Secure Coding Working Group

※ 本ガイドの内容は執筆時点のものです。サンプルコードを使用する場合はこの点にあらかじめご注意ください。

※ JSSEC ならびに執筆関係者は、このガイド文書に関するいかなる責任も負うものではありません。全ては自己責任にてご活用ください。

※ Android™は、Google, Inc.の商標または登録商標です。また、本文書に登場する会社名、製品名、サービス名は、一般に各社の登録商標

または商標です。本文中では®、TM、© マークは明記していません。

※ この文書の内容の一部は、Google, Inc.が作成、提供しているコンテンツをベースに複製したもので、クリエイティブ・コモンズの表示 3.0

ライセンスに記載の条件に従って使用しています。

Secure Coding Guide Documentation Release 2025-01-29

Contents

1 Introduction 2
1.1 Building a Secure Smartphone Society . 2
1.2 Timely Feedback on a Regular Basis Through the Beta Version 3
1.3 Usage Agreement of the Guidebook . 3
Articles Revised from February 29, 2024 Edition . 4

2 Composition of the Guidebook 5
2.1 Developer’s Context . 5
2.2 Sample Code, Rule Book, Advanced Topics . 5
2.3 The Scope of the Guidebook . 7
2.4 Literature on Android Secure Coding . 7
2.5 Steps to Install Sample Codes into Android Studio . 8

3 Basic Knowledge of Secure Design and Secure Coding 21
3.1 Android Application Security . 21
3.2 Handling Input Data Carefully and Securely . 30

4 Using Technology in a Safe Way 32
4.1 Creating/Using Activities . 32
4.2 Receiving/Sending Broadcasts . 103
4.3 Creating/Using Content Providers . 137
4.4 Creating/Using Services . 195
4.5 Using SQLite . 244
4.6 Handling Files . 260
4.7 Using Browsable Intent . 305
4.8 Outputting Log to LogCat . 308
4.9 Using WebView . 317
4.10 Using Notifications . 334
4.11 Using Shared Memory . 352

5 How to use Security Functions 377
5.1 Creating Password Input Screens . 377
5.2 Permission and Protection Level . 392
5.3 Add In-house Accounts to Account Manager . 429
5.4 Communicating via HTTPS . 449
5.5 Handling privacy data . 487
5.6 Using Cryptography . 537
5.7 Using biometric authentication features . 570

6 Difficult Problems 587
6.1 Risk of Information Leakage from Clipboard . 587

i

Secure Coding Guide Documentation Release 2025-01-29

Revision history 598
Published by . 602
Authors of February 29 2024 Edition . 603
Authors of August 29 2022 Edition . 604
Authors of January 17 2022 Edition . 605
Authors of October 19 2021 Edition . 606
Authors of November 1, 2020 Edition . 607
Authors of September 1 2019 Edition . 608
Authors of September 1, 2018 Edition . 609
Authors of February 1, 2018 Edition . 610
Authors of February 1, 2017 Edition . 611
Authors of September 1, 2016 Edition . 612
Authors of February 1, 2016 Edition . 613
Authors of June 1, 2015 Edition . 614
Authors of July 1, 2014 English Edition . 615
Authors of April 1, 2014 English Edition . 616
Authors of April 1, 2013 Japanese Edition . 617
Authors of November 1, 2012 Japanese Edition . 618
Authors of June 1, 2012 Japanese Edition . 619

ii

Secure Coding Guide Documentation Release 2025-01-29

January 29, 2025 Edition
Japan Smartphone Security Association (JSSEC)
Secure Coding Working Group

• The content of this guide is up to date as of the time of publication, but standards and environments are
constantly evolving. When using sample code, make sure you are adhering to the latest coding standards and
best practices.

• JSSEC and the writers of this guide are not responsible for how you use this document. Full responsibility lies
with you, the user of the information provided.

• Android is a trademark or a registered trademark of Google Inc. The company names, product names and
service names appearing in this document are generally the registered trademarks or trademarks of their re-
spective companies. Further, the registered trademark ®, trademark (TM) and copyright © symbols are not
used throughout this document.

• Parts of this document are copied from or based on content created and provided by Google, Inc. They are
used here in accordance with the provisions of the Creative Commons Attribution 3.0 License

1

Secure Coding Guide Documentation Release 2025-01-29

1
Introduction

1.1 Building a Secure Smartphone Society

This guidebook is a collection of tips concerning the know-how of secure designs and secure coding for Android
application developers. Our intent is to have as many Android application developers as possible take advantage of
this, and for that reason we are making it public.

In recent years, the smartphone market has witnessed a rapid expansion, and its momentum seems unstoppable.
Its accelerated growth is brought on due to the diverse range of applications. An unspecified large number of key
functions of mobile phones that were once not accessible due to security restrictions on conventional mobile phones
have been made open to smartphone applications. Subsequently, the availability of varied applications that were once
closed to conventional mobile phones is what makes smartphones more attractive.

With great power that comes from smartphone applications comes great responsibility from their developers. The
default security restrictions on conventional mobile phones had made it possible to maintain a relative level of security
even for applications that were developed without security awareness. As it has been aforementioned with regard to
smartphones, since the key advantage of a smartphone is that they are open to application developers, if the developers
design or code their applications without the knowledge of security issues then this could lead to risks of users' personal
information leakage or exploitation by malware causing financial damage such as from illicit calls to premium-rate
numbers.

Due to Android being a very open model allowing access to many functions on the smartphone, it is believed that
Android application developers need to take more care about security issues than iOS application developers. In
addition, responsibility for application security is almost solely left to the application developers. For example, appli-
cations can be released to the public without any screening from a marketplace such as Google Play (former Android
Market), though this is not possible for iOS applications.

In conjunction with the rapid growth of the smartphone market, there has been a sudden influx of software engineers
from different areas in the smartphone application development market. As a result, there is an urgent call for the
sharing knowledge of secure design and consolidation of secure coding know-how for specific security issues related
to mobile applications.

Due to these circumstances, Japan's Smartphone Security Association (JSSEC) has launched the Secure Coding
Group, and by collecting the know-how of secure design as well as secure coding of Android applications, it has
decided to make all of the information public with this guidebook. It is our intention to raise the security level of
many of the Android applications that are released in the market by having many Android application developers
become acquainted with the know-how of secure design and coding. As a result, we believe we will be contributing
to the creation of a more reliable and safe smartphone society.

2

Secure Coding Guide Documentation Release 2025-01-29

1.2 Timely Feedback on a Regular Basis Through the Beta Version

We, the JSSEC Secure Coding Group, will do our best to keep the content contained in the Guidebook as accurate
as possible, but we cannot make any guarantees. We believe it is our priority to publicize and share the know-
how in a timely fashion. Equally, we will upload and publicize what we consider to be the latest and most accurate
correct information at that particular juncture, and will update it with more accurate information once we receive
any feedback or corrections. In other words, we are taking the beta version approach on a regular basis. We think
this approach would be meaningful for many of the Android application developers who are planning on using the
Guidebook.

The latest version of the Guidebook and sample codes can be obtained from the URL below.

• https://www.jssec.org/dl/android_securecoding_en.pdf Guidebook (English)

• https://www.jssec.org/dl/android_securecoding_en.zip Sample Codes (English)

The latest Japanese version can be obtained from the URL below.

• https://www.jssec.org/dl/android_securecoding.pdf Guidebook (Japanese)

• https://www.jssec.org/dl/android_securecoding.zip Sample Codes (Japanese)

1.3 Usage Agreement of the Guidebook

The user must agree to the following two terms and conditions when using this Guidebook.

1. This Guidebook may contain inaccuracies. Please use this information at your own risk.

2. If you find any errors contained in this Guidebook, please contact us by e-mail using the contact information
below. Please note, however, that we cannot promise to respond to you or to make any corrections.

Japan Smartphone Security Association (JSSEC)

Contact Information

URLhttps://www.jssec.org/contact

3

https://www.jssec.org/dl/android_securecoding_en.pdf
https://www.jssec.org/dl/android_securecoding_en.zip
https://www.jssec.org/dl/android_securecoding.pdf
https://www.jssec.org/dl/android_securecoding.zip
https://www.jssec.org/contact

Secure Coding Guide Documentation Release 2025-01-29

Articles Revised from February 29, 2024 Edition

This section contains the revisions that were found by checking the facts against the previous version of the article.
Each revised article incorporates the results of ongoing research by the authors as well as a wide range of valuable
suggestions from readers. In particular, the suggestions that we received are the most important factors in making
this revised edition a more practical-oriented guide with a higher degree of completeness.

Readers who have been developing apps based on the previous version are requested to take a particular look at the
list of revised articles below. The items listed here do not include corrections for typographical errors, changes in
organization, or simple improvements in wording.

Any comments, opinions, or suggestions on this Guidebook are greatly appreciated.

Table of Revised Articles

Table 1.3.1: Revised Articles

Locations revised in the
February 29, 2024 edi-
tion

Revisions in this re-
vised edition

Description of revision

4.4.3.4. Additional Re-
strictions on Launching
Activities from the Back-
ground

4.1.3.10. Secure Back-
ground Activity Launch

Added a note about launching an activity from the back-
ground.

(Not applicable) 4.1.3.11. Expanded Intent
Filter Functionality

Added information about the expansion of Intent Filter
functionality in Android 15.

(Not applicable) 4.1.3.12. Enhanced Intent
Security

Added information about enhanced Intent security in
Android 15.

(Not applicable) 4.1.3.13. Changes to
package stopped state

Added information about changes to the behavior of
apps in the FLAG_STOPPED state in Android 15.

(Not applicable) 4.3.3.1. Content URI Per-
mission Management

Added note on enhanced permission management for
content URIs in Android 15.

(Not applicable) 4.4.3.4. Foreground Ser-
vice Changes

Added information about changes to foreground ser-
vices in Android 15.

• 4.6.3.6.
• 4.6.3.7.
• 4.6.3.8.
• 4.6.3.9.

4.6.3.6. Storage access for
Android 10 and later (in-
ternal and external stor-
age) 4.6.3.7. Storage ac-
cess for Android 10 and
later (shared storage)

Added information about storage access (internal stor-
age, external storage, shared storage) on Android 10
and later.

(Not applicable) 4.6.3.10. Query the most
recent user’s choice for ac-
cessing selected photos

Added information about media access queries in An-
droid 15.

(Not applicable) 4.6.3.11. Private Space Added information about private space in Android 15.
(Not applicable) 5.1.3.5. Integrate Creden-

tial Manager with Autofill
Added information about credential manager and aut-
ofill integration in Android 15.

5.2.3.12. Installable Min-
imum Target API Levels

5.2.3.12. Installable Mini-
mum Target API Levels

Added information about targetSdkVersion for instal-
lable apps on Android 14 and Android 15.

(Not applicable) 5.5.3.10. Screen Record-
ing Detection

Added information about detecting screen recording on
Android 15.

(Not applicable) 5.5.3.11. Partial Screen
Sharing

Added information about partial screen sharing on An-
droid 15.

(Not applicable) 5.5.3.12. Changes in
Global State Management
in DND mode

Added information about the timing for changing silent
mode settings on Android 15.

(Not applicable) 5.6.3.7. Countermeasures
against backup data leaks

Added information about measures to prevent leakage
of backup data.

(Not applicable) 5.6.3.8. Hard-coded
Cryptographic Secrets

Added information about handling credentials using the
Keystore provider.

4

Secure Coding Guide Documentation Release 2025-01-29

2
Composition of the Guidebook

2.1 Developer’s Context

Many guidebooks that have been written on secure coding include warnings about harmful coding practices and their
suggested revisions. Although this approach can be useful at the time of reviewing the source code that has already
been coded, it can be confusing for developers that are about to start coding, as they do not know which article to
refer to.

The Guidebook has focused on the developer’s context of “What is a developer trying to do at this moment?” Equally,
we have taken steps to prepare articles that are aligned with the developer’s context. For example, we have divided
articles into project units by presuming that a developer will be involved in operations such as "Creating/Using Ac-
tivities", "Using SQLite", etc.

We believe that by publishing articles that support the developer’s context, developers will be able to easily locate
necessary articles that will be instantly useful in their projects.

2.2 Sample Code, Rule Book, Advanced Topics

Each article is comprised of three sections: Sample Code, Rule Book, and Advanced Topics. If you are in a hurry,
please look up the Sample Code and Rule Book sections. The content is provided in a way where it can be reused to
a certain degree. For those who have issues that go beyond these, please refer the Advanced Topics section. We have
given descriptions that will be helpful in finding solutions for individual cases.

Unless it is specifically noted, our focus of development will be targeted to platforms concerning Android 4.0.3 (API
Level 15) and later. Sincewe have not verified the operational capability of any versions pertaining toAndroid versions
under 4.0.3 (API Level 15), the measures described may prove ineffective on these older systems. In addition, even
for versions that are covered under the scope of focus, it is important to verify their operational capability by testing
them on your own environment before releasing them publically.

Also, for the sample code presented in this document, set targetSdkVersion to API level 30 or higher. This is used
to comply with the following requirements specified by Google.

• August 2021: New apps are required to target API level 30 (Android 11) or higher.

• November 2021: Updates to existing apps are required to target API level 30 or higher.

• From then on, apps will continue to be required to target the latest API levels.

5

https://developer.android.com/distribute/best-practices/develop/target-sdk?hl=ja

Secure Coding Guide Documentation Release 2025-01-29

2.2.1 Sample Code

Sample code that serves as the basic model within the developer's context and functions as the theme of an article is
published in the Sample Code section. If there are multiple patterns, we have provided source code for the different
patterns and classified them accordingly. We have strived to make our commentaries as simple as possible. For
example, when we want to direct the reader's attention to a security issue that requires attention, a bullet-point number
will appear next to "Point" in the article. We will also comment on the sample code that corresponds to the bullet-
point number by writing "*** Point (Number) ***." Please note that a single point may correspond to multiple
pieces of sample code. There are sections throughout the entire source code, albeit very little compared to the entire
code, which requires our attention for security. In order to be able to survey the sections that call for scrutiny, we try
to post the entire class unit of sample code.

Please note that only a portion of sample code is posted in the Guidebook. A compressed file, which contains the
entire sample code, is made public in the URL listed below. It is made public by the Apache License, Version 2.0;
therefore, please feel free to copy and paste it. Please note that we have minimized the code for error processing in
the sample code to prevent it from becoming too long.

• https://www.jssec.org/dl/android_securecoding_en.zip Sample Codes Archive

The projects/keystore file that is attached in the sample code is the keystore file that contains the developer key for the
signature of the APK. The password is "android." Please use it when singing the APK in the In-house sample code.

We have provided the keystore file, debug.keystore, for debugging purposes. When using Android Studio for de-
velopment, it is convenient for verifying the operational capability of the In-house sample code if the keystore is
set for each project. In addition, for sample code that is comprised of multiple APKs, it is necessary to match the
android:debuggable setting contained inside each AndroidManifest.xml in order to verify the cooperation between
each APK. If the android:debuggable setting is not explicit set when installing the APK from Android Studio, it will
automatically become android:debuggable= "true."

For embedding the sample code as well as keystore file into Android Studio, please refer to "2.5. Steps to Install
Sample Codes into Android Studio".

2.2.2 Rule Book

Rules and matters that need to be considered regarding security within the developer's context will be published in
the Rule Book section. Rules to be handled in that section will be listed in a table format at the beginning and will
be divided into two levels: "Required" and "Recommended." The rules will consist of two types of affirmative and
negative statements. For example, an affirmative statement that expresses that a rule is required will say "Required."
An affirmative statement that expresses a recommendation will say "Recommended." For a negative statement that
expresses the requisite nature of the rule would say, "Definitely not do." For a negative sentence that expresses a
recommendation would say, "Not recommended." Since these differentiations of levels are based on the subjective
viewpoint of the author, it should only be used as a point of reference.

Sample code that is posted in the Sample Code section reflect these rules and matters that need to be considered, and
a detailed explanation on them is available in the Rule Book section. Furthermore, rules and matters that need to be
considered that are not dealt with in the Sample Code section are handled in the Rule Book section.

2.2.3 Advanced Topics

Items that require our attention, but that could not be covered in the Sample Code and Rule Book sections within the
developer's context will be published in the Advanced Topics section. The Advanced Topics section can be utilized
to explore ways to solve separate issues that could not be solved in the Sample Code or Rule Book sections. For
example, subject matters that contain personal opinions as well as topics on the limitations of Android OS in relation
the developer's context will be covered in the Advanced Topics section.

Developers are always busy. Many developers are expected to have basic knowledge of security and produce many
Android applications as quickly as possible in a somewhat safe manner rather than to really understand the deep
security matters. However, there are certain applications out there that require a high level of security design and
implementation from the beginning. For developers of such applications, it is necessary for them to have a deep
understanding concerning the security of Android OS.

6

https://www.jssec.org/dl/android_securecoding_en.zip

Secure Coding Guide Documentation Release 2025-01-29

In order to benefit both developers who emphasize development speed and also those who emphasize security, all
articles of the Guidebook are divided into the three sections of Sample Code, Rule Book, and Advanced Topics.
The aim of the Sample Code and Rule Book sections is to provide generalizations about security that anyone can
benefit from and source code that will work with a minimal amount of customization and hopefully by just copying
and pasting. In the Advanced Topics section, we offer materials that will help developers think in a certain way when
they are facing specific problems. It is the aim of the Advanced Topics section to help developers examine optimal
secure design and coding when they are involved in building individual applications.

2.3 The Scope of the Guidebook

The purpose of the Guidebook is to collect security best practices that are necessary for general Android application
developers. Consequently, our scope is focused mainly on security tips (The "Application Security" section in figure
below) for the development of Android applications that are distributed primarily in a public market.

Fig. 2.3.1: Main Components of the Android Platform

Security regarding the implementation of components in the "Device Security" of the above figure is outside the scope
of this guidebook. There are differences in the viewpoint of security between general applications that are installed by
users and pre-installed applications by device manufacturers. The Guidebook only handles the former and does not
deal with the latter. In the current version, tips only on the implementation by Java are posted, but in future versions,
we plan on posting tips on JNI implementations as well.

Also as of now we do not handle threats that results from an attacker obtaining root privileges. We will assume the
premise of a secure Android device in which it is not possible to obtain root privileges and base our security advice on
utilizing the Android OS security model. For handling of assets and threats, we have provided a detailed description
on "3.1.3. Asset Classification and Protective Countermeasures."

2.4 Literature on Android Secure Coding

Since we are not able to discuss all of Android's secure coding in the Guidebook, we recommend that you read the
literature mentioned below in conjunction with the Guidebook.

Android Security: Anzenna Application Wo Sakusei Surutameni (Secured Programming in Android)

7

Secure Coding Guide Documentation Release 2025-01-29

Author: Tao Software Co., Ltd. ISBN: 978-4-8443-3134-6
http://www.amazon.co.jp/dp/4844331345/

The CERT Oracle Secure Coding Standard for Java
Authors: Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.Sutherland, David Svoboda
http://www.amazon.com/dp/0321803957

OWASP Mobile Application Security Verification Standard (MASVS)
Author: The OWASP Foundation
https://github.com/OWASP/owasp-masvs/

OWASP Top 10
Author: The OWASP Foundation
https://owasp.org/Top10/

10 Major Checkpoints for Mobile Application Development 2023
Author: JSSEC Technical Subcommittee, 10 Major Checkpoints for Mobile Application Development
2023 Selection Committee
https://www.jssec.org/mobile-apps-10checkpoint2023

2.5 Steps to Install Sample Codes into Android Studio

This section explains how to install sample code into Android Studio. Sample code is divided into multiple projects
depending on the purpose. Installing the sample code is described in, "2.5.1. Installing the Sample Project". After the
installation is completed, please refer to "2.5.2. Setup the debug.keystore to run and test the Sample Code" and install
the debug.keystore file into Android Studio. We have verified the following steps in the following environment:

OS
Windows 10 Pro

Android Studio
Chipmunk | 2021.2.1 Patch 1

Android SDK
Android 13 (API Level 33)

2.5.1 Installing the Sample Project

2.5.1.1 Download the sample code.

Acquire the sample code from the URL shown in “2.2.1. Sample Code”

2.5.1.2 Extract the sample code.

Right click on the sample code that has been compressed into zip file, and click on "Extract All" as shown below.

8

http://www.amazon.co.jp/dp/4844331345/
http://www.amazon.com/dp/0321803957
https://github.com/OWASP/owasp-masvs/
https://owasp.org/Top10/
https://www.jssec.org/mobile-apps-10checkpoint2023

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.1: Extract the Sample Code

2.5.1.3 Designate where to deploy.

Create a workspace under the name "C:\android_securecoding" by designating "C:\" and clicking on the "Extract"
button.

Fig. 2.5.2: Designate where to Deploy

After clicking on the "Extract" button, right underneath "C:\" a folder called "android_securecoding_en" will be
created.

Fig. 2.5.3: “android_securecoding_en” Folder

The sample code is contained in the “android_securecoding_en" folder. For example, when you want to refer to the
sample code within “4.1.1.3. Creating/Using Partner Activities” of “4.1. Creating/Using Activities” please look below.

9

Secure Coding Guide Documentation Release 2025-01-29

android_securecoding

┗ Create Use Activity

┗ Activity PartnerActivity

In this way, the sample code project will be located under the chapter title in the "android_securecoding" folder.

2.5.1.4 Designate workspace by starting up Android Studio

Launch Android Studio from the start menu or from a desktop icon.

Fig. 2.5.4: Launch Android Studio

After launching, open project from the dialog that appears.

Fig. 2.5.5: Android Studio Dialog

If you have already opened a project, the window is displayed, and so close the displayed project by selecting “File
-> Close Project” from the menu.

10

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.6: File -> Close Project

2.5.1.5 Open an existing Android Studio project

Click "Open an existing Android Studio project" from the dialog that is displayed.

Fig. 2.5.7: Open Project

2.5.1.6 Select the project

Select the project you wish to open.

11

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.8: Select the Project

If the version of Gradle in the Android Studio you are using differs from the version assumed by the sample code
projects in this guidebook, Gradle will be optimized.

Fig. 2.5.9: Optimizing the Android Gradle

Following the on-screen instructions, click "Update" to initiate the update of the Android Gradle Plugin.

Fig. 2.5.10: Update the Android Gradle Plugin

The message shown below is displayed. Click "Fix Gradle wrapper and re-import project Gradle setting" to update
the Gradle wrapper.

12

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.11: Update the Gradle wrapper

2.5.1.7 Finish Opening

Automatically the project is opened.

Fig. 2.5.12: Finish Opening

Android Studio, unlike Eclipse, will display a single project in a window. If you want to open a different project, click
"File -> Open ...".

13

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.13: File -> Open…

2.5.2 Setup the debug.keystore to run and test the Sample Code

A signature is needed in order to activate a sample-code-generated application onto an Android device or emulator.
Install the debugging key file "debug.keystore" that will be used for the signature into Android Studio.

14

Secure Coding Guide Documentation Release 2025-01-29

2.5.2.1 Click on File -> Project Structure...

Fig. 2.5.14: File -> Project Structure…

2.5.2.2 Add Signing

Select a project from Module list in left pane, selecting "Signing" tab, and click "+" button, then change the default
name "config" to "debug".

Fig. 2.5.15: Add Signing

2.5.2.3 Select "debug.keystore" as a Store File

Click the button inside the red circle in Fig. 2.5.15, and set “Store File.” Debug.keystore is contained in the sample
code (underneath the android_securecoding folder)

15

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.16: Select "debug.keystore"

Fig. 2.5.17: Result of Selectiing "debug.keystore"

2.5.2.4 Set Signing Config

Select the Build Types tab, select signing name typed in the previous step, and then click “OK”.

16

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.18: Set Signing Config

2.5.2.5 Confirm build.gradle file

The path of debug.keystore file you selected is displayed in signingConfigs, signingConfig appears in debug section
of buildTypes.

Fig. 2.5.19: Confirm build.gradle file

2.5.3 Setting the Trusted Location

When a sample project is opened, the following dialog may appear.

17

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.20: IntelliJ IDEA Warning Dialog

This is a security feature of IntelliJ IDEA, on which Android Studio is based, and is a warning dialog that appears
to prevent potential security risks when the source of a project is unknown. You can prevent the warning dialog
from appearing by setting the directory where the sample project is extracted, C:/android_securecoding, as a trusted
location. The setting procedure is as follows.

Fig. 2.5.21: Build, Execution, Deployment

18

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.22: Trusted Locations

19

Secure Coding Guide Documentation Release 2025-01-29

Fig. 2.5.23: Adding C:/android_securecoding

20

Secure Coding Guide Documentation Release 2025-01-29

3
Basic Knowledge of Secure Design and Secure Coding

Although the Guidebook is a collection of security advice concerning Android application development, this chapter
will deal with the basic knowledge on general secure design and secure coding of Android smartphones and tablets.
Since we will be referring to secure design and coding concepts in the later chapters we recommend that you famil-
iarize yourself with the content contained in this chapter first.

3.1 Android Application Security

There is a commonly accepted way of thinking when examining security issues concerning systems or applications.
First, we need to have a grasp over the objects we want to protect. We will call these "assets". Next, we want to gain
an understanding over the possible attacks that can take place on an asset. We will call these "threats". Finally, we will
examine and implement measures to protect "assets" from the various "threats". Wewill call these "countermeasures".

What we mean by "countermeasures" here is secure design and secure coding, and will deal with these subjects after
Chapter 4. In this section, we will focus on explaining "assets" and "threats".

3.1.1 "Asset": Object of Protection

There are two types of "objects of protection" within a system or an application: "information" and "functions". We
will call these "information assets" and "function assets". "An information asset" refers to the type of information
that can be referred to or changed only by people who have permission. It is a type of information that cannot be
referred to or changed by anyone who does not have the permission. "A function asset" refers to a function that can
be used only by people who have permission and no one else.

Below, we will introduce types of information assets and functional assets that exist in Android smartphones and
tablets. We would like you to use the following as a point of reference to deliberate on matters with regard to
assets when developing a system that utilizes Android applications or Android smartphones/tablets. For the sake of
simplicity, we will collectively call Android smartphones/tablets as Android smartphones.

3.1.1.1 Information Assets of the Android Smartphone

Table 3.1.1 and Table 3.1.2 are examples of information contained in Android smartphones. This information is
personal information, privacy information, or similar information about smartphone users and must be properly pro-
tected.

21

Secure Coding Guide Documentation Release 2025-01-29

Table 3.1.1: Examples of Information Managed by Android Smartphones

Information Remarks
Phone number Telephone number of the smartphone itself
Call history Time and date of incoming and outgoing calls as well as phone numbers
IMEI Device ID of the smartphone
IMSI Subscriber ID
Sensor information GPS, geomagnetic, rate of acceleration, etc.
Various setup information Wi-Fi setting value, etc...
Account information arious account information, authentication information, etc.
Media data Pictures, videos, music, recording, etc…
…

Table 3.1.2: Examples of Information Managed by Applications

Information Remarks
Contacts Contacts of acquaintances
E-mail address User's e-mail address
Web bookmarks Bookmarks
Web browsing history Browsing history
Calendar Plans, to-do list, events, etc.
Facebook SNS content, etc.
X SNS content, etc.
…

The information in Table 3.1.1 is mainly contained in the Android smartphone itself or on the SD card, while the
information in Table 3.1.2 is mainly managed by applications. Especially for the information in Table 3.1.2, the more
applications that are installed, the more information will be stored in the device.

Table 3.1.3 shows the information contained in a single Contacts entry. This information is not about the smartphone
user, but about the smartphone user’s acquaintances, friends, and others. In other words, the smartphone contains
information not only about the user, but also about other people, and so caution is necessary.

Table 3.1.3: Example of Information Contained in a Single Contacts Entry

Information Description
Telephone numbers Home, mobile, work, fax, MMS,…
Email addresses Home, work, mobile,…
Profile images Thumbnail image, large image,…
Instant messengers Messages, WhatsApp, LINE, Facebook Messenger, WeChat, Telegram,…
Nickname Abbreviations, initials, maiden name, alias,…
Addresses Country, postal code, region, province, town, street,…
Groups Favorites, family, friends, colleagues,…
Websites Blog, profile site, home page, FTP server, home, office,…
Events Birthdays, anniversaries, other,…
People involved with Spouse, children, father, mother, manager, assistant, live-in relationship, partner,…
SIP addresses Home, work, other,…
… …

In the previous explanations, we have mainly presented information about smartphone users, but applications also
handle information other than that of users.

Fig. 3.1.1 shows the information managed by an application, which can be roughly divided into a program part and
a data part. The program part is mainly information about the application manufacturer, and the data part is mainly
information about the user. Since some of the application manufacturer’s information may not be used by the user
without permission, such information must be protected so that the user cannot refer to or change it.

22

Secure Coding Guide Documentation Release 2025-01-29

Fig. 3.1.1: Information Contained in an Application

When creating an Android application, it is important to note that not only the information managed by the appli-
cation itself, shown in Fig. 3.1.1, but also the information obtained from the Android smartphone itself and other
applications, shown in Table 3.1.1, Table 3.1.2, and Table 3.1.3.

3.1.1.2 Function Assets of an Android Smartphone

Table 3.1.4 is an example of functions provided by Android OS to the application. If these functions are exploited by
malware or other malicious software, damages including unintended charges and compromise of privacy may occur.
For this reason, function assets must be protected appropriately as with information assets.

Table 3.1.4: Example of Functions Provided by Android OS to Applica-
tions

Function Function
Function that sends and receives SMS messages Camera shooting function
Telephone call function Volume changing function
Network communication function Function that reads the phone number andmobile phone

status
Function that acquires the current location through
GPS, etc.

SD card writing function

Bluetooth communication function System setting change function
NFC/FeliCa communication function Log data reading function
Internet communication (SIP) function Function that acquires information of currently running

application
… …

In addition to functions provided to the application from Android OS, inter-application communication functions of
the Android application are included as function assets. The Android application enables use of functions available
within the application from other applications. This mechanism is called inter-application communication. While
this function is useful, there are cases in which functions that are to be used solely within the application can be
mistakenly used from other applications. This is due to the Android application developer’s lack of secure coding
knowledge. Depending on the content of functions that can be used by other applications, there are cases that may
be troublesome if used by malware. For this reason, proper protection is required so that the functions can be used
only from intended applications.

he API Level of targetSdkVersion is set to 30 on the sample code of this guide and access definition is in the <queries>
element for the sample that sends queries to or operates other applications. This complies with the principle of least

23

Secure Coding Guide Documentation Release 2025-01-29

privilege introduced for the package access specification for Android 11 .

Also, Google Play restricts the use of high risk or sensitive information permissions, including the SMS or call log
permission groups, and applications that fail to meet policy requirements or submit a declaration formmay be removed
from Google Play1 .

3.1.2 "Threats": Attacks that Threaten Assets

In the previous section, we discussed assets in Android smartphones. This section describes the threats to those
assets, in other words, the attacks that threaten them. Simply put, an asset is threatened when information assets are
referenced, modified, deleted, or created by others without permission, or when functional assets are used by others
without permission. Attacks that directly or indirectly manipulate such assets are called threats. The person or thing
that carries out the attack is called the threat source. Attackers and malware are threat sources, not threats. We refer
to the attacking behavior of the attacker or malware as the threat. The relationship between these terms is shown in
Fig. 3.1.2.

Fig. 3.1.2: Relationship between Assets, Threats, Threat Sources, Vulnerabilities, and Damage

Fig. 3.1.3 shows the general environment in which an Android application runs. In the following sections, we will use
this figure as a basis for explaining threats to Android applications, so we will first explain how to view this figure.

Fig. 3.1.3: Android General Environment in which an Android Application Runs
1 https://support.google.com/googleplay/android-developer/answer/9047303?hl=en&ref_topic=2364761

24

https://developer.android.com/preview/privacy/package-visibility?hl=en
https://support.google.com/googleplay/android-developer/answer/9047303?hl=en&ref_topic=2364761

Secure Coding Guide Documentation Release 2025-01-29

Smartphones and servers are placed on the left and right sides in the figure. Smartphones and servers communicate
via 3G/4G/5G/Wi-Fi and the Internet. Although there are multiple applications in a smartphone, this figure focuses
on a single application in order to explain the threats related to one application in the subsequent explanations. The
application on a smartphone mainly handles the information of its user, while the web service on a server represents
the centralized management of all users’ information. Therefore, server security remains as important as before.
Server security is not covered in this Guidebook because it is outside its scope.

In the following sections, we will use this diagram to explain the threats in Android applications.

3.1.2.1 Network-based Third-Party

Fig. 3.1.4: Network-Based Malicious Third Party Attacking an Application

Generally, a smartphone applicationmanages user information on a server so the information assets will move between
the networks connecting them. As indicated in Fig. 3.1.4, a network-based malicious third party may access (sniff)
any information during this communication or try to change information (data manipulation). The malicious attacker
in the middle (also referred to as "Man in The Middle") can also pretend to be the real server tricking the application.
Without saying, network-based malicious third parties will usually try to attack the server as well.

3.1.2.2 Threat Due to User-Installed Malware

Fig. 3.1.5: Malware Installed by a User Attacks an Application

25

Secure Coding Guide Documentation Release 2025-01-29

The biggest selling point of a smartphone is in its ability to acquire numerous applications from the market in order
to expand on its features. The downside to users being able to freely install many applications is that they will some-
times mistakenly install malware. As shown in Fig. 3.1.5, malware may exploit the inter-application communication
functions or a vulnerability in the application in order to gain access to information or function assets.

3.1.2.3 Threat of an Malicious File that Exploits a Vulnerability in an Application

Fig. 3.1.6: Attack from Malicious Files that Exploit a Vulnerability in an Application

Various types of files such as music, images, videos and documents are widely available on the Internet and typically
users will download many files to their SD card in order to use them on their smartphone. Furthermore, it is also
common to download attached files sent in an e-mail. These files are later opened by a viewing or editing application.

If there is any vulnerability in the function of an application that processes these files, an attacker can use a malicious
file to exploit it and gain access to information or function assets of the application. In particular, vulnerabilities are
often present in processing a file format with a complex data structure. The attacker can fulfill many different goals
when exploiting an application in this way.

As shown in Fig. 3.1.6, an attack file stays dormant until it is opened by a vulnerable application. Once it is opened,
it will start causing havoc by taking advantage of an application's vulnerability. In comparison to an active attack, we
call this attack method a "Passive Attack."

26

Secure Coding Guide Documentation Release 2025-01-29

3.1.2.4 Threats from a Malicious Smartphone User

Fig. 3.1.7: Attacks from a Malicious Smartphone User

With regard to application development for an Android smartphone, the environment as well as features that help to
develop and analyze an application are openly provided to the general user. Among the features that are provided,
the useful ADB debugging feature can be accessed by anyone without registration or screening. This feature allows
an Android smartphone user to easily perform OS or application analysis.

As it is shown in Fig. 3.1.7, a smartphone user with malicious intent can analyze an application by taking advantage
of the debugging feature of ADB and try to gain access to information or function assets of an application. If the
actual asset contained in the application belongs to the user, it poses no problem, but if the asset belongs to someone
other than the user, such as the application developer, then it will become a concern. Accordingly, we need to be
aware that the legitimate smartphone user can maliciously target the assets within an application.

3.1.2.5 Threats from Third Party in the Proximity of a Smartphone

Fig. 3.1.8: Attacks from a Malicious Third Party in the Proximity of a Smartphone

Due to face that most smartphones possess a variety of near-field communication mechanisms, such as NFC, Blue-
tooth and Wi-Fi, we must not forget that attacks can occur from a malicious attacker who is in physical proximity
of a smartphone. An attacker can shoulder surf a password while peeping over a user who is inputting it in. Or, as
indicated in Fig. 3.1.8, an attacker can be more sophisticated and attack the Bluetooth functionality of an application

27

Secure Coding Guide Documentation Release 2025-01-29

from a remote distance. There is also the threat that a malicious person could steal the smartphone creating a risk
of data leakage or even destroy the smartphone causing a loss of critical information. Developers need to take these
risks into consideration as well as early as the design stage.

3.1.2.6 Summary of Threats

Fig. 3.1.9: Summary of the Various Attacks on Smartphone Applications

Fig. 3.1.9 summarizes the main types of threats explained in the previous sections. Smartphones are surrounded by
a wide variety of threats and the figure above does not include all of them. Through our daily information gathering,
we need to spread the awareness concerning the various threats that surround an Android application and be aware
of them during the application's secure design and coding. The following literature that was created by Japan's
Smartphone Security Association (JSSEC) contains other valuable information on the threats to smartphone security.

Security Guidebook for Using Smartphones and Tablets
https://www.jssec.org/dl/guidelines_v2.pdf
https://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf (English)

Implementation Guidebook for Smartphone Network Security [Version 1]
https://www.jssec.org/dl/NetworkSecurityGuide1.pdf

Cloud Usage Guidebook for Business Purposes of Smartphones [Beta Version]
https://www.jssec.org/dl/cloudguide2012_beta.pdf

Guidebook for Reviewing the Implementation/Operation of MDM [Version 1]
https://www.jssec.org/dl/MDMGuideV1.pdf

3.1.3 Asset Classification and Protective Countermeasures

As was discussed in the previous sections, Android smartphones are surrounded by a variety of threats. Protecting
every asset in an application from such threats could prove to be very difficult given the time it takes for development
and due to technical limitations. Consequently, Android application developers should examine feasible countermea-
sures for their assets. This should be done according to priority level based on the developer's judgement criteria.
This is a subjective matter that is based on how the importance of an asset is viewed and what the accepted level of
damage is.

28

https://www.jssec.org/dl/guidelines_v2.pdf
https://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
https://www.jssec.org/dl/NetworkSecurityGuide1.pdf
https://www.jssec.org/dl/cloudguide2012_beta.pdf
https://www.jssec.org/dl/MDMGuideV1.pdf

Secure Coding Guide Documentation Release 2025-01-29

In order to help decide on the protective countermeasures for each asset, we will classify them and stipulate the level
of protective countermeasures for each group. This will be achieved by examining the legal basis, pertaining to the
level of importance regarding the impact of any damages that can occur and the social responsibility of the developer
(or organization). These will prove to be the judgement criteria when deciding on how to handle each asset and
the implementation of the type of countermeasures. Since this will become a standard for application developers
and organizations on determining how to handle an asset and provide protective countermeasures, it is necessary
to specify the classification methods and pertaining countermeasures in accordance the application developer's (or
organization's) circumstances.

Asset classification and protective countermeasure levels that are adopted in the Guidebook are shown below for
reference:

Table 3.1.5: Asset Classification and Protective Countermeasure Levels

Asset
Classifica-
tion

Asset Level Level of Protective Counter-Measures

High2 The amount of damage the asset causes is fatal
and catastrophic to the organization or an indi-
vidual's activity.
i.e.) When an asset at this level is damaged,
the organization will not be able to continue its
business.

Provide protection against sophisticated attacks
that break through the Android OS security
model and prevent root privilege compromises
and attacks that alter the dex portion of an
APK.
Ensure security takes priority over other ele-
ments such as user experience, etc.

Medium The amount of damage the asset causes has a
substantial impact the organization or an indi-
vidual's activity.
i.e.) When an asset at this level is damaged,
the organization's profit level deteriorates, ad-
versely affecting its business.

Utilize the Android OS security model. It will
provide protection covered under its scope.
Ensure security takes priority over other ele-
ments such as user experience, etc.

Low The amount of damage the asset causes has a
limited impact on the organization or an indi-
vidual's activity.
i.e.) When an asset at this level is damaged,
the organization's profit level will be affected
but is able to compensate its losses from other
resources.

Utilize the Android OS security model. It will
provide protection covered under its scope.
Compare security countermeasures with other
elements such as user experience, etc. At this
level, it is possible for non-security issues to
take precedence over security issues.

Asset classification and protective countermeasures described in the Guidebook are proposed under the premise of
a secure Android device where root privilege has not been compromised. Furthermore, it is based on the security
measures that utilize the security model of Android OS. Specifically, we are hypothetically devising protective coun-
termeasures by utilizing the Android OS security model on the premise of a functioning Android OS security model
against assets that are classified lower than or equal to the medium level asset.

3.1.4 Sensitive Information

The term "sensitive information", instead of information asset, will be used from now on in the Guidebook. As it
has been aforementioned in the previous section, we have to determine the asset level and the level of protective
countermeasures for each information asset that an application handles.

2 We also believe in the necessity of protecting high level assets from attacks that are caused due the breaching of the Android OS security
model. Such attacks include the compromise of root privileges and attacks that analyze or alter the APK binary. To protect these types of
assets, we need to design sophisticated defensive countermeasures against such threats through the combination of multiple methods such as
encryption, obfuscation, hardware support and server support. As the collection of know-how regarding these defenses cannot be easily written
in this guidebook, and since appropriate defensive design differ in accordance to individual circumstances, we have deemed them to be outside
of the Guidebook's scope. We recommend that you consult with a security specialist who is well versed in tamper resistant designs of Android if
your device requires protection from sophisticated attacks that include attacks resulting from the compromise of root privileges or attacks caused
by the analysis or alteration of an APK file.

29

Secure Coding Guide Documentation Release 2025-01-29

3.2 Handling Input Data Carefully and Securely

Validating input data is the easiest and yet most effective secure coding method. All data that is inputted into the
application either directly or indirectly by an outside source needs to be properly validated. To illustrate best practices
of input data validation, the following is an example of an Activity as used in a program that receives data from Intent.

It is possible that an Activity can receive data from an Intent that was tampered by an attacker. By sending data with
a format or a value that a programmer is not expecting, the attacker can induce a malfunction in the application that
leads to some sort of security incident. We must not forget that a user can become an attacker as well.

Intents are configured by action, data and extras, and we must be careful when accepting all forms of data that can
be controlled by an attacker. We always need to validate the following items in any code that handles data from an
untrusted source.

(a) Does the received data match the format that was expected by the programmer and does the value fall in the
expected scope?

(b) Even if you have received the expected format and value, can you guarantee that the code which handles that data
will not behave unexpectedly?

The next example is a simple sample where HTML is acquired from a remote web page in a designated URL and the
code is displayed in TextView. However, there is a bug.

Sample Code that Displays HTML of a Remote Web page in TextView

TextView tv = (TextView) findViewById(R.id.textview);

InputStreamReader isr = null;

char[] text = new char[1024];

int read;

try {

String urlstr = getIntent().getStringExtra("WEBPAGE_URL");

URL url = new URL(urlstr);

isr = new InputStreamReader(url.openConnection().getInputStream());

while ((read=isr.read(text)) != -1) {

tv.append(new String(text, 0, read));

}

} catch (MalformedURLException e) { //...

From the viewpoint of (a), "urlstr is the correct URL", verified through the non-occurrence of a MalformedURLEx-
ception by a new URL(). However, this is not sufficient. Furthermore, when a "file://..." formatted URL is designated
by urlstr, the file of the internal file system is opened and is displayed in TextView rather than the remote web page.
This does not fulfill the viewpoint of (b), since it does not guarantee the behavior which was expected by the pro-
grammer.

The next example shows a revision to fix the security bugs. Through the viewpoint of (a), the input data is validated
by checking that "urlstr is a legitimate URL and the protocol is limited to http or https." As a result, even by the
viewpoint of (b), the acquisition of an Internet-routed InputStream is guaranteed through url.openConnection().get-
InputStream().

Revised sample code that displays HTML of Internet-based Web page in TextView

TextView tv = (TextView) findViewById(R.id.textview);

InputStreamReader isr = null;

char[] text = new char[1024];

int read;

try {

String urlstr = getIntent().getStringExtra("WEBPAGE_URL");

URL url = new URL(urlstr);

String prot = url.getProtocol();

if (!"http".equals(prot) && !"https".equals(prot)) {

throw new MalformedURLException("invalid protocol");

(continues on next page)

30

file://

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

isr = new InputStreamReader(url.openConnection().getInputStream());

while ((read=isr.read(text)) != -1) {

tv.append(new String(text, 0, read));

}

} catch (MalformedURLException e) { //...

Validating the safety of input data is called "Input Validation" and it is a fundamental secure coding method. Sur-
mising from the sense of the word of Input Validation, it is quite often the case where the viewpoint of (a) is heeded
but the viewpoint of (b) is forgotten. It is important to remember that damage does not take place when data enters
the program but when the program "uses" that data in an incorrect way. We hope that you will refer the URLs listed
below.

The CERT Oracle Secure Coding Standard for Java
https://www.informit.com/store/cert-oracle-secure-coding-standard-for-java-9780321803955 (English)

SEI CERT Oracle Coding Standard for Java
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java (English)

IPA "Secure Programming Course"
https://www.ipa.go.jp/security/awareness/vendor/programming/index.html (Japanese)

31

https://www.informit.com/store/cert-oracle-secure-coding-standard-for-java-9780321803955
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://www.ipa.go.jp/security/awareness/vendor/programming/index.html

Secure Coding Guide Documentation Release 2025-01-29

4
Using Technology in a Safe Way

In Android, there are many specific security related issues that pertain only to certain technologies such as Activities
or SQLite. If a developer does not have enough knowledge about each of the different security issues regarding each
technology when designing and coding, then unexpected vulnerabilities may arise. This chapter will explain about
the different scenarios that developers will need to know when using their application components.

4.1 Creating/Using Activities

4.1.1 Sample Code

The risks and countermeasures of using Activities differ depending on how that Activity is being used. In this section,
we have classified 4 types of Activities based on how the Activity is being used. You can find out which type of
activity you are supposed to create through the following chart shown below. Since the secure coding best practice
varies according to how the activity is used, we will also explain about the implementation of the Activity as well.

Table 4.1.1: Definition of Activity Types

Type Definition
Private Activity An activity that cannot be launched by another application, and therefore is the safest ac-

tivity
Public Activity An activity that is supposed to be used by an unspecified large number of applications.
Partner Activity An activity that can only be used by specific applications made by a trusted partner com-

pany.
In-house Activity An activity that can only be used by other in-house applications.

32

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.1.1: Flow Figure to select Activity Type

4.1.1.1 Creating/Using Private Activities

Private Activities are Activities which cannot be launched by the other applications and therefore it is the safest
Activity.

When using Activities that are only used within the application (Private Activity), as long as you use explicit Intents to
the class then you do not have to worry about accidently sending it to any other application. However, there is a risk
that a third party application can read an Intent that is used to start the Activity. Therefore it is necessary to make sure
that if you are putting sensitive information inside an Intent used to start an Activity that you take countermeasures
to make sure that it cannot be read by a malicious third party.

Sample code of how to create a Private Activity is shown below.

Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Explicitly set the exported attribute to false.

4. Handle the received intent carefully and securely, even though the intent was sent from the same application.

5. Sensitive information can be sent since it is sending and receiving all within the same application.

To make the Activity private, set the "exported" attribute of the Activity element in the AndroidManifest.xml to false.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- Private activity -->

<!-- *** POINT 1 *** Do not specify taskAffinity -->

<!-- *** POINT 2 *** Do not specify launchMode -->

<!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->

<activity
(continues on next page)

33

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />

<!-- Public activity launched by launcher -->

<activity

android:name=".PrivateUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

PrivateActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.privateactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.private_activity);

// *** POINT 4 *** Handle the received Intent carefully and securely,

// even though the Intent was sent from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this,

String.format("Received param: \"%s\"", param),

(continues on next page)

34

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Toast.LENGTH_LONG).show();

}

public void onReturnResultClick(View view) {

// *** POINT 5 *** Sensitive information can be sent since it is sending

// and receiving all within the same application.

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult(RESULT_OK, intent);

finish();

}

}

Next, we show the sample code for how to use the Private Activity.

Point (Using an Activity):

6. Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.

7. Use the explicit Intents with the class specified to call an activity in the same application.

8. Sensitive information can be sent only by putExtra() since the destination activity is in the same application1.

9. Handle the received result data carefully and securely, even though the data comes from an activity within the
same application.

PrivateUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.privateactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateUserActivity extends Activity {

private static final int REQUEST_CODE = 1;

@Override
(continues on next page)

1 Caution: Unless points 1, 2 and 6 are abided by, there is a risk that Intents may be read by a third party. Please refer to 4.1.2.2. and 4.1.2.3.
for more details.

35

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user_activity);

}

public void onUseActivityClick(View view) {

// *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag

// for intents to start an activity.

// *** POINT 7 *** Use the explicit Intents with the class

// specified to call an activity in the same application.

Intent intent = new Intent(this, PrivateActivity.class);

// *** POINT 8 *** Sensitive information can be sent only by putExtra()

// since the destination activity is in the same application.

intent.putExtra("PARAM", "Sensitive Info");

startActivityForResult(intent, REQUEST_CODE);

}

@Override

public void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {

case REQUEST_CODE:

String result = data.getStringExtra("RESULT");

// *** POINT 9 *** Handle the received data carefully and securely,

// even though the data comes from an activity within the same

// application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this,

String.format("Received result: \"%s\"", result),

Toast.LENGTH_LONG).show();

break;

}

}

}

4.1.1.2 Creating/Using Public Activities

Public Activities are Activities which are supposed to be used by an unspecified large number of applications. It is
necessary to be aware that Public Activities may receive Intents sent from malware.

In addition, when using Public Activities, it is necessary to be aware of the fact that malware can also receive or read
the Intents sent to them.

The sample code to create a Public Activity is shown below.

Points (Creating an Activity):

1. Explicitly set the exported attribute to true.

2. Handle the received intent carefully and securely.

36

Secure Coding Guide Documentation Release 2025-01-29

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- Public Activity -->

<!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

<activity

android:name=".PublicActivity"

android:label="@string/app_name"

android:exported="true">

<!-- Define intent filter to receive an implicit intent for a specified␣

→˓action -->

<intent-filter>

<action android:name="org.jssec.android.activity.MY_ACTION" />

<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

</activity>

</application>

</manifest>

PublicActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.publicactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PublicActivity extends Activity {

@Override

(continues on next page)

37

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// *** POINT 2 *** Handle the received intent carefully and securely.

// Since this is a public activity, it is possible that the sending

// application may be malware.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this,

String.format("Received param: \"%s\"", param),

Toast.LENGTH_LONG).show();

}

public void onReturnResultClick(View view) {

// *** POINT 3 *** When returning a result, do not include sensitive

// information.

// Since this is a public activity, it is possible that the receiving

// application may be malware.

// If there is no problem if the data gets received by malware,

// then it can be returned as a result.

Intent intent = new Intent();

intent.putExtra("RESULT", "Not Sensitive Info");

setResult(RESULT_OK, intent);

finish();

}

}

Next, Herein after sample code of Public Activity user side.

Points (Using an Activity):

4. Do not send sensitive information.

5. When receiving a result, handle the data carefully and securely.

PublicUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.publicuser;

import android.app.Activity;

(continues on next page)

38

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PublicUserActivity extends Activity {

private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public void onUseActivityClick(View view) {

try {

// *** POINT 4 *** Do not send sensitive information.

Intent intent = new Intent("org.jssec.android.activity.MY_ACTION");

intent.putExtra("PARAM", "Not Sensitive Info");

startActivityForResult(intent, REQUEST_CODE);

} catch (ActivityNotFoundException e) {

Toast.makeText(this,

"Target activity not found.", Toast.LENGTH_LONG).show();

}

}

@Override

public void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

// *** POINT 5 *** When receiving a result, handle the data carefully and

// securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (resultCode != RESULT_OK) return;

switch (requestCode) {

case REQUEST_CODE:

String result = data.getStringExtra("RESULT");

Toast.makeText(this,

String.format("Received result: \"%s\"", result),

Toast.LENGTH_LONG).show();

break;

}

}

}

4.1.1.3 Creating/Using Partner Activities

Partner activities are Activities that can only be used by specific applications. They are used between cooperating
partner companies that want to securely share information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity. Therefore it is
necessary to make sure that if you are putting sensitive information inside an Intent used to start an Activity that you

39

Secure Coding Guide Documentation Release 2025-01-29

take countermeasures to make sure that it cannot be read by a malicious third party

Sample code for creating a Partner Activity is shown below.

Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Do not define the intent filter and explicitly set the exported attribute to true.

4. Verify the requesting application's certificate through a predefined whitelist.

5. Handle the received intent carefully and securely, even though the intent was sent from a partner application.

6. Only return Information that is granted to be disclosed to a partner application.

Please refer to "4.1.3.2. Validating the Requesting Application" for how to validate an application by a white list. Also,
please refer to "5.2.1.3. How to Verify the Hash Value of an Application's Certificate" for how to verify the certificate
hash value of a destination application which is specified in the whitelist.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- Partner activity -->

<!-- *** POINT 1 *** Do not specify taskAffinity -->

<!-- *** POINT 2 *** Do not specify launchMode -->

<!-- *** POINT 3 *** Do not define the intent filter and explicitly set the␣

→˓exported attribute to true -->

<activity

android:name=".PartnerActivity"

android:exported="true" />

</application>

</manifest>

PartnerActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.partneractivity;

(continues on next page)

40

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerActivity extends Activity {

// *** POINT 4 *** Verify the requesting application's certificate

// through a predefined whitelist.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// org.jssec.android.activity.partneruser.

sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D␣

→˓4C0EC35A");

// Register the other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// *** POINT 4 *** Verify the requesting application's certificate

// through a predefined whitelist.

if (!checkPartner(this, getCallingActivity().getPackageName())) {

Toast.makeText(this,

"Requesting application is not a partner application.",

Toast.LENGTH_LONG).show();

finish();

return;

}

// *** POINT 5 *** Handle the received intent carefully and securely,

// even though the intent was sent from a partner application.

// Omitted, since this is a sample. Refer to

// "3.2 Handling Input Data Carefully and Securely."

(continues on next page)

41

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

}

public void onReturnResultClick(View view) {

// *** POINT 6 *** Only return Information that is granted to be disclosed

// to a partner application.

Intent intent = new Intent();

intent.putExtra("RESULT", "Information for partner applications");

setResult(RESULT_OK, intent);

finish();

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

(continues on next page)

42

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

(continues on next page)

43

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

Sample code for using a Partner Activity is described below.

Points (Using an Activity):

7. Verify if the certificate of the target application has been registered in a whitelist.

8. Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.

9. Only send information that is granted to be disclosed to a Partner Activity only by putExtra().

10. Use explicit intent to call a Partner Activity.

11. Use startActivityForResult() to call a Partner Activity.

12. Handle the received result data carefully and securely, even though the data comes from a partner application.

Refer to "4.1.3.2. Validating the Requesting Application" for how to validate applications by white list. Also please
refer to "5.2.1.3. How to Verify the Hash Value of an Application's Certificate" for how to verify the certificate hash
value of a destination application which is to be specified in a white list.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

(continues on next page)

44

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<queries>

<package android:name="org.jssec.android.activity.partneractivity" />

</queries>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name=".PartnerUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

PartnerUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerUserActivity extends Activity {

// *** POINT 7 *** Verify if the certificate of a target application

// has been registered in a white list.

(continues on next page)

45

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register the certificate hash value of partner application

// org.jssec.android.activity.partneractivity.

sWhitelists.add("org.jssec.android.activity.partneractivity", isdebug ?

// Certificate hash value of "androiddebugkey" is in debug.keystore.

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of "my company key" is in the keystore.

"D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2␣

→˓42E142CA");

// Register the other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

private static final int REQUEST_CODE = 1;

// Information related the target partner activity

private static final String TARGET_PACKAGE =

"org.jssec.android.activity.partneractivity";

private static final String TARGET_ACTIVITY =

"org.jssec.android.activity.partneractivity.PartnerActivity";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public void onUseActivityClick(View view) {

// *** POINT 7 *** Verify if the certificate of the target application

// has been registered in the own white list.

if (!checkPartner(this, TARGET_PACKAGE)) {

Toast.makeText(this,

"Target application is not a partner application.",

Toast.LENGTH_LONG).show();

return;

}

try {

// *** POINT 8 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for

// the intent that start an activity.

Intent intent = new Intent();

// *** POINT 9 *** Only send information that is granted to be

// disclosed to a Partner Activity only by putExtra().

intent.putExtra("PARAM", "Info for Partner Apps");

(continues on next page)

46

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 10 *** Use explicit intent to call a Partner Activity.

intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

// *** POINT 11 *** Use startActivityForResult() to call a Partner

// Activity.

startActivityForResult(intent, REQUEST_CODE);

}

catch (ActivityNotFoundException e) {

Toast.makeText(this,

"Target activity not found.",

Toast.LENGTH_LONG).show();

}

}

@Override

public void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {

case REQUEST_CODE:

String result = data.getStringExtra("RESULT");

// *** POINT 12 *** Handle the received data carefully and securely,

// even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this,

String.format("Received result: \"%s\"", result),

Toast.LENGTH_LONG).show();

break;

}

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

(continues on next page)

47

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

(continues on next page)

48

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

(continues on next page)

49

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

4.1.1.4 Creating/Using In-house Activities

In-house activities are the Activities which are prohibited to be used by applications other than other in-house appli-
cations. They are used in applications developed internally that want to securely share information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity. Therefore it is
necessary to make sure that if you are putting sensitive information inside an Intent used to start an Activity that you
take countermeasures to make sure that it cannot be read by a malicious third party.

Sample code for creating an In-house Activity is shown below.

Points (Creating an Activity):

1. Define an in-house signature permission.

2. Do not specify taskAffinity.

3. Do not specify launchMode.

4. Require the in-house signature permission.

5. Do not define an intent filter and explicitly set the exported attribute to true.

6. Verify that the in-house signature permission is defined by an in-house application.

7. Handle the received intent carefully and securely, even though the intent was sent from an in-house application.

8. Sensitive information can be returned since the requesting application is in-house.

9. When exporting an APK, sign the APK with the same developer key as the requesting application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Define an in-house signature permission -->

<permission

android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION"

android:protectionLevel="signature" />

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- In-house Activity -->

<!-- *** POINT 2 *** Do not specify taskAffinity -->

<!-- *** POINT 3 *** Do not specify launchMode -->

<!-- *** POINT 4 *** Require the in-house signature permission -->

<!-- *** POINT 5 *** Do not define the intent filter and explicitly set the␣

→˓exported attribute to true -->

<activity

android:name="org.jssec.android.activity.inhouseactivity.InhouseActivity"

android:exported="true"

android:permission="org.jssec.android.activity.inhouseactivity.MY_

→˓PERMISSION" />

</application>

</manifest>

50

Secure Coding Guide Documentation Release 2025-01-29

InhouseActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.inhouseactivity;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class InhouseActivity extends Activity {

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" in the

// debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" in the keystore.

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);
(continues on next page)

51

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 6 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this,

"The in-house signature permission is not declared by␣

→˓in-house application.",

Toast.LENGTH_LONG).show();

finish();

return;

}

// *** POINT 7 *** Handle the received intent carefully and securely,

// even though the intent was sent from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this,

String.format("Received param: \"%s\"", param),

Toast.LENGTH_LONG).show();

}

public void onReturnResultClick(View view) {

// *** POINT 8 *** Sensitive information can be returned since

// the requesting application is in-house.

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult(RESULT_OK, intent);

finish();

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

(continues on next page)

52

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

53

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point9 *** When exporting an APK, sign the APK with the same developer key as the requesting application.

54

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.1.2: Sign the APK with the same developer key as the requesting application

Sample code for using an In-house Activity is described below.

Points (Using an activity):

10. Declare that you want to use the in-house signature permission.

11. Verify that the in-house signature permission is defined by an in-house application.

12. Verify that the destination application is signed with the in-house certificate.

13. Sensitive information can be sent only by putExtra() since the destination application is in-house.

14. Use explicit intents to call an In-house Activity.

15. Handle the received data carefully and securely, even though the data came from an in-house application.

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<queries>

<package android:name="org.jssec.android.activity.inhouseactivity" />

</queries>

<!-- *** POINT 10 *** Declare to use the in-house signature permission -->

<uses-permission

android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name="org.jssec.android.activity.inhouseuser.InhouseUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>
(continues on next page)

55

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

</application>

</manifest>

InhouseUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.inhouseuser;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class InhouseUserActivity extends Activity {

// Target Activity information

private static final String TARGET_PACKAGE =

"org.jssec.android.activity.inhouseactivity";

private static final String TARGET_ACTIVITY =

"org.jssec.android.activity.inhouseactivity.InhouseActivity";

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" in the

// debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

(continues on next page)

56

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Certificate hash value of "my company key" in the keystore.

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public void onUseActivityClick(View view) {

// *** POINT 11 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this,

"The in-house signature permission is not declared by␣

→˓in-house application.",

Toast.LENGTH_LONG).show();

return;

}

// ** POINT 12 *** Verify that the destination application is signed

// with the in-house certificate.

if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {

Toast.makeText(this,

"Target application is not an in-house application.",

Toast.LENGTH_LONG).show();

return;

}

try {

Intent intent = new Intent();

// *** POINT 13 *** Sensitive information can be sent only by

// putExtra() since the destination application is in-house.

intent.putExtra("PARAM", "Sensitive Info");

// *** POINT 14 *** Use explicit intents to call an In-house Activity.

intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

startActivityForResult(intent, REQUEST_CODE);

}

catch (ActivityNotFoundException e) {

Toast.makeText(this,

"Target activity not found.",

Toast.LENGTH_LONG).show();

}

}

@Override

(continues on next page)

57

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {

case REQUEST_CODE:

String result = data.getStringExtra("RESULT");

// *** POINT 15 *** Handle the received data carefully and securely,

// even though the data came from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this,

String.format("Received result: \"%s\"", result),

Toast.LENGTH_LONG).show();

break;

}

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

(continues on next page)

58

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

(continues on next page)

59

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination application.

60

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.1.3: Sign the APK with the same developer key as the destination application

4.1.2 Rule Book

Be sure to follow the rules below when creating or sending an Intent to an activity.

1. Activities that are Used Only Internally to the Application Must be Set Private (Required)

2. Do Not Specify taskAffinity (Required)

3. Do Not Specify launchMode (Required)

4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)

5. Handling the Received Intent Carefully and Securely (Required)

6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House Application
(Required)

7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Desti-
nation Application (Required)

8. Use the explicit Intents if the destination Activity is predetermined. (Required)

9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

10. Verify the Destination Activity if Linking with Another Company's Application (Required)

11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of Protection (Required)

12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

4.1.2.1 Activities that are Used Only Internally to the Application Must be Set Private (Required)

Activities which are only used in a single application are not required to be able to receive any Intents from other
applications. Developers often assume that Activities intended to be private will not be attacked but it is necessary to
explicitly make these Activities private in order to stop malicious Intents from being received.

AndroidManifest.xml

<!-- Private activity -->

<!-- *** 4.1.1.1 - POINT 3 *** Explicitly set the exported attribute to␣

→˓false. -->

<activity

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />

61

Secure Coding Guide Documentation Release 2025-01-29

Intent filters should not be set on activities that are only used in a single application. Due to the characteristics of
Intent filters, Due to the characteristics of how Intent filters work, even if you intend to send an Intent to a Private
Activity internally, if you send the Intent through an Intent filter than you may unintentionally start another Activity.
Please see Advanced Topics "4.1.3.1. Combination of Exported Attribute and Intent Filter Setting (For Activity)" for
more details.

AndroidManifest.xml(Not recommended)

<!-- Private activity -->

<!-- *** 4.1.1.1 - POINT 3 *** Explicitly set the exported attribute to␣

→˓false. -->

<activity

android:name=".PictureActivity"

android:label="@string/picture_name"

android:exported="false" >

<intent-filter>

<action android:name=”org.jssec.android.activity.OPEN />

</intent-filter>

</activity>

4.1.2.2 Do Not Specify taskAffinity (Required)

In Android OS, Activities are managed by tasks. Task names are determined by the affinity that the root Activity has.
On the other hand, for Activities other than root Activities, the task to which the Activity belongs is not determined
by the Affinity only, but also depends on the Activity's launch mode. Please refer to "4.1.3.4. Root Activity" for more
details.

In the default setting, each Activity uses its package name as its affinity. As a result, tasks are allocated according to
application, so all Activities in a single application will belong to the same task. To change the task allocation, you
can make an explicit declaration for the affinity in the AndroidManifest.xml file or you can set a flag in an Intent sent
to an Activity. However, if you change task allocations, there is a risk that another application could read the Intents
sent to Activities belonging to another task.

Be sure not to specify android:taskAffinity in the AndroidManifest.xml file and use the default setting keeping the
affinity as the package name in order to prevent sensitive information inside sent or received Intents from being read
by another application.

Below is an example AndroidManifest.xml file for creating and using Private Activities.

AndroidManifest.xml

<!-- *** 4.1.1.1 - POINT 1 *** Do not specify taskAffinity -->

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- *** 4.1.1.1 - POINT 1 *** Do not specify taskAffinity -->

<activity

android:name=".PrivateUserActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Private activity -->

<!-- *** 4.1.1.1 - POINT 1 *** Do not specify taskAffinity -->

<activity

android:name=".PrivateActivity"

(continues on next page)

62

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:label="@string/app_name"

android:exported="false" />

</application>

Please refer to the "Google Android Programming guide"2, the Google Developer’s API Guide "Tasks and Back
Stack"3, "4.1.3.3. Reading Intents Sent to an Activity" and "4.1.3.4. Root Activity" for more details about tasks and
affinities.

4.1.2.3 Do Not Specify launchMode (Required)

The Activity launch mode is used to control the settings for creating new tasks and Activity instances when starting an
Activity. By default it is set to "standard". In the "standard" setting, new instances are always created when starting
an Activity, tasks follow the tasks belonging to the calling Activity, and it is not possible to create a new task. When
a new task is created, it is possible for other applications to read the contents of the calling Intent so it is required to
use the "standard" Activity launch mode setting when sensitive information is included in an Intent.

The Activity launch mode can be explicitly set in the android:launchMode attribute in the AndroidManifest.xml file,
but because of the reason explained above, this should not be set in the Activity declaration and the value should be
kept as the default "standard".

AndroidManifest.xml

<!-- *** 4.1.1.1 - POINT 2 *** Do not specify launchMode -->

<activity

android:name=".PrivateUserActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Private activity -->

<!-- *** 4.1.1.1 - POINT 2 *** Do not specify launchMode -->

<activity

android:name=".PrivateActivity"

android:label="@string/app_name"

android:exported="false" />

</application>

Please refer to "4.1.3.3. Reading Intents Sent to an Activity" and "4.1.3.4. Root Activity."

4.1.2.4 Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Re-
quired)

The launch mode of an Activity can be changed when executing startActivity() or startActivityForResult() and in
some cases a new task may be generated. Therefore it is necessary to not change the launch mode of Activity during
execution.

To change the Activity launch mode, set the Intent flags by using setFlags() or addFlags() and use that Intent as an
argument to startActivity() or startActivityForResult(). FLAG_ACTIVITY_NEW_TASK is the flag used to create
a new task. When the FLAG_ACTIVITY_NEW_TASK is set, a new task will be created if the called Activity does
not exist in the background or foreground.

2 Author Egawa, Fujii, Asano, Fujita, Yamada, Yamaoka, Sano, Takebata, “Google Android Programming Guide”, ASCII Media Works, July
2009

3 https://developer.android.com/guide/components/tasks-and-back-stack.html

63

https://developer.android.com/guide/components/tasks-and-back-stack.html

Secure Coding Guide Documentation Release 2025-01-29

The FLAG_ACTIVITY_MULTIPLE_TASK flag can be set simultaneously with FLAG_ACTIVITY_NEW_TASK.
In this case, a new task will always be created. New tasks may be created with either setting so these should not be
set with Intents that handle sensitive information.

Example of sending an intent

Intent intent = new Intent();

// * 4.1.1.1 - POINT 6 * Do not set the FLAG_ACTIVITY_NEW_TASK flag // for the intent to start
an activity.

intent.setClass(this, PrivateActivity.class); intent.putExtra(“PARAM”, “Sensitive Info”);

startActivityForResult(intent, REQUEST_CODE);

In addition, you may think that there is a way to prevent the contents of an Intent from being read even if a new
task was created by explicitly setting the FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS flag. However, even
by using this method, the contents can be read by a third party so you should avoid any usage of FLAG_ACTIV-
ITY_NEW_TASK.

Please refer to "4.1.3.1. Combination of Exported Attribute and Intent Filter Setting (For Activity)", "4.1.3.3. Reading
Intents Sent to an Activity" and "4.1.3.4. Root Activity".

4.1.2.5 Handling the Received Intent Carefully and Securely (Required)

Risks differ depending on the types of Activity, but when processing a received Intent data, the first thing you should
do is input validation.

Since Public Activities can receive Intents from untrusted sources, they can be attacked by malware. On the other
hand, Private Activities will never receive any Intents from other applications directly, but it is possible that a Public
Activity in the targeted application may forward a malicious Intent to a Private Activity so you should not assume that
Private Activities cannot receive any malicious input. Since Partner Activities and In-house Activities also have the
risk of a malicious intent being forwarded to them as well, it is necessary to perform input validation on these Intents
as well.

Please refer to "3.2. Handling Input Data Carefully and Securely".

4.1.2.6 Use an In-house Defined Signature Permission after Verifying that it is Defined by an
In-House Application (Required)

Make sure to protect your in-house Activities by defining an in-house signature permission when creating the Ac-
tivity. Since defining a permission in the AndroidManifest.xml file or declaring a permission request does not pro-
vide adequate security, please be sure to refer to "5.2.1.2. How to Communicate Between In-house Applications with
In-house-defined Signature Permission."

4.1.2.7 When Returning a Result, Pay Attention to the Possibility of Information Leakage of that
Result from the Destination Application (Required)

When you use setResult() to return data, the reliability of the destination application will depend on the Activity
type. When Public Activities are used to return data, the destination may turn out to be malware in which case
that information could be used in a malicious way. For Private and In-house Activities, there is not much need to
worry about data being returned to be used maliciously because they are being returned to an application you control.
Partner Activities are somewhat in the middle.

As above, when returning data from Activities, you need to pay attention to information leakage from the destination
application.

Example of returning data.

64

Secure Coding Guide Documentation Release 2025-01-29

public void onReturnResultClick(View view) {

// *** 4.1.1.1 - POINT 6 *** Information that is granted to be disclosed

// to a partner application can be returned.

Intent intent = new Intent();

intent.putExtra("RESULT",

"Information that is granted to disclose to partner applications");

setResult(RESULT_OK, intent);

finish();

}

4.1.2.8 Use the explicit Intents if the destination Activity is predetermined. (Required)

When using an Activity by implicit Intents, the Activity in which the Intent gets sent to is determined by the Android
OS. If the Intent is mistakenly sent to malware then Information leakage can occur. On the other hand, when using
an Activity by explicit Intents, only the intended Activity will receive the Intent so this is much safer.

Unless it is absolutely necessary for the user to determine which application's Activity the intent should be sent to,
you should use explicit intents and specify the destination in advance.

Using an Activity in the same application by an explicit Intent

Intent intent = new Intent(this, PictureActivity.class);

intent.putExtra("BARCODE", barcode);

startActivity(intent);

Using other applicaion's Public Activity by an explicit Intent

Intent intent = new Intent();

intent.setClassName(

"org.jssec.android.activity.publicactivity",

"org.jssec.android.activity.publicactivity.PublicActivity");

startActivity(intent);

However, even when using another application's Public Activity by explicit Intents, it is possible that the destination
Activity could be malware. This is because even if you limit the destination by package name, it is still possible that
a malicious application can fake the same package name as the real application. To eliminate this type of risk, it is
necessary to consider using a Partner or In-house.

Please refer to "4.1.3.1. Combination of Exported Attribute and Intent Filter Setting (For Activity)".

4.1.2.9 Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

While the risks differ slightly according to what type of Activity you accessing, when processing Intent data received
as a returned value, you always need to perform input validation on the received data.

Public Activities have to accept returned Intents from untrusted sources so when accessing a Public Activity it is
possible that, the returned Intents are actually sent by malware. It is often mistakenly thought that all returned Intents
from a Private Activity are safe because they are originating from the same application. However, since it is possible
that an intent received from an untrusted source is indirectly forwarded, you should not blindly trust the contents of
that Intent. Partner and In-house Activities have a risk somewhat in the middle of Private and Public Activities. Be
sure to input validate these Activities as well.

Please refer to "3.2. Handling Input Data Carefully and Securely" for more information.

65

Secure Coding Guide Documentation Release 2025-01-29

4.1.2.10 Verify theDestination Activity if Linkingwith Another Company's Application (Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by saving a copy of
the company's certificate hash inside your application and checking it with the certificate hash of the destination
application. This will prevent a malicious application from being able to spoof Intents. Please refer to sample code
section "4.1.1.3. Creating/Using Partner Activities" for the concrete implementation method. For technical details,
please refer to "4.1.3.2. Validating the Requesting Application."

4.1.2.11 When Providing an Asset Secondhand, the Asset should be Protected with the Same
Level of Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another application sec-
ondhand, you need to make sure that it has the same required permissions needed to access the asset. In the Android
OS permission security model, only an application that has been granted proper permissions can directly access a
protected asset. However, there is a loophole because an application with permissions to an asset can act as a proxy
and allow access to an unprivileged application. Substantially this is the same as re-delegating a permission so it is
referred to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4. Permission Re-delegation Problem."

4.1.2.12 Sending Sensitive Information Should Be Limited asmuch as possible (Recommended)

You should not send sensitive information to untrusted parties. Even when you are linking with a specific application,
there is still a chance that you unintentionally send an Intent to a different application or that a malicious third party
can steal your Intents. Please refer to "4.1.3.5. Log Output When using Activities."

You need to consider the risk of information leakage when sending sensitive information to an Activity. You must
assume that all data in Intents sent to a Public Activity can be obtained by a malicious third party. In addition, there
is a variety of risks of information leakage when sending Intents to Partner or In-house Activities as well depending
on the implementation. Even when sending data to Private Activities, there is a risk that the data in the Intent could
be leaked through LogCat. Information in the extras part of the Intent is not output to LogCat so it is best to store
sensitive information there.

However, not sending sensitive data in the first place is the only perfect solution to prevent information leakage
therefore you should limit the amount of sensitive information being sent as much as possible. When it is necessary
to send sensitive information, the best practice is to only send to a trusted Activity and to make sure the information
cannot be leaked through LogCat.

In addition, sensitive information should never be sent to the root Activity. Root Activities are Activities that are
called first when a task is created. For example, the Activity which is launched from launcher is always the root
Activity.

Please refer to "4.1.3.3. Reading Intents Sent to an Activity" and "4.1.3.4. Root Activity" for more details on root
Activities.

4.1.3 Advanced Topics

4.1.3.1 Combination of Exported Attribute and Intent Filter Setting (For Activity)

We have explained how to implement the four types of Activities in this guidebook: Private Activities, Public Ac-
tivities, Partner Activities, and In-house Activities. The various combinations of permitted settings for each type of
exported attribute defined in the AndroidManifest.xml file and the intent-filter elements are defined in the table below.
Please verify the compatibility of the exported attribute and intent-filter element with the Activity you are trying to
create.

66

Secure Coding Guide Documentation Release 2025-01-29

Table 4.1.2: Combination of Exported Attribute and intent-filter Element

Value of exported attribute
true false Not specified

Intent Filter defined Public (Do not Use) (Do not Use)
Intent Filter Not Defined Public, Partner,In-house Private (Do not Use)

When the exported attribute of an Activity is left unspecified, the question of whether or not the Activity is public is
determined by the presence or absence of Intent filters for that Activity4. However, in this guidebook it is forbidden
to set the exported attribute to unspecified. In general, as mentioned previously, it is best to avoid implementations
that rely on the default behavior of any given API; moreover, in cases where explicit methods exist for configuring
important security-related settings such as the exported attribute, it is always a good idea tomake use of thosemethods.

The reason why "an undefined Intent filter and an exported attribute of false" should not be used is that there is a
loophole in Android’s behavior, and because of how Intent filters work, other application’s Activities can be called
unexpectedly. The following two figures below show this explanation. Fig. 4.1.4 is an example of normal behavior
in which a Private Activity (application A) can be called by an implicit Intent only from the same application. The
Intent filter (action="X" in the figure) is defined only in application A, so this is the expected behavior.

Fig. 4.1.4: An Example of Normal Behavior

Fig. 4.1.5 below shows a scenario in which the same Intent filter (action="X") is defined in Application B as well
as Application A. In Fig. 4.1.5, Application A is trying to call a Private Activity in the same application by sending
an implicit Intent, but this time, a dialog box asking the user which application to select is displayed, and the Public
Activity B-1 in Application B is called by mistake due to the user selection5. Due to this loophole, it is possible that
sensitive information can be sent to other applications or the application may receive an unexpected return value.

4 If any Intent filters are defined, the Activity is public; otherwise it is private. Refer https://developer.android.com/guide/topics/manifest/
activity-element.html#exported

5 For terminals running Android 8.0 (API Level 26) or later, it has been confirmed that the "Complete action using" dialog is not displayed and
an automatic transition is made to the Public Activity B-1 in Application B in the figure. For this reason, it should be prohibited to start a Private
Activity with Intent filters by an implicit Intent.

67

https://developer.android.com/guide/topics/manifest/activity-element.html#exported
https://developer.android.com/guide/topics/manifest/activity-element.html#exported

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.1.5: An Example of Abnormal Behavior

As shown above, using Intent filters to send implicit Intents to Private Activities may result in unexpected behavior
so it is best to avoid this setting. In addition, we have verified that this behavior does not depend on the installation
order of Application A and Application B.

Furthermore, if Android 12 is the target, and the application contains Activity, Service, or Broadcast Receiver that
use Intent filters, the explicit declaration of the exported attribute is required. If omitted, the build itself will become
invalid.

In this case, a warning is displayed on the manifest file and an error message is displayed during the build6.

• Warning message of the manifest file

When using intent filters, please specify android:exported as well

• Error message during build

Manifest merger failed : android:exported needs to be explicitly specified for <activity>. Apps targeting Android 12 and
higher are required to specify an explicit value for `android:exported when the corresponding component has an intent
filter defined. See https://developer.android.com/guide/topics/manifest/activity-element#exported for details.`

4.1.3.2 Validating the Requesting Application

Here we explain the technical information about how to implement a Partner Activity. Partner applications permit
that only particular applications which are registered in a whitelist are allowed access and all other applications are
denied. Because applications other than in-house applications also need access permission, we cannot use signature
permissions for access control.

Simply speaking, we want to validate the application trying to use the Partner Activity by checking if it is registered in
a predefined whitelist and allow access if it is and deny access if it is not. Application validation is done by obtaining
the certificate from the application requesting access and comparing its hash with the one in the whitelist.

6 Confirmed on Android Studio Arctic Fox 2020.3.1

68

https://developer.android.com/guide/topics/manifest/activity-element#exported

Secure Coding Guide Documentation Release 2025-01-29

Some developers may think that it is sufficient to just compare "the package name" without obtaining "the certificate",
however, it is easy to spoof the package name of a legitimate application so this is not a good method to check for
authenticity. Arbitrarily assignable values should not be used for authentication. On the other hand, because only the
application developer has the developer key for signing its certificate, this is a better method for identification. Since
the certificate cannot be easily spoofed, unless a malicious third party can steal the developer key, there is a very small
chance that malicious application will be trusted. While it is possible to store the entire certificate in the whitelist, it
is sufficient to only store the SHA-256 hash value in order to minimize the file size.

There are two restrictions for using this method.

• The requesting application has to use startActivityForResult() instead of startActivity().

• The requesting application can only call from an Activity.

The second restriction is the restriction imposed as a result of the first restriction, so technically there is only a single
restriction.

This restriction occurs due to the restriction of Activity.getCallingPackage() which gets the package name of the
calling application. Activity.getCallingPackage() returns the package name of source (requesting) application only in
case it is called by startActivityForResult(), but unfortunately, when it is called by startActivity(), it only returns null.
Because of this, when using the method explained here, the source (requesting) application needs to use startActivi-
tyForResult() even if it does not need to obtain a return value. In addition, startActivityForResult() can be used only
in Activity classes, so the source (requester) is limited to Activities.

PartnerActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PartnerActivity extends Activity {

// *** POINT 4 *** Verify the requesting application's certificate

// through a predefined whitelist.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

(continues on next page)

69

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// org.jssec.android.activity.partneruser.

sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D␣

→˓4C0EC35A");

// Register the other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// *** POINT 4 *** Verify the requesting application's certificate

// through a predefined whitelist.

if (!checkPartner(this, getCallingActivity().getPackageName())) {

Toast.makeText(this,

"Requesting application is not a partner application.",

Toast.LENGTH_LONG).show();

finish();

return;

}

// *** POINT 5 *** Handle the received intent carefully and securely,

// even though the intent was sent from a partner application.

// Omitted, since this is a sample. Refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();

}

public void onReturnResultClick(View view) {

// *** POINT 6 *** Only return Information that is granted to be disclosed

// to a partner application.

Intent intent = new Intent();

intent.putExtra("RESULT", "Information for partner applications");

setResult(RESULT_OK, intent);

finish();

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

(continues on next page)

70

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

(continues on next page)

71

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

(continues on next page)

72

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

4.1.3.3 Reading Intents Sent to an Activity

In Android 5.0 (API Level 21) and later, the information retrieved with getRecentTasks() has been limited to the
caller's own tasks and possibly some other tasks such as home that are known to not be sensitive. However applications,
which support the versions under Android 5.0 (API Level 21), should protect against leaking sensitive information.

The following describes the contents of this problem occurring in Android 5.0 and earlier version.

Intents that are sent to the task's root Activity are added to the task history. A root Activity is the first Activity started
in a task. It is possible for any application to read the Intents added to the task history by using the ActivityManager
class.

Sample code for reading the task history from an application is shown below. To browse the task history, specify the
GET_TASKS permission in the AndroidManifest.xml file.

AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- Use GET_TASKS Permission -->

<uses-permission android:name="android.permission.GET_TASKS" />

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MaliciousActivity"

android:label="@string/title_activity_main"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

73

Secure Coding Guide Documentation Release 2025-01-29

MaliciousActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.intent.maliciousactivity;

import java.util.List;

import java.util.Set;

import android.app.Activity;

import android.app.ActivityManager;

import android.content.Intent;

import android.os.Bundle;

import android.util.Log;

public class MaliciousActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.malicious_activity);

// Get am ActivityManager instance.

ActivityManager activityManager =

(ActivityManager) getSystemService(ACTIVITY_SERVICE);

// Get 100 recent task info.

List<ActivityManager.RecentTaskInfo> list = activityManager

.getRecentTasks(100, ActivityManager.RECENT_WITH_EXCLUDED);

for (ActivityManager.RecentTaskInfo r : list) {

// Get Intent sent to root Activity and Log it.

Intent intent = r.baseIntent;

Log.v("baseIntent", intent.toString());

Log.v(" action:", intent.getAction());

String target = intent.getDataString();

if (target != null) {

Log.v(" data:", intent.getDataString());

}

if (r.origActivity != null) {

Log.v(" pkg:", r.origActivity.getPackageName() +

r.origActivity.getClassName());

}

Bundle extras = intent.getExtras();

if (extras != null) {

Set<String> keys = extras.keySet();
(continues on next page)

74

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

for(String key : keys) {

Log.v(" extras:", key + "=" + extras.get(key).toString());

}

}

}

}

}

You can obtain specified entries of the task history by using the getRecentTasks() function of the AcitivityManager
class. Information about each task is stored in an instance of the ActivityManager.RecentTaskInfo class, but Intents
that were sent to the task's root Activity are stored in its member variable baseIntent. Since the root Activity is the
Activity which was started when the task was created, please be sure to not fulfill the following two conditions when
calling an Activity.

• A new task is created when the Activity is called.

• The called Activity is the task's root Activity which already exists in the background or foreground.

4.1.3.4 Root Activity

The root Activity is the Activity which is the starting point of a task. In other words, this is the Activity which was
launched when task was created. For example, when the default Activity is launched by launcher, this Activity will
be the root Activity. According to the Android specifications, the contents of Intents sent to the root Activity can be
read from arbitrary applications. So, it is necessary to take countermeasures not to send sensitive information to the
root Activity. In this guidebook, the following three rules have been made to avoid a called Activity to become root
Activity.

• taskAffinity should not be specified.

• launchMode should not be specified.

• The FLAG_ACTIVITY_NEW_TASK flag should not be set in an Intent sent to an Activity.

We consider the situations that an Activity can become the root Activity below. A called Activity becoming a root
Activity depends on the following.

• The launch mode of the called Activity

• The task of a called Activity and its launch mode

First of all, let me explain the “Launch mode of called Activity.” Launch mode of Activity can be set by writing
android:launchMode in AndroidManifest.xml. When it’s not written, it’s considered as “standard”. In addition, launch
mode can be also changed by a flag to set to Intent. Flag “FLAG_ACTIVITY_NEW_TASK” launches Activity by
“singleTask” mode.

The launch modes that can be specified are as follows. We’ll explain with a particular focus on the relation with the
root Activity.

standard

Activity which is called by this mode won’t be root, and it belongs to the caller side task. Every time it’s called,
Instance of Activity is to be generated.

singleTop

This launch mode is the same as “standard”, except for that the instance is not generated when launching an Activity
which is displayed in most front side of foreground task.

singleTask

This launch mode determines the task to which the activity would be belonging by Affinity value. When task which is
matched with Activity’s affinity doesn’t exist either in background or in foreground, a new task is generated along with
Activity’s instance. When task exists, neither of them is to be generated. In the former one, the launched Activity’s
Instance becomes root.

75

Secure Coding Guide Documentation Release 2025-01-29

singleInstance

Same as “singleTask”, but following point is different. Only root Activity can belong to the newly generated task. So
instance of Activity which was launched by this mode is always root activity. Now, we need to pay attention to the
case that the class name of called Activity and the class name of Activity which is included in a task are different
although the task which has the same name of called Activity’s affinity already exists. In this case, a new task will be
created.

From as above, we can get to know that Activity which was launched by “singleTask” or “singleInstance” has the
possibility to become root. In order to secure the application’s safety, it should not be launched by these modes.

Next, we’ll explain the “Task of the called Activity and its launch mode”. Even if Activity is called by “standard”
mode, it becomes root Activity in some cases depends on the task state to which Activity belongs.

For example, think about the case that called Activity’s task has being run already in background. The problem here
is the case that Activity Instance of the task is launched by “singleInstance”. When the affinity of Activity which was
called by “standard” is the same as the task, a new task is generated by the restriction of existing “singleInstance”
Activity. However, when class name of each Activity is same, task is not generated and existing activity Instance is
to be used. In any cases, that called Activity becomes root Activity.

As per above, the conditions that root Activity is called are complicated, for example it depends on the state of
execution. So when developing applications, it’s better to contrive that Activity is called by “standard”.

As an example of that Intent which is sent to Private Activity is read out form other application, the sample code
shows the case that caller side Activity of private Activity is launched by “singleInstance” mode. In this sample code,
private activity is launched by “standard” mode, but this private Activity becomes root Activity of new task due to
the “singleInstance” condition of caller side Activity. At this moment, sensitive information that is sent to Private
Activity is recorded task history, so it can be read out from other applications. FYI, both caller side Activity and
Private Activity have the same affinity.

AndroidManifest.xml(Not recommended)

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- Set the launchMode of the root Activity to "singleInstance". -->

<!-- Do not use taskAffinity -->

<activity

android:name="org.jssec.android.activity.singleinstanceactivity.

→˓PrivateUserActivity"

android:label="@string/app_name"

android:launchMode="singleInstance"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Private activity -->

<!-- Set the launchMode to "standard." -->

<!-- Do not use taskAffinity -->

<activity

android:name="org.jssec.android.activity.singleinstanceactivity.

→˓PrivateActivity"

android:label="@string/app_name"
(continues on next page)

76

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:exported="false" />

</application>

</manifest>

Private Activity only returns the results to the received Intent.

PrivateActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.private_activity);

// Handle intent securely, even though the intent sent from

// the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = getIntent().getStringExtra("PARAM");

Toast.makeText(this,

String.format("Received param: \"%s\"", param),

Toast.LENGTH_LONG).show();

}

public void onReturnResultClick(View view) {

Intent intent = new Intent();

intent.putExtra("RESULT", "Sensitive Info");

setResult(RESULT_OK, intent);

finish();

}

}

In caller side of Private Activity, Private Activity is launched by “standard” mode without setting flag to Intent.

77

Secure Coding Guide Documentation Release 2025-01-29

PrivateUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class PrivateUserActivity extends Activity {

private static final int REQUEST_CODE = 1;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user_activity);

}

public void onUseActivityClick(View view) {

// Start the Private Activity with "standard" lanchMode.

Intent intent = new Intent(this, PrivateActivity.class);

intent.putExtra("PARAM", "Sensitive Info");

startActivityForResult(intent, REQUEST_CODE);

}

@Override

public void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if (resultCode != RESULT_OK) return;

switch (requestCode) {

case REQUEST_CODE:

String result = data.getStringExtra("RESULT");

// Handle received result data carefully and securely,

// even though the data came from the Activity in the same application.

// Omitted, since this is a sample. Please refer to
(continues on next page)

78

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(this,

String.format("Received result: \"%s\"", result),

Toast.LENGTH_LONG).show();

break;

}

}

}

singleInstancePerTask

This is the same as “singleInstance”, and even if the launchMode in the above sample code is rewritten to singleInstan-
cePerTask, the same result is obtained, i.e., the intent sent to the private Activity may be read by other applications.

The difference from “singleInstance” is that when the Activity specified in the launchMode is launched, if the task
already has an instance, in the case of “singleInstance”, onNewIntent is executed, and in the case of “singleInstan-
cePerTask”, onCreate is executed.

Neither of these is recommended for general use, and to ensure the safety of the application, it should not be started
in this mode.

4.1.3.5 Log Output When using Activities

When using an activity, the contents of intent are output to LogCat by ActivityManager. The following contents are
to be output to LogCat, so in this case, sensitive information should not be included here.

• Destination Package name

• Destination Class name

• URI which is set by Intent#setData()

For example, when an application sent mails, the mail address is unfortunately outputted to LogCat if the application
would specify the mail address to URI. So, better to send by setting Extras.

When sending a mail as below, mail address is shown to the logCat.

MainActivity.java

// URI is output to the LogCat.

Uri uri = Uri.parse("mailto:test@gmail.com");

Intent intent = new Intent(Intent.ACTION_SENDTO, uri);

startActivity(intent);

When using Extras, mail address is no more shown to the logCat.

MainActivity.java

// Contents which was set to Extra, is not output to the LogCat.

Uri uri = Uri.parse("mailto:");

Intent intent = new Intent(Intent.ACTION_SENDTO, uri);

intent.putExtra(Intent.EXTRA_EMAIL, new String[] {"test@gmail.com"});

startActivity(intent);

However, there are cases where other applications can read the Extras data of intent using ActivityManager#getRe-
centTasks(). Please refer to "4.1.2.2. Do Not Specify taskAffinity (Required)", "4.1.2.3. Do Not Specify launchMode
(Required)" and "4.1.2.4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Re-
quired)".

79

Secure Coding Guide Documentation Release 2025-01-29

4.1.3.6 Protecting against Fragment Injection in PreferenceActivity

When a class derived from PreferenceActivity is a public Activity, a problem known as Fragment Injection7 may arise.
To prevent this problem from arising, it is necessary to override PreferenceActivity.IsValidFragment() and check the
validity of its arguments to ensure that the Activity does not handle any Fragments without intention. (For more on
the safety of input data, see Section "3.2. Handling Input Data Carefully and Securely".)

Below we show a sample in which IsValidFragment() has been overridden. Note that, if the source code has been
obfuscated, class names and the results of parameter-value comparisons may change. In this case it is necessary to
pursue alternative countermeasures.

Example of an overridden isValidFragment() method

protected boolean isValidFragment(String fragmentName) {

// If the source code is obfuscated, we must pursue alternative strategies

return PreferenceFragmentA.class.getName().equals(fragmentName)

|| PreferenceFragmentB.class.getName().equals(fragmentName)

|| PreferenceFragmentC.class.getName().equals(fragmentName)

|| PreferenceFragmentD.class.getName().equals(fragmentName);

}

Note that if the app's targetSdkVersion is 19 or greater, failure to override PreferenceActivity.isValidFragment() will
result in a security exception and the termination of the app whenever a Fragment is inserted [when isValidFragment()
is called], so in this case overriding PreferenceActivity.isValidFragment() is mandatory.

4.1.3.7 The Autofill framework

TheAutofill framework was added in Android 8.0 (API Level 26). Using this framework allows apps to store informa-
tion entered by users—such as user names, passwords, addresses, phone numbers, and credit cards—and subsequently
to retrieve this information as necessary to allow the app to fill in forms automatically. This is a convenient mecha-
nism that reduces data-entry burdens for users; however, because it allows a given app to pass sensitive information
such as passwords and credit cards to other apps, it must be handled with appropriate care.

Overview of the framework

2 components

In what follows, we provide an overview of the two components8 registered by the Autofill framework.

• Apps eligible for Autofill (user apps):

– Pass view information (text and attributes) to Autofill service; receive information from Autofill service
as needed to auto-fill forms.

– All apps that have Activities are user apps (when in the foreground).

– It is possible for all Views of all user apps to be eligible for Autofill. It is also possible to explicitly specify
that any given individual view should be ineligible for Autofill.

– It is also possible to restrict an app’s use of Autofill to the Autofill service within the same package.

• Services that provide Autofill (Autofill services):

– Save View information passed by an app (requires user permission); provide an app with information
needed for Autofill in a View (candidate lists).

– The Views eligible for this information saving are determined by the Autofill service. (Within the Autofill
framework, by default information on all Views contained in anActivity are passed to the Autofill service.)

– It is also possible to construct Autofill services provided by third parties.
7 For more information on Fragment Injection, consult this URL: https://securityintelligence.com/

new-vulnerability-android-framework-fragment-injection/
8 The "user app" and the "Autofill service" may belong to the same package (the same APK file) or to different packages.

80

https://securityintelligence.com/new-vulnerability-android-framework-fragment-injection/
https://securityintelligence.com/new-vulnerability-android-framework-fragment-injection/

Secure Coding Guide Documentation Release 2025-01-29

– It is possible for several to be present within a single terminal with only the service selected by the user
via "Settings" enabled ("None" is also a possible selection.)

– It also possible for a Service to provide a UI to validate users via password entry or other mechanisms to
protect the security of the user information handled.

Procedural flowchart for the Autofill framework

Fig. 4.1.6 is a flowchart illustrating the procedural flow of interactions among Autofill-related components during
Autofill. When triggered by events such as motion of the focus in a user app’s View, information on that View
(primarily the parent-child relationships and various attributes of the View) is passed via the Autofill framework
to the Autofill service selected within "Settings". Based on the data it receives, the Autofill service fetches from a
database the information (candidate lists) needed for Autofill, then returns this to the framework. The framework
displays a candidate list to the user, and the app carries out the Autofill operation using the data selected by the user.

Fig. 4.1.6: Procedural flow among components for Autofill

Next, Fig. 4.1.7 is a flowchart illustrating the procedural flow for saving user data via Autofill. Upon a triggering
event such as when AutofillManager#commit() is called or when an Activity is unfocused, if any Autofilled values for
the View have been modified and the user has granted permission via the Save Permission dialog box displayed by
the Autofill framework, information on the View (including text) is passed via the Autofill framework to the Autofill
service selected via "Settings", and the Autofill service stores information in the database to complete the procedural
sequence.

Fig. 4.1.7: Procedural flow among components for saving user data

81

Secure Coding Guide Documentation Release 2025-01-29

Security concerns for Autofill user apps

As noted in the section "Overview of the framework" above, the security model adopted by the Autofill framework
is premised on the assumption that the user configures the "Settings" to select secure Autofill services and makes
appropriate decisions regarding which data to pass to which Autofill service when storing data.

However, if a user unwittingly selects a non-secure Autofill service, there is a possibility that the user may permit
the storage of sensitive information that should not be passed to the Autofill service. In what follows we discuss the
damage that could result in such a scenario.

When saving information, if the user selects an Autofill service and grants it permission via the Save Permission dialog
box, information for all Views contained in the Activity currently displayed by the app in use may be passed to the
Autofill service. If the Autofill service is malware, or if other security issues arise—for example, if View information
is stored by the Autofill service on an external storage medium or on an insecure cloud service—this could create the
risk that information handled by the app might be leaked.

On the other hand, duringAutofill, if the user has selected a piece ofmalware as theAutofill service, values transmitted
by the malware may be entered as input. At this point, if the security of the data input is not adequately validated by
the app or by the cloud services to which the app sends data, risks of information leakage and/or termination of the
app or the service may arise.

Note that, as discussed above in the section "2 components", apps withActivities are automatically eligible for Autofill,
and thus all developers of apps with Activities must take the risks described above into account when designing
and implementing apps. In what follows we will present countermeasures to mitigate the risks described above we
recommend that these be adopted as appropriate based on a consideration of the countermeasures required by an
app—referring to "3.1.3. Asset Classification and Protective Countermeasures" and other relevant resources.

Steps to mitigate risk: 1

As discussed above, security within the Autofill framework is ultimately guaranteed only at the user’s discretion.
For this reason, the range of countermeasures available to apps is somewhat limited. However, there is one way to
mitigate the concerns described above: Setting the importantForAutofill attribute for a view to "no" ensures that no
View information is passed to the Autofill service (i.e. the View is made ineligible for Autofill), even if the user cannot
make appropriate selections or permissions (such as selecting a piece of malware as the Autofill service)9.

The importantForAutofill attribute may be specified by any of the following methods.

• Set the importantForAutofill attribute in the layout XML

• Call View#setImportantForAutofill()

The values that may be set for this attribute are shown below. Make sure to use values appropriate for the specified
range. In particular, note with caution that, when a value is set to “no” for a View, that View will be ineligible for
Autofill, but its children will remain eligible for Autofill. The default value is “auto.”

9 Even after taking this step, in some cases it may not be possible to avoid the security concerns described above—for example, if the user
intentionally uses Autofill. Implementing the steps described in "Steps to mitigate risk" will improve security in these cases.

82

Secure Coding Guide Documentation Release 2025-01-29

Table 4.1.3: Eligible for Autofill?

Value
Name of constant

Specified
View

Child View

“auto”
IMPORTANT_FOR_AUTOFILL_AUTO

“auto”10 “auto”10

“no”
IMPORTANT_FOR_AUTOFILL_NO

No Yes

“noExcludeDescendants”
IMPORTANT_FOR_AUTOFILL_NO_EXCLUDE_DESCEN-
DANTS

No No

“yes”
IMPORTANT_FOR_AUTOFILL_YES

Yes Yes

“yesExcludeDescendants”
IMPORTANT_FOR_AUTOFILL_YES_EXCLUDE_DESCEN-
DANTS

Yes No

It is also possible to use AutofillManager#hasEnabledAutofillServices() to restrict the use of Autofill functionality to
Autofill services within the same package.

In what follows, we show an example that all Views in an Activity are eligible for Autofill (whether or not a View
actually uses Autofill is determined by the Autofill service) only in case that "Settings" have been configured to use
a Autofill service within the same package. It is also possible to call View#setImportantForAutofill() for individual
Views.

DisableForOtherServiceActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.autofillframework.autofillapp;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import android.view.View;

import android.view.autofill.AutofillManager;

import android.widget.EditText;

import android.widget.TextView;

import org.jssec.android.autofillframework.R;

(continues on next page)

10 Determined by Autofill framework

83

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public class DisableForOtherServiceActivity extends AppCompatActivity {

private boolean mIsAutofillEnabled = false;

private EditText mUsernameEditText;

private EditText mPasswordEditText;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.disable_for_other_service_activity);

mUsernameEditText = (EditText)findViewById(R.id.field_username);

mPasswordEditText = (EditText)findViewById(R.id.field_password);

findViewById(R.id.button_login).setOnClickListener(

new View.OnClickListener() {

@Override

public void onClick(View v) {

login();

}

});

findViewById(R.id.button_clear).setOnClickListener(

new View.OnClickListener() {

@Override

public void onClick(View v) {

resetFields();

}

});

//Because the floating-toolbar is not supported for this Activity,

// Autofill may be used by selecting "Automatic Input"

}

@Override

protected void onStart() {

super.onStart();

}

@Override

protected void onResume() {

super.onResume();

updateAutofillStatus();

View rootView = this.getWindow().getDecorView();

if (!mIsAutofillEnabled) {

//If not using Autofill service within the same package,

// make all Views ineligible for Autofill

rootView.setImportantForAutofill(View.IMPORTANT_FOR_AUTOFILL_NO_

→˓EXCLUDE_DESCENDANTS);

} else {

//If using Autofill service within the same package,

// make all Views eligible for Autofill

//View#setImportantForAutofill() may also be called for specific Views

rootView.setImportantForAutofill(View.IMPORTANT_FOR_AUTOFILL_AUTO);

}

(continues on next page)

84

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private void login() {

String username = mUsernameEditText.getText().toString();

String password = mPasswordEditText.getText().toString();

//Validate data obtained from View

if (!Util.validateUsername(username) || !Util.validatePassword(password)) {

//appropriate error handling

}

//Send username, password to server

finish();

}

private void resetFields() {

mUsernameEditText.setText("");

mPasswordEditText.setText("");

}

private void updateAutofillStatus() {

AutofillManager mgr = getSystemService(AutofillManager.class);

mIsAutofillEnabled = mgr.hasEnabledAutofillServices();

TextView statusView = (TextView) findViewById(R.id.label_autofill_status);

String status = "Our autofill service is --.";

if (mIsAutofillEnabled) {

status = "autofill service within same package is enabled";

} else {

status = "autofill service within same package is disabled";

}

statusView.setText(status);

}

}

Steps to mitigate risk: 2

Even in cases where an app has implemented the steps described in the previous section (”Steps to mitigate risk: 1”),
the user can forcibly enable the use of Autofill by long-pressing the View, displaying the floating toolbar or a similar
control interface, and selecting "Automatic input". In this case, information for all Views—including Views for which
the importantForAutofill attribute has been set to “no,” or for which similar steps have been taken—will be passed
to the Autofill service.

It is possible to avoid the risk of information leakage even in circumstances such as these by deleting the “Automatic
Input” option from the floating-toolbar menu and other control interfaces; this step is to be carried out in addition to
the procedures described in “Steps to mitigate risk: 1”.

Sample code for this purpose is shown below.

DisableAutofillActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

(continues on next page)

85

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.autofillframework.autofillapp;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import android.view.ActionMode;

import android.view.Menu;

import android.view.MenuItem;

import android.view.SubMenu;

import android.view.View;

import android.widget.EditText;

import org.jssec.android.autofillframework.R;

public class DisableAutofillActivity extends AppCompatActivity {

private EditText mUsernameEditText;

private EditText mPasswordEditText;

private ActionMode.Callback mActionModeCallback;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.disable_autofill_activity);

mUsernameEditText = (EditText) findViewById(R.id.field_username);

mPasswordEditText = (EditText) findViewById(R.id.field_password);

findViewById(R.id.button_login).setOnClickListener(

new View.OnClickListener() {

@Override

public void onClick(View v) {

login();

}

});

findViewById(R.id.button_clear).setOnClickListener(

new View.OnClickListener() {

@Override

public void onClick(View v) {

resetFields();

}

});

mActionModeCallback = new ActionMode.Callback() {

@Override

public boolean onCreateActionMode(ActionMode mode, Menu menu) {

(continues on next page)

86

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

removeAutofillFromMenu(menu);

return true;

}

@Override

public boolean onPrepareActionMode(ActionMode mode, Menu menu) {

removeAutofillFromMenu(menu);

return true;

}

@Override

public boolean onActionItemClicked(ActionMode mode, MenuItem item) {

return false;

}

@Override

public void onDestroyActionMode(ActionMode mode) {

}

};

//Delete "Automatic Input" from floating-toolbar

setMenu();

}

void setMenu() {

if (mActionModeCallback == null) {

return;

}

//Register callback for all editable TextViews contained in Activity

mUsernameEditText

.setCustomInsertionActionModeCallback(mActionModeCallback);

mPasswordEditText

.setCustomInsertionActionModeCallback(mActionModeCallback);

}

//Traverse all menu levels, deleting "Automatic Input" from each

void removeAutofillFromMenu(Menu menu) {

if (menu.findItem(android.R.id.autofill) != null) {

menu.removeItem(android.R.id.autofill);

}

for (int i=0; i<menu.size(); i++) {

SubMenu submenu = menu.getItem(i).getSubMenu();

if (submenu != null) {

removeAutofillFromMenu(submenu);

}

}

}

private void login() {

String username = mUsernameEditText.getText().toString();

String password = mPasswordEditText.getText().toString();

//Validate data obtained from View

if (!Util.validateUsername(username) || Util.validatePassword(password)) {

//appropriate error handling

(continues on next page)

87

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

//Send username, password to server

finish();

}

private void resetFields() {

mUsernameEditText.setText("");

mPasswordEditText.setText("");

}

}

Steps to mitigate risk: 3

In Android 9.0 (API level 28), AutofillManager#getAutofillServiceComponentName() can be used to find out what
components of Autofill Service are currently enabled. This can be used to obtain the package name and confirm
whether the application itself is considered a trusted Autofill Service.

In this case, as described in "4.1.3.2. Validating the Requesting Application" above, because a package name could
be spoofed, identity verification solely using this method cannot be recommended. In the same way as the example
described in 4.1.3.2., the Autofill Service certificate must be obtained from the package name, and the identity must
be verified by checking that the certificate matches one that was registered beforehand in a whitelist. This method is
described in detail in 4.1.3.2., and so refer to this section for more information.

An example is shown below where Autofill is used for all views of an activity only when an Autofill Service that was
registered beforehand in the whitelist is enabled.

EnableOnlyWhitelistedServiceActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.autofillframework.autofillapp;

import android.content.ComponentName;

import android.content.Context;

import android.os.Bundle;

import android.app.Activity;

import android.view.View;

import android.view.autofill.AutofillManager;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

import org.jssec.android.shared.PkgCertWhitelists;

(continues on next page)

88

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import org.jssec.android.autofillframework.R;

public class EnableOnlyWhitelistedServiceActivity extends Activity {

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

sWhitelists = new PkgCertWhitelists();

// Register hash value of the certificate of trusted Autofill Service

sWhitelists.add("com.google.android.gms",

"1975B2F17177BC89A5DFF31F9E64A6CAE281A53DC1D1D59B1D147FE1C82AFA00");

// In a similer manner register other trusting Autofill Srvices

// :

}

private static boolean checkService(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

private boolean mIsAutofillEnabled = false;

private EditText mUsernameEditText;

private EditText mPasswordEditText;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.enable_only_whitelisted_service_activity);

mUsernameEditText = (EditText)findViewById(R.id.field_username);

mPasswordEditText = (EditText)findViewById(R.id.field_password);

findViewById(R.id.button_login).setOnClickListener(

new View.OnClickListener() {

@Override

public void onClick(View v) {

login();

}

});

findViewById(R.id.button_clear).setOnClickListener(

new View.OnClickListener() {

@Override

public void onClick(View v) {

resetFields();

}

});

// Because the floating-toolbar is not supported for this Activity,

// Autofill may be used by selecting "Automatic Input"

}

@Override

protected void onStart() {

super.onStart();

}

@Override

protected void onResume() {

(continues on next page)

89

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

super.onResume();

updateAutofillStatus();

View rootView = this.getWindow().getDecorView();

if (!mIsAutofillEnabled) {

// If the Autofill Service is not on white list,

// exclude all Views from the target of Autofill

rootView.setImportantForAutofill(View.IMPORTANT_FOR_AUTOFILL_NO_

→˓EXCLUDE_DESCENDANTS);

} else {

// If the Autofill Service is on white list,

// include all Views as the target of Autofill

// It is also possible to call View#setImportantForAutofill()

// for a specific View

rootView.setImportantForAutofill(View.IMPORTANT_FOR_AUTOFILL_AUTO);

}

}

private void login() {

String username = mUsernameEditText.getText().toString();

String password = mPasswordEditText.getText().toString();

// Validate safetiness of data obtained from View

if (!Util.validateUsername(username) || !Util.validatePassword(password)) {

// Do apropriate error handling

}

// Eend username and passowrd to the Server

finish();

}

private void resetFields() {

mUsernameEditText.setText("");

mPasswordEditText.setText("");

}

private void updateAutofillStatus() {

AutofillManager mgr = getSystemService(AutofillManager.class);

// From Android 9.0 (API Level 28), it is possible to get

// component info. of Autofill Service

ComponentName componentName = mgr.getAutofillServiceComponentName();

String componentNameString = "None";

if (componentName == null) {

// "Settings"‐"Autofill Service" is set to "None"

mIsAutofillEnabled = false;

Toast.makeText(this, "No Autofill Service", Toast.LENGTH_LONG).show();

} else {

String autofillServicePackage = componentName.getPackageName();

// Check if the Autofill Service is registered in white list

if (checkService(this, autofillServicePackage)) {

mIsAutofillEnabled = true;

Toast.makeText(this,

"Trusted Autofill Service: " + autofillServicePackage,

Toast.LENGTH_LONG).show();

} else {

Toast.makeText(this,

"Untrusted Autofill Service: " + autofillServicePackage,

(continues on next page)

90

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Toast.LENGTH_LONG).show();

// if not on white list, do not use Autofill Service

mIsAutofillEnabled = false;

}

componentNameString =

autofillServicePackage + " / " + componentName.getClassName();

}

TextView statusView = (TextView) findViewById(R.id.label_autofill_status);

String status = "current autofill service: \n" + componentNameString;

statusView.setText(status);

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

(continues on next page)

91

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

(continues on next page)

92

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

4.1.3.8 Blocking of Unmatched Intents

This feature was added to Android 13 (API level 33) and above to enhance security. When an explicit Intent to
activate an activity is sent, if it does not match any of the receiving activity’s intent filters, the Intent is blocked.

• However, Intent matching is not applied in the following cases:

– Components for which the intent filter is not defined

– Intents sent from within the same app

– Intents sent from the system

– Intents sent from the root

The creation and use of public activities, even with the added feature of blocking unmatched Intents, should follow
the methods described in this Guidebook. This is because the content of the intent filter can be easily verified in An-
droidManifest.xml. For more information on the creation and use of public activities, refer to "4.1.1.2. Creating/Using
Public Activities" and "4.1.3.1. Combination of Exported Attribute and Intent Filter Setting (For Activity)."

The following shows a specific example of creating a public activity where an intent filter was defined. To check for
blocking of unmatched Intents, the adb command is used to start a public activity with an explicit Intent for a different

93

Secure Coding Guide Documentation Release 2025-01-29

action. In this case, we confirmed that the activity cannot be started when using not_match_intent_filter, which is not
defined in the intent filter.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:allowBackup="false"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/Theme.PublicActivity_33">

<!-- Public activity -->

<!--intent-filter is defined-->

<activity

android:name=".IntentFilterTestActivity"

android:exported="true">

<intent-filter>

<action android:name="api33_intent_block_test1" />

<action android:name="api33_intent_block_test2" />

</intent-filter>

</activity>

<activity

android:name=".MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Verifying start of an activity by adb command

>adb shell am start -n org.jssec.android.activity.publicactivity_33/.

→˓IntentFilterTestActivity

Starting: Intent { cmp=org.jssec.android.activity.publicactivity_33/.

→˓IntentFilterTestActivity }

>adb shell am start -a api33_intent_block_test1 -n org.jssec.android.activity.

→˓publicactivity_33/.IntentFilterTestActivity

Starting: Intent { act=api33_intent_block_test1 cmp=org.jssec.android.activity.

→˓publicactivity_33/.IntentFilterTestActivity }

>adb shell am start -a not_match_intent_filter -n org.jssec.android.activity.

→˓publicactivity_33/.IntentFilterTestActivity

Starting: Intent { act=not_match_intent_filter cmp=org.jssec.android.activity.

→˓publicactivity_33/.IntentFilterTestActivity }

(continues on next page)

94

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Error type 3

Error: Activity class {org.jssec.android.activity.publicactivity_33/org.jssec.

→˓android.activity.publicactivity_33.IntentFilterTestActivity} does not exist.

>adb shell am start -a api33_intent_block_test2 -n org.jssec.android.activity.

→˓publicactivity_33/.IntentFilterTestActivity

Starting: Intent { act=api33_intent_block_test2 cmp=org.jssec.android.activity.

→˓publicactivity_33/.IntentFilterTestActivity }

4.1.3.9 Restrictions on Implicit Intent and Pending Intent

Starting with Android 14, an exception occurs when an application sends an implicit intent to an internal component
that has not been exported.

For example, this is shown in the following code.

• Export setting for TestActivity is false

<activity

android:name=".TestActivity"

android:exported="false">

<intent-filter>

<action android:name="com.package.name.MyAction"/>

<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

</activity>

• Implicit Intent is sent to TestActivity

testButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent("com.package.name.MyAction");

startActivity(intent);

}

When the above code is executed, TestActivity will be launched as expected up to Android 13, but if it is executed
targeting Android 14, the following exception will occur.

android.content.ActivityNotFoundException: No Activity found to handle Intent {␣

→˓act=com.package.name.MyAction }

This is a specification change to prevent malicious applications from improperly intercepting internal components,
and explicit Intent must be used to launch TestActivity as before.

An example of the modification is shown below.

testButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent(getApplicationContext(), TestActivity.class);

startActivity(intent);

}

});

When specifying by action name, the modification is as follows.

95

Secure Coding Guide Documentation Release 2025-01-29

testButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Intent intent = new Intent("com.package.name.MyAction");

intent.setPackage(getApplicationContext().getPackageName());

startActivity(intent);

}

});

4.1.3.10 Secure Background Activity Launch

Android 15 introduced new restrictions on apps running in the background. This feature aims to protect users from
malicious background apps and enhance device security. Specifically, it aims to restrict the following three behaviors:

1. background apps bringing other apps to the foreground

2. background apps elevating privileges

3. background app abusing user operations

// 1. Bringing other apps to the foreground

private fun testLaunchSystemApp() {

moveTaskToBack(true)

Handler(Looper.getMainLooper()).postDelayed({

try {

val intent = Intent(Settings.ACTION_SETTINGS)

startActivity(intent)

Log.d("SecurityTest", "Attempted to launch Settings app")

} catch (e: Exception) {

Log.e("SecurityTest", "Failed to launch Settings app", e)

}

}, 5000)

}

// 2. Elevate privileges

private fun testElevatePrivileges() {

moveTaskToBack(true)

Handler(Looper.getMainLooper()).postDelayed({

try {

val intent = Intent(Settings.ACTION_MANAGE_WRITE_SETTINGS)

intent.data = Uri.parse("package:$packageName")

startActivity(intent)

Log.d("SecurityTest", "Attempted to elevate privileges")

} catch (e: Exception) {

Log.e("SecurityTest", "Failed to elevate privileges", e)

}

}, 5000)

}

// 3. Abuse of user actions

private fun testAbuseUserInteraction() {

moveTaskToBack(true)

Handler(Looper.getMainLooper()).postDelayed({

try {

val intent = Intent(Settings.ACTION_ACCESSIBILITY_SETTINGS)

startActivity(intent)

(continues on next page)

96

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Log.d("SecurityTest", "Attempted to open Accessibility Settings")

} catch (e: Exception) {

Log.e("SecurityTest", "Failed to abuse user interaction", e)

}

}, 5000)

}

The results showed that in all test cases (launching the Settings app, the permissions screen, and the Accessibility
settings), background apps were blocked from opening these screens in the foreground.

2025-01-24 09:24:18.554 1625-1693 ActivityTaskManager system_server ␣

→˓ E Background activity launch blocked! [callingPackage: com.

→˓example.myapplication; callingPackageTargetSdk: 35; callingUid: 10295;␣

→˓callingPid: 31399; appSwitchState: 2; callingUidHasAnyVisibleWindow: false;␣

→˓callingUidProcState: LAST_ACTIVITY; isCallingUidPersistentSystemProcess: false;␣

→˓forcedBalByPiSender: BSP.NONE; intent: Intent { act=android.intent.action.MAIN␣

→˓cat=[android.intent.category.LAUNCHER] flg=0x10000000 pkg=com.android.settings␣

→˓cmp=com.android.settings/.Settings }; callerApp: ProcessRecord{63473cb 31399:com.

→˓example.myapplication/u0a295}; inVisibleTask: false; balAllowedByPiCreator: BSP.

→˓ALLOW_BAL; balAllowedByPiCreatorWithHardening: BSP.ALLOW_BAL;␣

→˓resultIfPiCreatorAllowsBal: BAL_BLOCK; callerStartMode: MODE_BACKGROUND_ACTIVITY_

→˓START_SYSTEM_DEFINED; hasRealCaller: true; isCallForResult: false;␣

→˓isPendingIntent: false; autoOptInReason: notPendingIntent; realCallingPackage:␣

→˓com.example.myapplication; realCallingPackageTargetSdk: 35; realCallingUid:␣

→˓10295; realCallingPid: 31399; realCallingUidHasAnyVisibleWindow: false;␣

→˓realCallingUidProcState: LAST_ACTIVITY; isRealCallingUidPersistentSystemProcess:␣

→˓false; originatingPendingIntent: null; realCallerApp: ProcessRecord{63473cb␣

→˓31399:com.example.myapplication/u0a295}; realInVisibleTask: false;␣

→˓balAllowedByPiSender: BSP.ALLOW_BAL; resultIfPiSenderAllowsBal: BAL_BLOCK;␣

→˓realCallerStartMode: MODE_BACKGROUND_ACTIVITY_START_SYSTEM_DEFINED;␣

→˓balImproveRealCallerVisibilityCheck: true;␣

→˓balRequireOptInByPendingIntentCreator: true; balRequireOptInSameUid: false;␣

→˓balRespectAppSwitchStateWhenCheckBoundByForegroundUid: true;␣

→˓balDontBringExistingBackgroundTaskStackToFg: true]

2025-01-24 09:25:14.705 1625-1693 ActivityTaskManager system_server ␣

→˓ E Background activity launch blocked! [callingPackage: com.

→˓example.myapplication; callingPackageTargetSdk: 35; callingUid: 10295;␣

→˓callingPid: 31399; appSwitchState: 2; callingUidHasAnyVisibleWindow: false;␣

→˓callingUidProcState: LAST_ACTIVITY; isCallingUidPersistentSystemProcess: false;␣

→˓forcedBalByPiSender: BSP.NONE; intent: Intent { act=android.settings.action.

→˓MANAGE_WRITE_SETTINGS dat=package: cmp=com.android.settings/.Settings

→˓$AppWriteSettingsActivity }; callerApp: ProcessRecord{63473cb 31399:com.example.

→˓myapplication/u0a295}; inVisibleTask: false; balAllowedByPiCreator: BSP.ALLOW_

→˓BAL; balAllowedByPiCreatorWithHardening: BSP.ALLOW_BAL;␣

→˓resultIfPiCreatorAllowsBal: BAL_BLOCK; callerStartMode: MODE_BACKGROUND_ACTIVITY_

→˓START_SYSTEM_DEFINED; hasRealCaller: true; isCallForResult: false;␣

→˓isPendingIntent: false; autoOptInReason: notPendingIntent; realCallingPackage:␣

→˓com.example.myapplication; realCallingPackageTargetSdk: 35; realCallingUid:␣

→˓10295; realCallingPid: 31399; realCallingUidHasAnyVisibleWindow: false;␣

→˓realCallingUidProcState: LAST_ACTIVITY; isRealCallingUidPersistentSystemProcess:␣

→˓false; originatingPendingIntent: null; realCallerApp: ProcessRecord{63473cb␣

→˓31399:com.example.myapplication/u0a295}; realInVisibleTask: false;␣

→˓balAllowedByPiSender: BSP.ALLOW_BAL; resultIfPiSenderAllowsBal: BAL_BLOCK;␣

→˓realCallerStartMode: MODE_BACKGROUND_ACTIVITY_START_SYSTEM_DEFINED;␣

→˓balImproveRealCallerVisibilityCheck: true;␣

→˓balRequireOptInByPendingIntentCreator: true; balRequireOptInSameUid: false;␣

(continues on next page)

97

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

→˓balRespectAppSwitchStateWhenCheckBoundByForegroundUid: true;␣

→˓balDontBringExistingBackgroundTaskStackToFg: true]

2025-01-24 09:28:05.226 1625-3665 ActivityTaskManager system_server ␣

→˓ E Background activity launch blocked! [callingPackage: com.

→˓example.myapplication; callingPackageTargetSdk: 35; callingUid: 10333;␣

→˓callingPid: 32017; appSwitchState: 2; callingUidHasAnyVisibleWindow: false;␣

→˓callingUidProcState: LAST_ACTIVITY; isCallingUidPersistentSystemProcess: false;␣

→˓forcedBalByPiSender: BSP.NONE; intent: Intent { act=android.settings.

→˓ACCESSIBILITY_SETTINGS cmp=com.android.settings/.Settings

→˓$AccessibilitySettingsActivity }; callerApp: ProcessRecord{f57ff73 32017:com.

→˓example.myapplication/u0a333}; inVisibleTask: false; balAllowedByPiCreator: BSP.

→˓ALLOW_BAL; balAllowedByPiCreatorWithHardening: BSP.ALLOW_BAL;␣

→˓resultIfPiCreatorAllowsBal: BAL_BLOCK; callerStartMode: MODE_BACKGROUND_ACTIVITY_

→˓START_SYSTEM_DEFINED; hasRealCaller: true; isCallForResult: false;␣

→˓isPendingIntent: false; autoOptInReason: notPendingIntent; realCallingPackage:␣

→˓com.example.myapplication; realCallingPackageTargetSdk: 35; realCallingUid:␣

→˓10333; realCallingPid: 32017; realCallingUidHasAnyVisibleWindow: false;␣

→˓realCallingUidProcState: LAST_ACTIVITY; isRealCallingUidPersistentSystemProcess:␣

→˓false; originatingPendingIntent: null; realCallerApp: ProcessRecord{f57ff73␣

→˓32017:com.example.myapplication/u0a333}; realInVisibleTask: false;␣

→˓balAllowedByPiSender: BSP.ALLOW_BAL; resultIfPiSenderAllowsBal: BAL_BLOCK;␣

→˓realCallerStartMode: MODE_BACKGROUND_ACTIVITY_START_SYSTEM_DEFINED;␣

→˓balImproveRealCallerVisibilityCheck: true;␣

→˓balRequireOptInByPendingIntentCreator: true; balRequireOptInSameUid: false;␣

→˓balRespectAppSwitchStateWhenCheckBoundByForegroundUid: true;␣

→˓balDontBringExistingBackgroundTaskStackToFg: true]

However, it has been confirmed that the foreground launch was only blocked, and the settings app, permission settings
screen, and accessibility settings were open in the background.

This result does not seem to be what the official intention was, and it is unclear whether the current behavior is inten-
tional or a bug. Restrictions on background activity have been in place since Android 10, and specific implementations
and restrictions are expected to continue to change, so it is necessary to pay attention to the latest information.

4.1.3.11 Expanded Intent Filter Functionality

The UriRelativeFilter and UriRelativeFilterGroup features, newly introduced in Android 15, are designed to provide
detailed control over application intent filtering based on specific URI patterns.

While the traditional Intent Filter only performs exactmatching of scheme, host, and path, theUriRelativeFilter allows
for more detailed matching, including query parameters and fragments. This allows for finer control of application
behavior and reduces the risk of unauthorized access. Specific usage examples are shown below.

Scenario 1: Specific Authentication Flow

Example implementation for an authentication flow where only requests containing specific query parameters (e.g.
auth?token=xyz) are processed.

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="http" android:host="example.com" android:pathPrefix="/

→˓auth" />

<data android:scheme="https" android:host="example.com" android:pathPrefix="/

→˓auth" />

</intent-filter>

98

Secure Coding Guide Documentation Release 2025-01-29

// Acquire Intent Data

val uri = intent?.data

val uriString = uri?.toString() ?: "No URI"

// Create UriRelativeFilterGroup for verification

val filterGroup = UriRelativeFilterGroup(UriRelativeFilterGroup.ACTION_ALLOW).

→˓apply {

addUriRelativeFilter(UriRelativeFilter(UriRelativeFilter.PATH, PatternMatcher.

→˓PATTERN_PREFIX, "/auth"))

addUriRelativeFilter(UriRelativeFilter(UriRelativeFilter.QUERY, PatternMatcher.

→˓PATTERN_LITERAL, "token=securetoken"))

}

// Verify that data matches a filter

val isMatch = uri?.let { filterGroup.matchData(it) } ?: false

To simulate a specific authentication flow, send the URI as an intent using the following adb command

If the URI matches the filter:

$ adb shell am start -W -a android.intent.action.VIEW -d "https://example.com/auth?

→˓token=securetoken"

If the URI does not match the filter:

$ adb shell am start -W -a android.intent.action.VIEW -d "https://example.com/auth?

→˓token=invalidtoken"

Scenario 2: Marketing Campaign

To simulate a specific authentication flow, send the URI as an intent using the following adb command:

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<category android:name="android.intent.category.BROWSABLE" />

<data android:scheme="http" android:host="example.com" android:pathPrefix="/

→˓auth" />

<data android:scheme="https" android:host="example.com" android:pathPrefix="/

→˓auth" />

</intent-filter>

// Acquire Intent Data

val uri = intent?.data

val uriString = uri?.toString() ?: "No URI"

// Create UriRelativeFilterGroup for verification

val filterGroup = UriRelativeFilterGroup(UriRelativeFilterGroup.ACTION_ALLOW).

→˓apply {

addUriRelativeFilter(UriRelativeFilter(UriRelativeFilter.PATH, PatternMatcher.

→˓PATTERN_PREFIX, "/auth"))

addUriRelativeFilter(UriRelativeFilter(UriRelativeFilter.QUERY, PatternMatcher.

→˓PATTERN_LITERAL, "utm_source=campaign"))

}

// Verify that data matches a filter

val isMatch = uri?.let { filterGroup.matchData(it) } ?: false

To simulate a marketing campaign, send the URI as an intent using the following adb command:

99

Secure Coding Guide Documentation Release 2025-01-29

If the URI matches the filter:

$ adb shell am start -W -a android.intent.action.VIEW -d "https://example.com/auth?

→˓utm_source=campaign"

If the URI does not match the filter:

$ adb shell am start -W -a android.intent.action.VIEW -d "https://example.com/auth?

→˓utm_source=other"

4.1.3.12 Enhanced Intent Security

Android 15 introduces new security measures to make Intent more secure and robust. The changes are intended to
prevent malicious apps from exploiting the vulnerabilities and misusing Intent. Below are some points that developers
should be aware of.

Match the Intent Filter of the target

An intent that targets a particular component must exactly match the intent filter specifications declared in the targeted
component (such as an Activity, Service, or Broadcast Receiver).

For example, when creating an Intent as shown below, you must explicitly specify the target component name and
action.

val intent = Intent().apply {

action = Intent.ACTION_VIEW

data = Uri.parse("content://com.example.provider/item")

setClassName("com.example.targetapp", "com.example.targetapp.TargetActivity")

}

startActivity(intent)

In this case, the target component, com.example.targetapp.TargetActivity, must have an Intent Filter configured to
accept the Intent.ACTION_VIEW action and the content:// scheme.

<activity

android:name="com.example.targetapp.TargetActivity">

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<data android:scheme="content" />

</intent-filter>

</activity>

Intent requires action

Intents without an action will not match an intent filter, which means that the intent you use to launch a component
must have a clearly defined action.

For example, create an Intent with an action like this:

val intent = Intent(Intent.ACTION_VIEW).apply {

data = Uri.parse("https://www.example.com")

}

startActivity(intent)

In this code, the Intent has the Intent.ACTION_VIEW action and displays the specified URL.

Impact on PendingIntent

Because PendingIntents act as wrappers around standard Intents, these same security measures also apply to Pending-
Intents. Just like with regular Intents, you must set the appropriate action when you create a PendingIntent.

For example, create a PendingIntent as follows:

100

Secure Coding Guide Documentation Release 2025-01-29

val intent = Intent(context, MyActivity::class.java).apply {

action = Intent.ACTION_VIEW

data = Uri.parse("https://www.example.com") // Set when data is required

}

val pendingIntent = PendingIntent.getActivity(context, 0, intent, PendingIntent.

→˓FLAG_UPDATE_CURRENT)

Detection using StrictMode

Use StrictMode in your app to see how it responds to these changes. StrictMode allows you to view detailed logs of
intent usage violations and discover potential issues.

By adding the following code to the onCreate method, you can set the StrictMode policy and detect violations of
Intent usage.

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

StrictMode.setVmPolicy(

StrictMode.VmPolicy.Builder()

.detectUnsafeIntentLaunch()

.penaltyLog()

.build()

)

}

4.1.3.13 Changes to package stopped state

The package’s FLAG_STOPPED state (which the user enters by long pressing the app icon and selecting “Force
stop”) is intended to keep the app in this state until the user explicitly removes the app from this state, either by
launching the app directly or by indirectly interacting with the app via the share sheet or a widget.

101

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.1.8: Force stop

In previous versions of Android, PendingIntent remained active even when an app entered the stopped state, and the
system did not cancel these PendingIntents. This could cause an app in the stopped state to become active again
unintentionally.

In Android 15, the system behavior has changed to match the original specifications of the FLAG_STOPPED state,
and apps can only be released from the stopped state by direct or indirect user action.

This change may affect existing apps in the following ways:

1. When an app enters the stopped state, all pending intents are cancelled, which can result in important notifica-
tions or activities being lost.

2. Apps that use widgets will have their widgets greyed out and users will not be able to interact with them.

To address these effects, existing apps must add logic to re-register PendingIntents when the app is relaunched.

override fun onReceive(context: Context, intent: Intent) {

if (Intent.ACTION_BOOT_COMPLETED == intent.action) {

// Handle the app restart after boot completed

(continues on next page)

102

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

reinitializePendingIntents(context)

}

}

private fun reinitializePendingIntents(context: Context) {

// Logic to re-register pending intents

val intent = Intent(context, MyReceiver::class.java)

val pendingIntent = PendingIntent.getBroadcast(context, 0, intent,␣

→˓PendingIntent.FLAG_UPDATE_CURRENT)

// Re-schedule using AlarmManager if needed

val alarmManager = context.getSystemService(Context.ALARM_SERVICE) as␣

→˓AlarmManager

alarmManager.setExact(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() +␣

→˓60000, pendingIntent)

}

The FLAG_STOPPED state can be checked using the ApplicationStartInfo.wasForceStopped() method.

if (ApplicationStartInfo.wasForceStopped()) {

// Handle the case where the app was force stopped

reinitializePendingIntents()

}

4.2 Receiving/Sending Broadcasts

4.2.1 Sample Code

Creating Broadcast Receiver is required to receive Broadcast. Risks and countermeasures of using Broadcast Receiver
differ depending on the type of the received Broadcast.

You can find your Broadcast Receiver in the following judgment flow. The receiving applications cannot check
the package names of Broadcast-sending applications that are necessary for linking with the partners. As a result,
Broadcast Receiver for the partners cannot be created.

Table 4.2.1: Definition of broadcast receiver types

Type Definition
Private broadcast
receiver

A broadcast receiver that can receive broadcasts only from the same application, therefore
is the safest broadcast receiver

Public broadcast re-
ceiver

A broadcast receiver that can receive broadcasts from an unspecified large number of ap-
plications.

In-house broadcast
receiver

A broadcast receiver that can receive broadcasts only from other In-house applications

103

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.2.1: Flow Figure to select Broadcast Receiver Type

In addition, Broadcast Receiver can be divided into 2 types based on the definition methods, Static Broadcast Receiver
and Dynamic Broadcast Receiver. The differences between them can be found in the following figure. In the sample
code, an implementation method for each type is shown. The implementation method for sending applications is also
described because the countermeasure for sending information is determined depending on the receivers.

Table 4.2.2: Deinition Method and Characteristic of Broadcast Receivers

Definition method Characteristic
Static Broadcast
Receiver

Define by writing <receiver>
elements in AndroidMani-
fest.xml

• There is a restriction that some Broadcasts(e.g. AC-
TION_BATTERY_CHANGED) sent by system can-
not be received.

• Broadcast can be received from application’s initial
boot till uninstallation.

• If the app’s targetSDKVersion is 26 or above, then, on
terminals running Android 8.0 (API level 26 or later,
Broadcast Receivers may not be registered for implicit
Broadcast Intents11

Dynamic Broad-
cast Receiver

By calling registerReceiver()
and unregsterReceiver() in a
program, register/unregister
Broadcast Receiver dynami-
cally.

• Broadcasts which cannot be received by static Broad-
cast Receiver can be received.

• The period of receiving Broadcasts can be controlled
by the program. For example, Broadcasts can be re-
ceived only while Activity is on the front side.

• Private Broadcast Receiver cannot be created.

4.2.1.1 Private Broadcast Receiver - Receiving/Sending Broadcasts

Private Broadcast Receiver is the safest Broadcast Receiver because only Broadcasts sent from within the application
can be received. Dynamic Broadcast Receiver cannot be registered as Private, so Private Broadcast Receiver consists
of only Static Broadcast Receivers.

Points (Receiving Broadcasts):

1. Explicitly set the exported attribute to false.
11 As exceptions to this rule, some implicit Broadcast Intents sent by the system may use Broadcast Receivers. For more information, consult

the following URL. https://developer.android.com/guide/components/broadcast-exceptions.html

104

https://developer.android.com/guide/components/broadcast-exceptions.html

Secure Coding Guide Documentation Release 2025-01-29

2. Handle the received intent carefully and securely, even though the intent was sent from within the same appli-
cation.

3. Sensitive information can be sent as the returned results since the requests come from within the same appli-
cation.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<!-- Private Broadcast Receiver -->

<!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

<receiver

android:name=".PrivateReceiver"

android:exported="false" />

<activity

android:name=".PrivateSenderActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

PrivateReceiver.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

(continues on next page)

105

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public class PrivateReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {

// *** POINT 2 *** Handle the received intent carefully and securely,

// even though the intent was sent from within the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = intent.getStringExtra("PARAM");

Toast.makeText(context,

String.format("Received param: \"%s\"", param),

Toast.LENGTH_SHORT).show();

// *** POINT 3 *** Sensitive information can be sent as the returned

// results since the requests come from within the same application.

setResultCode(Activity.RESULT_OK);

setResultData("Sensitive Info from Receiver");

abortBroadcast();

}

}

The sample code for sending Broadcasts to private Broadcast Receiver is shown below.

Points (Sending Broadcasts):

4. Use the explicit Intent with class specified to call a receiver within the same application.

5. Sensitive information can be sent since the destination Receiver is within the same application.

6. Handle the received result data carefully and securely, even though the data came from the Receiver within the
same application.

PrivateSenderActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

(continues on next page)

106

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.view.View;

import android.widget.TextView;

public class PrivateSenderActivity extends Activity {

public void onSendNormalClick(View view) {

// *** POINT 4 *** Use the explicit Intent with class specified to call

// a receiver within the same application.

Intent intent = new Intent(this, PrivateReceiver.class);

// *** POINT 5 *** Sensitive information can be sent since the destination

// Receiver is within the same application.

intent.putExtra("PARAM", "Sensitive Info from Sender");

sendBroadcast(intent);

}

public void onSendOrderedClick(View view) {

// *** POINT 4 *** Use the explicit Intent with class specified to call

// a receiver within the same application.

Intent intent = new Intent(this, PrivateReceiver.class);

// *** POINT 5 *** Sensitive information can be sent since the destination

// Receiver is within the same application.

intent.putExtra("PARAM", "Sensitive Info from Sender");

sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);

}

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

// *** POINT 6 *** Handle the received result data carefully and

// securely, even though the data came from the Receiver within

// the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String data = getResultData();

PrivateSenderActivity.this

.logLine(String.format("Received result: \"%s\"", data));

}

};

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

107

Secure Coding Guide Documentation Release 2025-01-29

4.2.1.2 Public Broadcast Receiver - Receiving/Sending Broadcasts

Public Broadcast Receiver is the Broadcast Receiver that can receive Broadcasts from unspecified large number of
applications, so it's necessary to pay attention that it may receive Broadcasts from malware.

Points (Receiving Broadcasts):

1. Explicitly set the exported attribute to true.

2. Handle the received Intent carefully and securely.

3. When returning a result, do not include sensitive information.

Public Receiver which is the sample code for public Broadcast Receiver can be used both in static Broadcast Receiver
and Dynamic Broadcast Receiver.

PublicReceiver.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class PublicReceiver extends BroadcastReceiver {

private static final String MY_BROADCAST_PUBLIC =

"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

public boolean isDynamic = false;

private String getName() {

return isDynamic ? "Public Dynamic Broadcast Receiver" :

"Public Static Broadcast Receiver";

}

@Override

public void onReceive(Context context, Intent intent) {

// *** POINT 2 *** Handle the received Intent carefully and securely.

// Since this is a public broadcast receiver, the requesting application

// may be malware.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

(continues on next page)

108

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (MY_BROADCAST_PUBLIC.equals(intent.getAction())) {

String param = intent.getStringExtra("PARAM");

Toast.makeText(context,

String.format("%s:\nReceived param: \"%s\"",

getName(), param),

Toast.LENGTH_SHORT).show();

}

// *** POINT 3 *** When returning a result, do not include sensitive

// information.

// Since this is a public broadcast receiver, the requesting application

// may be malware.

// If no problem when the information is taken by malware, it can be

// returned as result.

setResultCode(Activity.RESULT_OK);

setResultData(String.format("Not Sensitive Info from %s", getName()));

abortBroadcast();

}

}

Static Broadcast Receive is defined in AndroidManifest.xml. Note with caution that—depending on the terminal
version—reception of implicit Broadcast Intents may be restricted, as in Table 4.2.2.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<!-- Public Static Broadcast Receiver -->

<!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

<receiver

android:name=".PublicReceiver"

android:exported="true" >

<intent-filter>

<action android:name="org.jssec.android.broadcast.MY_BROADCAST_PUBLIC" />

</intent-filter>

</receiver>

<service

android:name=".DynamicReceiverService"

android:exported="false" />

<activity

android:name=".PublicReceiverActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

(continues on next page)

109

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

</application>

</manifest>

In Dynamic Broadcast Receiver, registration/unregistration is executed by calling registerReceiver() or unregister-
Receiver() in the program. In order to execute registration/unregistration by button operations, the button is allo-
cated on PublicReceiverActivity. Since the scope of Dynamic Broadcast Receiver Instance is longer than PublicRe-
ceiverActivity, it cannot be kept as the member variable of PublicReceiverActivity. In this case, keep the Dynamic
Broadcast Receiver Instance as the member variable of DynamicReceiverService, and then start/end DynamicRecei-
verService from PublicReceiverActivity to register/unregister Dynamic Broadcast Receiver indirectly.

DynamicReceiverService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.publicreceiver;

import android.app.Service;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.IBinder;

import android.widget.Toast;

public class DynamicReceiverService extends Service {

private static final String MY_BROADCAST_PUBLIC =

"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

private PublicReceiver mReceiver;

@Override

public IBinder onBind(Intent intent) {

return null;

}

@Override

public void onCreate() {

super.onCreate();

// Register Public Dynamic Broadcast Receiver.

mReceiver = new PublicReceiver();

mReceiver.isDynamic = true;

IntentFilter filter = new IntentFilter();

filter.addAction(MY_BROADCAST_PUBLIC);

(continues on next page)

110

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Prioritize Dynamic Broadcast Receiver,

// rather than Static Broadcast Receiver.

filter.setPriority(1);

registerReceiver(mReceiver, filter);

Toast.makeText(this,

"Registered Dynamic Broadcast Receiver.",

Toast.LENGTH_SHORT).show();

}

@Override

public void onDestroy() {

super.onDestroy();

// Unregister Public Dynamic Broadcast Receiver.

unregisterReceiver(mReceiver);

mReceiver = null;

Toast.makeText(this,

"Unregistered Dynamic Broadcast Receiver.",

Toast.LENGTH_SHORT).show();

}

}

PublicReceiverActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class PublicReceiverActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public void onRegisterReceiverClick(View view) {

Intent intent = new Intent(this, DynamicReceiverService.class);

(continues on next page)

111

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

startService(intent);

}

public void onUnregisterReceiverClick(View view) {

Intent intent = new Intent(this, DynamicReceiverService.class);

stopService(intent);

}

}

Next, the sample code for sending Broadcasts to public Broadcast Receiver is shown. When sending Broadcasts to
public Broadcast Receiver, it's necessary to pay attention that Broadcasts can be received by malware.

Points (Sending Broadcasts):

4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

PublicSenderActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.publicsender;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicSenderActivity extends Activity {

private static final String MY_BROADCAST_PUBLIC =

"org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

public void onSendNormalClick(View view) {

// *** POINT 4 *** Do not send sensitive information.

Intent intent = new Intent(MY_BROADCAST_PUBLIC);

intent.putExtra("PARAM", "Not Sensitive Info from Sender");

sendBroadcast(intent);

}

public void onSendOrderedClick(View view) {

(continues on next page)

112

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 4 *** Do not send sensitive information.

Intent intent = new Intent(MY_BROADCAST_PUBLIC);

intent.putExtra("PARAM", "Not Sensitive Info from Sender");

sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);

}

public void onSendStickyClick(View view) {

// *** POINT 4 *** Do not send sensitive information.

Intent intent = new Intent(MY_BROADCAST_PUBLIC);

intent.putExtra("PARAM", "Not Sensitive Info from Sender");

//sendStickyBroadcast is deprecated at API Level 21

sendStickyBroadcast(intent);

}

public void onSendStickyOrderedClick(View view) {

// *** POINT 4 *** Do not send sensitive information.

Intent intent = new Intent(MY_BROADCAST_PUBLIC);

intent.putExtra("PARAM", "Not Sensitive Info from Sender");

//sendStickyOrderedBroadcast is deprecated at API Level 21

sendStickyOrderedBroadcast(intent, mResultReceiver, null, 0, null, null);

}

public void onRemoveStickyClick(View view) {

Intent intent = new Intent(MY_BROADCAST_PUBLIC);

//removeStickyBroadcast is deprecated at API Level 21

removeStickyBroadcast(intent);

}

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

// *** POINT 5 *** When receiving a result, handle the result data

// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String data = getResultData();

PublicSenderActivity.this

.logLine(String.format("Received result: \"%s\"", data));

}

};

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

113

Secure Coding Guide Documentation Release 2025-01-29

4.2.1.3 In-house Broadcast Receiver - Receiving/Sending Broadcasts

In-house Broadcast Receiver is the Broadcast Receiver that will never receive any Broadcasts sent from other than
in-house applications. It consists of several in-house applications, and it's used to protect the information or functions
that in-house application handles.

Points (Receiving Broadcasts):

1. Define an in-house signature permission to receive Broadcasts.

2. Declare to use the in-house signature permission to receive results.

3. Explicitly set the exported attribute to true.

4. Require the in-house signature permission by the Static Broadcast Receiver definition.

5. Require the in-house signature permission to register Dynamic Broadcast Receiver.

6. Verify that the in-house signature permission is defined by an in-house application.

7. Handle the received intent carefully and securely, even though the Broadcast was sent from an in-house appli-
cation.

8. Sensitive information can be returned since the requesting application is in-house.

9. When Exporting an APK, sign the APK with the same developer key as the sending application.

In-house Receiver which is a sample code of in-house Broadcast Receiver is to be used both in Static Broadcast
Receiver and Dynamic Broadcast Receiver.

InhouseReceiver.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.inhousereceiver;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.widget.Toast;

public class InhouseReceiver extends BroadcastReceiver {

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION";

(continues on next page)

114

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" in the

// debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" in the keystore.

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

private static final String MY_BROADCAST_INHOUSE =

"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

public boolean isDynamic = false;

private String getName() {

return isDynamic ? "In-house Dynamic Broadcast Receiver" :

"In-house Static Broadcast Receiver";

}

@Override

public void onReceive(Context context, Intent intent) {

// *** POINT 6 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(context, MY_PERMISSION, myCertHash(context))) {

Toast.makeText(context,"The in-house signature permission is not␣

→˓declared by in-house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 7 *** Handle the received intent carefully and securely,

// even though the Broadcast was sent from an in-house application..

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (MY_BROADCAST_INHOUSE.equals(intent.getAction())) {

String param = intent.getStringExtra("PARAM");

Toast.makeText(context, String.format("%s:\nReceived param: \"%s\"",␣

→˓getName(), param), Toast.LENGTH_SHORT).show();

}

// *** POINT 8 *** Sensitive information can be returned since the

// requesting application is in-house.

setResultCode(Activity.RESULT_OK);

setResultData(String.format("Sensitive Info from %s", getName()));

abortBroadcast();

}

}

115

Secure Coding Guide Documentation Release 2025-01-29

Static Broadcast Receiver is to be defined in AndroidManifest.xml.Note with caution that—depending on the terminal
version—reception of implicit Broadcast Intents may be restricted, as in Table 4.2.2.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Define an in-house signature permission to receive␣

→˓Broadcasts -->

<permission

android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION"

android:protectionLevel="signature" />

<!-- *** POINT 2 *** Declare to use the in-house signature permission to receive␣

→˓results. -->

<uses-permission

android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<!-- *** POINT 3 *** Explicitly set the exported attribute to true. -->

<!-- *** POINT 4 *** Require the in-house signature permission by the Static␣

→˓Broadcast Receiver definition. -->

<receiver

android:name=".InhouseReceiver"

android:permission="org.jssec.android.broadcast.inhousereceiver.MY_

→˓PERMISSION"

android:exported="true">

<intent-filter>

<action android:name="org.jssec.android.broadcast.MY_BROADCAST_INHOUSE" />

</intent-filter>

</receiver>

<service

android:name=".DynamicReceiverService"

android:exported="false" />

<activity

android:name=".InhouseReceiverActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Dynamic Broadcast Receiver executes registration/unregistration by calling registerReceiver() or unregisterReceiver()
in the program. In order to execute registration/unregistration by the button operations, the button is arranged on
InhouseReceiverActivity. Since the scope of Dynamic Broadcast Receiver Instance is longer than InhouseReceiver-
Activity, it cannot be kept as the member variable of InhouseReceiverActivity. So, keep Dynamic Broadcast Receiver

116

Secure Coding Guide Documentation Release 2025-01-29

Instance as the member variable of DynamicReceiverService, and then start/end DynamicReceiverService from In-
houseReceiverActivity to register/unregister Dynamic Broadcast Receiver indirectly.

InhouseReceiverActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.inhousereceiver;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class InhouseReceiverActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public void onRegisterReceiverClick(View view) {

Intent intent = new Intent(this, DynamicReceiverService.class);

startService(intent);

}

public void onUnregisterReceiverClick(View view) {

Intent intent = new Intent(this, DynamicReceiverService.class);

stopService(intent);

}

}

DynamicReceiverService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

(continues on next page)

117

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.broadcast.inhousereceiver;

import android.app.Service;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.IBinder;

import android.widget.Toast;

public class DynamicReceiverService extends Service {

private static final String MY_BROADCAST_INHOUSE =

"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

private InhouseReceiver mReceiver;

@Override

public IBinder onBind(Intent intent) {

return null;

}

@Override

public void onCreate() {

super.onCreate();

mReceiver = new InhouseReceiver();

mReceiver.isDynamic = true;

IntentFilter filter = new IntentFilter();

filter.addAction(MY_BROADCAST_INHOUSE);

// Prioritize Dynamic Broadcast Receiver,

// rather than Static Broadcast Receiver.

filter.setPriority(1);

// *** POINT 5 *** When registering a dynamic broadcast receiver, require

// the in-house signature permission.

registerReceiver(mReceiver, filter,

"org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION

→˓",

null);

Toast.makeText(this,

"Registered Dynamic Broadcast Receiver.",

Toast.LENGTH_SHORT).show();

}

@Override

public void onDestroy() {

super.onDestroy();

unregisterReceiver(mReceiver);

mReceiver = null;

Toast.makeText(this,

"Unregistered Dynamic Broadcast Receiver.",

(continues on next page)

118

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Toast.LENGTH_SHORT).show();

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

(continues on next page)

119

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

(continues on next page)

120

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point 9 *** When exporting an APK, sign the APK with the same developer key as the sending application.

Fig. 4.2.2: Sign the APK with the same developer key as the sending application

Next, the sample code for sending Broadcasts to in-house Broadcast Receiver is shown.

Points (Sending Broadcasts):

10. Define an in-house signature permission to receive results.

11. Declare to use the in-house signature permission to receive Broadcasts.

12. Verify that the in-house signature permission is defined by an in-house application.

13. Sensitive information can be returned since the requesting application is the in-house one.

14. Require the in-house signature permission of Receivers.

15. Handle the received result data carefully and securely.

121

Secure Coding Guide Documentation Release 2025-01-29

16. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<queries>

<package android:name="org.jssec.android.broadcast.inhousereceiver" />

</queries>

<uses-permission android:name="android.permission.BROADCAST_STICKY"/>

<!-- *** POINT 10 *** Define an in-house signature permission to receive results.

→˓ -->

<permission

android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION"

android:protectionLevel="signature" />

<!-- *** POINT 11 *** Declare to use the in-house signature permission to␣

→˓receive Broadcasts. -->

<uses-permission

android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name="org.jssec.android.broadcast.inhousesender.

→˓InhouseSenderActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

InhouseSenderActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

122

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.broadcast.inhousesender;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class InhouseSenderActivity extends Activity {

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.broadcast.inhousesender.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" in the

// debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" in the keystore.

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

private static final String MY_BROADCAST_INHOUSE =

"org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

public void onSendNormalClick(View view) {

// *** POINT 12 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this, "The in-house signature permission is not␣

→˓declared by in-house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 13 *** Sensitive information can be returned since the

// requesting application is in-house.

Intent intent = new Intent(MY_BROADCAST_INHOUSE);

intent.putExtra("PARAM", "Sensitive Info from Sender");

(continues on next page)

123

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 14 *** Require the in-house signature permission to limit

// receivers.

sendBroadcast(intent,

"org.jssec.android.broadcast.inhousesender.MY_PERMISSION");

}

public void onSendOrderedClick(View view) {

// *** POINT 12 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this, "The in-house signature permission is not␣

→˓declared by in-house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 13 *** Sensitive information can be returned since the

// requesting application is in-house.

Intent intent = new Intent(MY_BROADCAST_INHOUSE);

intent.putExtra("PARAM", "Sensitive Info from Sender");

// *** POINT 14 *** Require the in-house signature permission to limit

// receivers.

sendOrderedBroadcast(intent,

"org.jssec.android.broadcast.inhousesender.MY_PERMISSION",

mResultReceiver, null, 0, null, null);

}

private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

// *** POINT 15 *** Handle the received result data carefully and

// securely, even though the data came from an in-house

// application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String data = getResultData();

InhouseSenderActivity.this

.logLine(String.format("Received result: \"%s\"", data));

}

};

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

(continues on next page)

124

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

(continues on next page)

125

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

(continues on next page)

126

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point 16 *** When exporting an APK, sign the APK with the same developer key as the destination application.

Fig. 4.2.3: Sign the APK with the same developer key as the destination application

4.2.2 Rule Book

Follow the rules below to Send or receive Broadcasts.

1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)

2. Handle the Received Intent Carefully and Securely (Required)

3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house Application (Re-
quired)

4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the Destination
Application (Required)

5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)

127

Secure Coding Guide Documentation Release 2025-01-29

6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be Delivered (Re-
quired)

8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)

9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection Level (Required)

4.2.2.1 Broadcast Receiver that Is UsedOnly in an ApplicationMust Be Set as Private (Required)

Broadcast Receiver which is used only in the application should be set as private to avoid from receiving any Broadcasts
from other applications unexpectedly. It will prevent the application function abuse or the abnormal behaviors.

Receiver used only within the same application should not be designed with setting Intent-filter. Because of the Intent-
filter characteristics, a public Receiver of other application may be called unexpectedly by calling through Intent-filter
even though a private Receiver within the same application is to be called.

AndroidManifest.xml(Not recoomended)

<!-- Private Broadcast Receiver -->

<!-- *** 4.2.1.1 - POINT 1 *** Explicitly set the exported attribute to␣

→˓false. -->

<receiver android:name=".PrivateReceiver"

android:exported="false" >

<intent-filter>

<action android:name="org.jssec.android.broadcast.MY_ACTION" />

</intent-filter>

</receiver>

Please refer to "4.2.3.1. Combination of Exported Attribute and the Intent-filter setting (For Receiver)."

4.2.2.2 Handle the Received Intent Carefully and Securely (Required)

Though risks are different depending on the types of the Broadcast Receiver, firstly verify the safety of Intent when
processing received Intent data.

Since Public Broadcast Receiver receives the Intents from unspecified large number of applications, it may receive
malware's attacking Intents. Private Broadcast Receiver will never receive any Intent from other applications directly,
but Intent data which a public Component received from other applications may be forwarded to Private Broadcast
Receiver. So don't think that the received Intent is totally safe without any qualification. In-house Broadcast Receivers
have some degree of the risks, so it also needs to verify the safety of the received Intents.

Please refer to "3.2. Handling Input Data Carefully and Securely"

4.2.2.3 Use the In-house Defined Signature Permission after Verifying that it's Defined by an
In-house Application (Required)

In-house Broadcast Receiver which receives only Broadcasts sent by an In-house application should be protected
by in-house-defined Signature Permission. Permission definition/Permission request declarations in AndroidMani-
fest.xml are not enough to protecting, so please refer to "5.2.1.2. How to Communicate Between In-house Applications
with In-house-defined Signature Permission." ending Broadcasts by specifying in-house-defined Signature Permission
to receiverPermission parameter requires verification in the same way.

4.2.2.4 When Returning a Result Information, Pay Attention to the Result Information Leakage
from the Destination Application (Required)

The Reliability of the application which returns result information by setResult() varies depending on the types of the
Broadcast Receiver. In case of Public Broadcast Receiver, the destination application may be malware, and there may

128

Secure Coding Guide Documentation Release 2025-01-29

be a risk that the result information is used maliciously. In case of Private Broadcast Receiver and In-house Broadcast
Receiver, the result destination is In-house developed application, so no need to mind the result information handling.

Need to pay attention to the result information leakage from the destination application when result information is
returned from Broadcast Receivers as above.

4.2.2.5 When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver
(Required)

Broadcast is the created system to broadcast information to unspecified large number of applications or notify them
of the timing at once. So, broadcasting sensitive information requires the careful designing for preventing the illicit
obtainment of the information by malware.

For broadcasting sensitive information, only reliable Broadcast Receiver can receive it, and other Broadcast Receivers
cannot. The following are some examples of Broadcast sending methods.

• The method is to fix the address by Broadcast-sending with an explicit Intent for sending Broadcasts to the
intended reliable Broadcast Receivers only. There are 2 patterns in this method.

– When it's addressed to a Broadcast Receiver within the same application, specify the address by In-
tent#setClass(Context, Class). Refer to sample code section "4.2.1.1. Private Broadcast Receiver - Re-
ceiving/Sending Broadcasts" for the concrete code.

– When it's addressed to a Broadcast Receiver in other applications, specify the address by Intent#setClass-
Name(String, String). Confirm the permitted application by comparing the developer key of the APK
signature in the destination package with the white list to send Broadcasts. Actually the following method
of using implicit Intents is more practical.

• The Method is to send Broadcasts by specifying in-house-defined Signature Permission to receiverPermission
parameter and make the reliable Broadcast Receiver declare to use this Signature Permission. Refer to the
sample code section "4.2.1.3. In-house Broadcast Receiver - Receiving/Sending Broadcasts" for the concrete
code. In addition, implementing this Broadcast-sending method needs to apply the rule "4.2.2.3. Use the
In-house Defined Signature Permission after Verifying that it's Defined by an In-house Application (Required)."

4.2.2.6 Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

Usually, the Broadcasts will be disappeared when they are processed to be received by the available Broadcast Re-
ceivers. On the other hand, Sticky Broadcasts (hereafter, Sticky Broadcasts including Sticky Ordered Broadcasts),
will not be disappeared from the system even when they processed to be received by the available Broadcast Receivers
and will be able to be received by registerReceiver(). When Sticky Broadcast becomes unnecessary, it can be deleted
anytime arbitrarily with removeStickyBroadcast().

As it's presupposed that Sticky Broadcast is used by the implicit Intent. Broadcasts with specified receiverPermission
Parameter cannot be sent. For this reason, information sent via Sticky Broadcasts can be accessed by multiple un-
specified apps — including malware — and thus sensitive information must not be sent in this way. Note that Sticky
Broadcast is deprecated in Android 5.0 (API Level 21).

4.2.2.7 Pay Attention that the Ordered Broadcast without Specifying the receiverPermission
May Not Be Delivered (Required)

Ordered Broadcast without specified receiverPermission Parameter can be received by unspecified large number of
applications including malware. Ordered Broadcast is used to receive the returned information from Receiver, and to
make several Receivers execute processing one by one. Broadcasts are sent to the Receivers in order of priority. So
if the high- priority malware receives Broadcast first and executes abortBroadcast(), Broadcasts won't be delivered to
the following Receivers.

129

Secure Coding Guide Documentation Release 2025-01-29

4.2.2.8 Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely
(Required)

Basically the result data should be processed safely considering the possibility that received resultsmay be the attacking
data though the risks vary depending on the types of the Broadcast Receiver which has returned the result data.

When sender (source) Broadcast Receiver is public Broadcast Receiver, it receives the returned data from unspecified
large number of applications. So it may also receive malware's attacking data. When sender (source) Broadcast
Receiver is private Broadcast Receiver, it seems no risk. However the data received by other applications may be
forwarded as result data indirectly. So the result data should not be considered as safe without any qualification. When
sender (source) Broadcast Receiver is In-house Broadcast Receiver, it has some degree of the risks. So it should be
processed in a safe way considering the possibility that the result data may be an attacking data.

Please refer to "3.2. Handling Input Data Carefully and Securely"

4.2.2.9 When Providing an Asset Secondarily, the Asset should be protected with the Same
Protection Level (Required)

When information or function assets protected by Permission are provided to other applications secondarily, it's
necessary to keep the protection standard by claiming the same Permission of the destination application. In the
Android Permission security models, privileges are managed only for the direct access to the protected assets from
applications. Because of the characteristics, acquired assets may be provided to other applications without claim-
ing Permission which is necessary for protection. This is actually same as re-delegating Permission, as it is called,
Permission re-delegation problem. Please refer to "5.2.3.4. Permission Re-delegation Problem."

4.2.3 Advanced Topics

4.2.3.1 Combination of Exported Attribute and the Intent-filter setting (For Receiver)

Table 4.2.3 represents the permitted combination of export settings and Intent-filter elements when implementing
Receivers. The reason why the usage of "exported="false" with Intent-filter definition" is principally prohibited, is
described below.

Table 4.2.3: Usable or not; Combination of Exported Attribute and intent-
filter Element

Value of exported attribute
True False Not specified

Intent-filter defined OK (Do not Use) (Do not Use)
Intent Filter Not Defined OK OK (Do not Use)

When the exported attribute of a Receiver is left unspecified, the question of whether or not the Receiver is public is
determined by the presence or absence of intent filters for that Receiver12. However, in this guidebook it is forbidden
to set the exported attribute to "unspecified". In general, as mentioned previously, it is best to avoid implementations
that rely on the default behavior of any given API; moreover, in cases where explicit methods — such as the exported
attribute — exist for enabling important security-related settings, it is always a good idea to make use of those
methods.

Public Receivers in other applications may be called unexpectedly even though Broadcasts are sent to the private
Receivers within the same applications. This is the reason why specifying exported="false" with Intent-filter definition
is prohibited. The following 2 figures show how the unexpected calls occur.

Fig. 4.2.4 is an example of the normal behaviors which a private Receiver (application A) can be called by implicit
Intent only within the same application. Intent-filter (in the figure, action="X") is defined only in application A, so
this is the expected behavior.

12 If any intent filters are defined then the Receiver is public; otherwise it is private. For more information, see https://developer.android.com/
guide/topics/manifest/receiver-element.html#exported

130

https://developer.android.com/guide/topics/manifest/receiver-element.html#exported
https://developer.android.com/guide/topics/manifest/receiver-element.html#exported

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.2.4: An Example of Normal Behavior

Fig. 4.2.5 is an example that Intent-filter (see action="X" in the figure) is defined in the application B as well as in
the application A. First of all, when another application (application C) sends Broadcasts by implicit Intent, they are
not received by a private Receiver (A-1) side. So there won't be any security problem. (See the orange arrow marks
in the Figure.)

From security point of view, the problem is application A's call to the private Receiver within the same application.
When the application A broadcasts implicit Intent, not only Private Receiver within the same application, but also
public Receiver (B-1) with the same Intent-filter definition can also receive the Intent. (Red arrow marks in the
Figure). In this case, sensitive information may be sent from the application A to B. When the application B is
malware, it will cause the leakage of sensitive information. When the Broadcast is Ordered Broadcast, it may receive
the unexpected result information.

131

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.2.5: An Example of Abnormal Behavior

However, "exported="false" with Intent-filter definition" should be used when Broadcast Receiver to receive only
Broadcast Intent sent by the system is implemented. Other combination should not be used. This is based on the
fact that Broadcast Intent sent by the system can be received by exported="false". If other applications send Intent
which has same ACTION with Broadcast Intent sent by system, it may cause an unexpected behavior by receiving it.
However, this can be prevented by specifying exported="false".

4.2.3.2 Receiver Won't Be Registered before Launching the Application

It is important to note carefully that a Broadcast Receiver defined statically in AndroidManifest.xml will not be auto-
matically enabled upon installation13. Apps are able to receive Broadcasts only after they have been launched the first
time; thus, it is not possible to use the receipt of a Broadcast after installation as a trigger to initiate operations. How-
ever, if the Intent.FLAG_INCLUDE_STOPPED_PACKAGES flag set when sending a Broadcast, that Broadcast
will be received even by apps that have not yet been launched for the first time.

4.2.3.3 Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID
Application

Same UID can be provided to several applications. Even if it's private Broadcast Receiver, the Broadcasts sent from
the same UID application can be received.

However, it won't be a security problem. Since it's guaranteed that applications with the same UID have the consistent
developer keys for signing APK. It means that what private Broadcast Receiver receives is only the Broadcast sent
from In-house applications.

13 In versions prior to Android 3.0, Receivers were registered automatically simply by installing apps.

132

Secure Coding Guide Documentation Release 2025-01-29

4.2.3.4 Types and Features of Broadcasts

Regarding Broadcasts, there are 4 types based on the combination of whether it's Ordered or not, and Sticky or
not. Based on Broadcast sending methods, a type of Broadcast to send is determined. Note that Sticky Broadcast is
deprecated in Android 5.0 (API Level 21).

Table 4.2.4: Type of Sending Broadcast

Type of Broadcast Method for sending Ordered? Sticky?
Normal Broadcast sendBroadcast() No No
Ordered Broadcast sendOrderedBroadcast() Yes No
Sticky Broadcast sendStickyBroadcast() No Yes
Sticky Ordered Broadcast sendStickyOrderedBroadcast() Yes Yes

The feature of each Broad cast is described.

Table 4.2.5: Feature of Each Broadcast

Type of Broadcast Features for each type of Broadcast
Normal Broadcast Normal Broadcast disappears when it is sent to receivable Broadcast Receiver.

Broadcasts are received by several Broadcast Receivers simultaneously. This
is a difference from Ordered Broadcast. Broadcasts are allowed to be received
by the particular Broadcast Receivers.

Ordered Broadcast Ordered Broadcast is characterized by receiving Broadcasts one by one in order
with receivable Broadcast Receivers. The higher-priority Broadcast Receiver
receives earlier. Broadcasts will disappear when Broadcasts are delivered to all
Broadcast Receivers or a Broadcast Receiver in the process calls abortBroad-
cast(). Broadcasts are allowed to be received by the Broadcast Receivers which
declare the specified Permission. In addition, the result information sent from
Broadcast Receiver can be received by the sender with Ordered Broadcasts.
The Broadcast of SMS-receiving notice (SMS_RECEIVED) is a representa-
tive example of Ordered Broadcast.

Sticky Broadcast Sticky Broadcast does not disappear and remains in the system, and then the ap-
plication that calls registerReceiver() can receive Sticky Broadcast later. Since
Sticky Broadcast is different from other Broadcasts, it will never disappear au-
tomatically. So when Sticky Broadcast is not necessary, calling removeStick-
yBroadcast() explicitly is required to delete Sticky Broadcast. Also, Broad-
casts cannot be received by the limited Broadcast Receivers with particular
Permission. The Broadcast of changing battery-state notice (ACTION_BAT-
TERY_CHANGED) is the representative example of Sticky Broadcast.

Sticky Ordered Broadcast This is the Broadcast which has both characteristics of Ordered Broadcast and
Sticky Broadcast. Same as Sticky Broadcast, it cannot allow only Broadcast
Receivers with the particular Permission to receive the Broadcast.

From the Broadcast characteristic behavior point of view, above table is conversely arranged in the following one.

133

Secure Coding Guide Documentation Release 2025-01-29

Table 4.2.6: Characteristic behavior of Broadcast

Characteristic behavior
of Broadcast

Normal
Broad-
cast

Or-
dered
Broad-
cast

Sticky
Broad-
cast

Sticky Ordered
Broadcast

Limit Broadcast Re-
ceivers which can receive
Broadcast, by Permission

OK OK - -

Get the results of process
from Broadcast Receiver

- OK - OK

Make Broadcast Re-
ceivers process Broad-
casts in order

- OK - OK

Receive Broadcasts later,
which have been already
sent

- - OK OK

4.2.3.5 Broadcasted Information May be Output to the LogCat

Basically sending/receiving Broadcasts is not output to LogCat. However, the error log will be output when lacking
Permission causes errors in receiver/sender side. Intent information sent by Broadcast is included in the error log, so
after an error occurs it's necessary to pay attention that Intent information is displayed in LogCat when Broadcast is
sent.

Erorr of lacking Permission in sender side

W/ActivityManager(266): Permission Denial: broadcasting Intent {

act=org.jssec.android.broadcastreceiver.creating.action.MY_ACTION }

from org.jssec.android.broadcast.sending (pid=4685, uid=10058) requires

org.jssec.android.permission.MY_PERMISSION due to receiver

org.jssec.android.broadcastreceiver.creating/org.jssec.android.broadcastreceiver.

→˓creating.CreatingType3Receiver

Erorr of lacking Permission in receiver side

W/ActivityManager(266): Permission Denial: broadcasting Intent {

act=org.jssec.android.broadcastreceiver.creating.action.MY_ACTION }

from org.jssec.android.broadcast.sending (pid=4685, uid=10058) requires

org.jssec.android.permission.MY_PERMISSION due to receiver

org.jssec.android.broadcastreceiver.creating/org.jssec.android.broadcastreceiver.

→˓creating.CreatingType3Receiver

4.2.3.6 Items to Keep in Mind When Placing an App Shortcut on the Home Screen

In what follows we discuss a number of items to keep in mind when creating a shortcut button for launching an app
from the home screen or for creating URL shortcuts such as bookmarks in web browsers. As an example, we consider
the implementation shown below.

Place an app shortcut on the home screen

Intent targetIntent = new Intent(this, TargetActivity.class);

// Intent to request shortcut creation

Intent intent = new Intent("com.android.launcher.action.INSTALL_SHORTCUT");

(continues on next page)

134

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Specify an Intent to be launched when the shortcut is tapped

intent.putExtra(Intent.EXTRA_SHORTCUT_INTENT, targetIntent);

Parcelable icon =

Intent.ShortcutIconResource.fromContext(context, iconResource);

intent.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE, icon);

intent.putExtra(Intent.EXTRA_SHORTCUT_NAME, title);

intent.putExtra("duplicate", false);

// Use Broadcast to send the system our request for shortcut creation

context.sendBroadcast(intent);

In the Broadcast sent by the above code snippet, the receiver is the home-screen app, and it is difficult to identify
the package name; one must take care to remember that this is a transmission to a public receiver with an implicit
intent. Thus the Broadcast sent by this snippet could be received by any arbitrary app, including malware; for this
reason, the inclusion of sensitive information in the Intent may create the risk of a damaging leak of information. It
is particularly important to note that, when creating a URL-based shortcut, secret information may be contained in
the URL itself.

As countermeasures, it is necessary to follow the points listed in "4.2.1.2. Public Broadcast Receiver - Receiving/Send-
ing Broadcasts" and to ensure that the transmitted Intent does not contain sensitive information.

4.2.3.7 ACTION_CLOSE_SYSTEM_DIALOGS

ACTION_CLOSE_SYSTEM_DIALOGS is a Broadcast Intent that indicates the system dialog was closed. Fur-
thermore, the system dialog can be closed by sending Broadcast from the application. The behavior of this AC-
TION_CLOSE_SYSTEM_DIALOGS varies by whether to target Android 12 or to target Android 11 or earlier as
shown in the following.

If targeting Android 11 or earlier:

The following message is displayed on LogCat without executing the Intent.

E ActivityTaskManager Permission Denial: \

android.intent.action.CLOSE_SYSTEM_DIALOGS broadcast from \

com.package.name requires android.permission.BROADCAST_CLOSE_SYSTEM_DIALOGS, \

dropping broadcast.

However, in the following case, the system dialog can still be closed.

• Window displayed on the notification drawer

• The user operates the notification and the application processes services or Broadcast Receiver based on user
actions

• The accessibility service is enabled

If targeting Android 12:

ACTION_CLOSE_SYSTEM_DIALOGS has been deprecated. SecurityException occurs if the application tries to
invoke an Intent that includes this action.

However, in the following case, the system dialog can still be closed.

• If the application is running a single instrumentation test

If the accessibility service is enabled and it is required to close the notification bar, use the GLOBAL_ACTION_DIS-
MISS_NOTIFICATION_SHADE accessibility action instead.

135

Secure Coding Guide Documentation Release 2025-01-29

4.2.3.8 Enhanced Safety of Dynamic Broadcast Receiver

Until now, public broadcast receivers that were dynamic broadcast receivers were not allowed to configure export
settings, but starting from Android 13, public/private can be specified. This is a specification that was added to
enhance security, taking into account the risk of receiving broadcasts sent by malware.

To use this feature, set targetSdkVersion to 33 or higher, and perform the following procedure.

1. Enable DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED.

2. Specify RECEIVER_EXPORTED or RECEIVER_NOT_EXPORTED for the argument of registerReceiver.

context.registerReceiver(sharedBroadcastReceiver, intentFilter, RECEIVER_EXPORTED);

context.registerReceiver(sharedBroadcastReceiver, intentFilter, RECEIVER_NOT_

→˓EXPORTED);

The DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED settings can be switched from the developer op-
tions or adb. When setting from the developer options, do so from the following screen.

Fig. 4.2.6: DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED Setting(Developer Options)

If setting from adb, the following command lines appear.

136

Secure Coding Guide Documentation Release 2025-01-29

$ adb shell am compat enable DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED org.jssec.

→˓android.broadcast.publicreceiver

$ adb shell am compat disable DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED org.jssec.

→˓android.broadcast.publicreceiver

If DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIREDwas enabled, executing registerReceiver() without
specifying RECEIVER_EXPORTED or RECEIVER_NOT_EXPORTED will trigger a SecurityException.

If DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED was disabled, when registerReceiver() is executed
with RECEIVER_EXPORTED or RECEIVER_NOT_EXPORTED specified, the export setting is ignored, and the
receiver operates as a conventional public broadcast receiver.

Note that starting with Android 14, DYNAMIC_RECEIVER_EXPLICIT_EXPORT_REQUIRED is enabled by
default, and therefore, specifying of the export setting is mandatory for applications targeting Android 14.

However, for receivers that only receive system broadcasts14, such as ACTION_TIME_TICK, the export setting is
not necessary. At the time of writing, there are no errors or warnings at build or runtime even if the export setting
is specified, but it is recommended that the export setting not be specified for such receivers in order to comply with
future specifications.

• Example of registering a broadcast receiver that receives ACTION_TIME_TICK, which is a system broadcast

IntentFilter filter = new IntentFilter(Intent.ACTION_TIME_TICK);

receiver = new MyBroadcastReceiver();

registerReceiver(receiver, filter);

4.3 Creating/Using Content Providers

Since the interface of ContentResolver and SQLiteDatabase are so much alike, it's often misunderstood that Content
Provider is so closely related to SQLiteDatabase. However, actually Content Provider simply provides the interface
of inter-application data sharing, so it's necessary to pay attention that it does not interfere each data saving format.
To save data in Content Provider, SQLiteDatabase can be used, and other saving formats, such as an XML file format,
also can be used. Any data saving process is not included in the following sample code, so please add it if needed.

4.3.1 Sample Code

The risks and countermeasures of using Content Provider differ depending on how that Content Provider is being
used. In this section, we have classified 5 types of Content Provider based on how the Content Provider is being
used. You can find out which type of Content Provider you are supposed to create through the following chart shown
below.

14 The list varies depending on the API Level, and in the case of 34, the following list is shown. /AppData/Local/Android/Sdk/plat-
forms/android-34/data/broadcast_actions.txt

137

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.3.1: Flow Figure to decide Content Provider Type

4.3.1.1 Creating/Using Private Content Providers

Private Content Provider is the Content Provider which is used only in the single application, and the safest Content
Provider15.

Sample code of how to implement a private Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to false.

2. Handle the received request data carefully and securely, even though the data comes from the same application.

3. Sensitive information can be sent since it is sending and receiving all within the same application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name=".PrivateUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

<provider

android:name=".PrivateProvider"

android:authorities="org.jssec.android.provider.privateprovider"

android:exported="false" />

(continues on next page)

15 However, non-public settings for Content Provider are not functional in Android 2.2 (API Level 8) and previous versions.

138

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

</application>

</manifest>

PrivateProvider.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.privateprovider;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class PrivateProvider extends ContentProvider {

public static final String AUTHORITY =

"org.jssec.android.provider.privateprovider";

public static final String CONTENT_TYPE =

"vnd.android.cursor.dir/vnd.org.jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =

"vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.

public interface Download {

public static final String PATH = "downloads";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

public interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

// UriMatcher

private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID_CODE = 2;

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE = 4;

(continues on next page)

139

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static UriMatcher sUriMatcher;

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

}

// Since this is a sample program, query method returns the following

// fixed result always without using database.

private static MatrixCursor sAddressCursor =

new MatrixCursor(new String[] { "_id", "city" });

static {

sAddressCursor.addRow(new String[] { "1", "New York" });

sAddressCursor.addRow(new String[] { "2", "Longon" });

sAddressCursor.addRow(new String[] { "3", "Paris" });

}

private static MatrixCursor sDownloadCursor =

new MatrixCursor(new String[] { "_id", "path" });

static {

sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" }

→˓);

sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" }

→˓);

}

@Override

public boolean onCreate() {

return true;

}

@Override

public String getType(Uri uri) {

// *** POINT 2 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** Sensitive information can be sent since it is sending

// and receiving all within the same application.

// However, the result of getType rarely has the sensitive meaning.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:

case ADDRESSES_ID_CODE:

return CONTENT_ITEM_TYPE;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

(continues on next page)

140

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

// *** POINT 2 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** Sensitive information can be sent since it is sending

// and receiving all within the same application.

// It depends on application whether the query result has sensitive meaning

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case DOWNLOADS_ID_CODE:

return sDownloadCursor;

case ADDRESSES_CODE:

case ADDRESSES_ID_CODE:

return sAddressCursor;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 2 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** Sensitive information can be sent since it is sending

// and receiving all within the same application.

// It depends on application whether the issued ID has sensitive meaning

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:

return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

(continues on next page)

141

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

// *** POINT 2 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** Sensitive information can be sent since it is sending

// and receiving all within the same application.

// It depends on application whether the number of updated records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 15;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 2 *** Handle the received request data carefully and securely,

// even though the data comes from the same application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** Sensitive information can be sent since it is sending

// and receiving all within the same application.

// It depends on application whether the number of deleted records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

(continues on next page)

142

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return 20;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

}

Next is an example of Activity which uses Private Content Provider.

Points (Using a Content Provider):

4. Sensitive information can be sent since the destination provider is in the same application.

5. Handle received result data carefully and securely, even though the data comes from the same application.

PrivateUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.privateprovider;

import android.app.Activity;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateUserActivity extends Activity {

public void onQueryClick(View view) {

logLine("[Query]");

Cursor cursor = null;

try {

// *** POINT 4 *** Sensitive information can be sent since the

// destination provider is in the same application.

cursor =

getContentResolver().query(PrivateProvider.Download.CONTENT_URI,

null, null, null, null);

(continues on next page)

143

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 5 *** Handle received result data carefully and securely,

// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {

logLine(" null cursor");

} else {

boolean moved = cursor.moveToFirst();

while (moved) {

logLine(String.format(" %d, %s", cursor.getInt(0),

cursor.getString(1)));

moved = cursor.moveToNext();

}

}

}

finally {

if (cursor != null) cursor.close();

}

}

public void onInsertClick(View view) {

logLine("[Insert]");

// *** POINT 4 *** Sensitive information can be sent since the

// destination provider is in the same application.

Uri uri =

getContentResolver().insert(PrivateProvider.Download.CONTENT_URI,

null);

// *** POINT 5 *** Handle received result data carefully and securely,

// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(" uri:" + uri);

}

public void onUpdateClick(View view) {

logLine("[Update]");

// *** POINT 4 *** Sensitive information can be sent since the

// destination provider is in the same application.

int count =

getContentResolver().update(PrivateProvider.Download.CONTENT_URI,

null, null, null);

// *** POINT 5 *** Handle received result data carefully and securely,

// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records updated", count));

}

public void onDeleteClick(View view) {

(continues on next page)

144

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

logLine("[Delete]");

// *** POINT 4 *** Sensitive information can be sent since the

// destination provider is in the same application.

int count =

getContentResolver().delete(PrivateProvider.Download.CONTENT_URI,

null, null);

// *** POINT 5 *** Handle received result data carefully and securely,

// even though the data comes from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records deleted", count));

}

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

4.3.1.2 Creating/Using Public Content Providers

Public Content Provider is the Content Provider which is supposed to be used by unspecified large number of ap-
plications. It's necessary to pay attention that since this doesn't specify clients, it may be attacked and tampered by
Malware. For example, a saved data may be taken by select(), a data may be changed by update(), or a fake data may
be inserted/deleted by insert()/delete().

In addition, when using a custom Public Content Provider which is not provided by Android OS, it's necessary to
pay attention that request parameter may be received by Malware which masquerades as the custom Public Content
Provider, and also the attack result data may be sent. Contacts and MediaStore provided by Android OS are also
Public Content Providers, but Malware cannot masquerades as them.

Sample code to implement a Public Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Handle the received request data carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

(continues on next page)

145

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

<provider

android:name=".PublicProvider"

android:authorities="org.jssec.android.provider.publicprovider"

android:exported="true" />

</application>

</manifest>

PublicProvider.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.publicprovider;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class PublicProvider extends ContentProvider {

public static final String AUTHORITY =

"org.jssec.android.provider.publicprovider";

public static final String CONTENT_TYPE =

"vnd.android.cursor.dir/vnd.org.jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =

"vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.

public interface Download {

public static final String PATH = "downloads";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

public interface Address {

public static final String PATH = "addresses";

(continues on next page)

146

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

// UriMatcher

private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID_CODE = 2;

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE = 4;

private static UriMatcher sUriMatcher;

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

}

// Since this is a sample program,

// query method returns the following fixed result always without using

// database.

private static MatrixCursor sAddressCursor =

new MatrixCursor(new String[] { "_id", "city" });

static {

sAddressCursor.addRow(new String[] { "1", "New York" });

sAddressCursor.addRow(new String[] { "2", "London" });

sAddressCursor.addRow(new String[] { "3", "Paris" });

}

private static MatrixCursor sDownloadCursor =

new MatrixCursor(new String[] { "_id", "path" });

static {

sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" }

→˓);

sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" }

→˓);

}

@Override

public boolean onCreate() {

return true;

}

@Override

public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:

case ADDRESSES_ID_CODE:

return CONTENT_ITEM_TYPE;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

(continues on next page)

147

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive

// information.

// It depends on application whether the query result has sensitive

// meaning or not.

// If no problem when the information is taken by malware, it can be

// returned as result.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case DOWNLOADS_ID_CODE:

return sDownloadCursor;

case ADDRESSES_CODE:

case ADDRESSES_ID_CODE:

return sAddressCursor;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive

// information.

// It depends on application whether the issued ID has sensitive

// meaning or not.

// If no problem when the information is taken by malware, it can be

// returned as result.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:

return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:

(continues on next page)

148

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive

// information.

// It depends on application whether the number of updated records has

// sensitive meaning or not.

// If no problem when the information is taken by malware, it can be

// returned as result.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 15;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 2 *** Handle the received request data carefully and securely.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 3 *** When returning a result, do not include sensitive

// information.

// It depends on application whether the number of deleted records has

// sensitive meaning or not.

// If no problem when the information is taken by malware, it can be

// returned as result.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 10; // Return number of deleted records

(continues on next page)

149

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 20;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

}

Next is an example of Activity which uses Public Content Provider.

Points (Using a Content Provider):

4. Do not send sensitive information.

5. When receiving a result, handle the result data carefully and securely.

PublicUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.publicuser;

import android.app.Activity;

import android.content.ContentValues;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicUserActivity extends Activity {

// Target Content Provider Information

private static final String AUTHORITY =

"org.jssec.android.provider.publicprovider";

private interface Address {

(continues on next page)

150

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

public void onQueryClick(View view) {

logLine("[Query]");

if (!providerExists(Address.CONTENT_URI)) {

logLine(" Content Provider doesn't exist.");

return;

}

Cursor cursor = null;

try {

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,

// it can be included in the request.

cursor = getContentResolver().query(Address.CONTENT_URI,

null, null, null, null);

// *** POINT 5 *** When receiving a result, handle the result data

// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {

logLine(" null cursor");

} else {

boolean moved = cursor.moveToFirst();

while (moved) {

logLine(String.format(" %d, %s", cursor.getInt(0),

cursor.getString(1)));

moved = cursor.moveToNext();

}

}

}

finally {

if (cursor != null) cursor.close();

}

}

public void onInsertClick(View view) {

logLine("[Insert]");

if (!providerExists(Address.CONTENT_URI)) {

logLine(" Content Provider doesn't exist.");

return;

}

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,

// it can be included in the request.

(continues on next page)

151

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *** POINT 5 *** When receiving a result, handle the result data

// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(" uri:" + uri);

}

public void onUpdateClick(View view) {

logLine("[Update]");

if (!providerExists(Address.CONTENT_URI)) {

logLine(" Content Provider doesn't exist.");

return;

}

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,

// it can be included in the request.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = ?";

String[] args = { "4" };

int count =

getContentResolver().update(Address.CONTENT_URI, values, where, args);

// *** POINT 5 *** When receiving a result, handle the result data

// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records updated", count));

}

public void onDeleteClick(View view) {

logLine("[Delete]");

if (!providerExists(Address.CONTENT_URI)) {

logLine(" Content Provider doesn't exist.");

return;

}

// *** POINT 4 *** Do not send sensitive information.

// since the target Content Provider may be malware.

// If no problem when the information is taken by malware,

// it can be included in the request.

int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

// *** POINT 5 *** When receiving a result, handle the result data

// carefully and securely.

// Omitted, since this is a sample. Please refer to

(continues on next page)

152

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records deleted", count));

}

private boolean providerExists(Uri uri) {

ProviderInfo pi =

getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

return (pi != null);

}

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

4.3.1.3 Creating/Using Partner Content Providers

Partner Content Provider is the Content Provider which can be used only by the particular applications. The system
consists of a partner company's application and In-house application, and it is used to protect the information and
features which are handled between a partner application and an In-house application.

Sample code to implement a partner-only Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to true.

2. Verify if the certificate of a requesting application has been registered in the own white list.

3. Handle the received request data carefully and securely, even though the data comes from a partner application.

4. Information that is granted to disclose to partner applications can be returned.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->

<provider

android:name=".PartnerProvider"

android:authorities="org.jssec.android.provider.partnerprovider"

android:exported="true" />

(continues on next page)

153

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

</application>

</manifest>

PartnerProvider.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.partnerprovider;

import java.util.List;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.ActivityManager;

import android.app.ActivityManager.RunningAppProcessInfo;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

import android.os.Binder;

import android.os.Build;

public class PartnerProvider extends ContentProvider {

public static final String AUTHORITY =

"org.jssec.android.provider.partnerprovider";

public static final String CONTENT_TYPE =

"vnd.android.cursor.dir/vnd.org.jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =

"vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.

public interface Download {

public static final String PATH = "downloads";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

public interface Address {

(continues on next page)

154

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

// UriMatcher

private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID_CODE = 2;

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE = 4;

private static UriMatcher sUriMatcher;

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

}

// Since this is a sample program,

// query method returns the following fixed result always without using

// database.

private static MatrixCursor sAddressCursor =

new MatrixCursor(new String[] { "_id", "city" });

static {

sAddressCursor.addRow(new String[] { "1", "New York" });

sAddressCursor.addRow(new String[] { "2", "London" });

sAddressCursor.addRow(new String[] { "3", "Paris" });

}

private static MatrixCursor sDownloadCursor =

new MatrixCursor(new String[] { "_id", "path" });

static {

sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" }

→˓);

sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" }

→˓);

}

// *** POINT 2 *** Verify if the certificate of a requesting application has

// been registered in the own white list.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// org.jssec.android.provider.partneruser.

sWhitelists.add("org.jssec.android.provider.partneruser", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D␣

→˓4C0EC35A");

// Register following other partner applications in the same way.

(continues on next page)

155

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

// Get the package name of the calling application.

private String getCallingPackage(Context context) {

String pkgname;

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {

pkgname = super.getCallingPackage();

} else {

pkgname = null;

ActivityManager am = (ActivityManager) context.

→˓getSystemService(Context.ACTIVITY_SERVICE);

List<RunningAppProcessInfo> procList = am.getRunningAppProcesses();

int callingPid = Binder.getCallingPid();

if (procList != null) {

for (RunningAppProcessInfo proc : procList) {

if (proc.pid == callingPid) {

pkgname = proc.pkgList[proc.pkgList.length - 1];

break;

}

}

}

}

return pkgname;

}

@Override

public boolean onCreate() {

return true;

}

@Override

public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:

case ADDRESSES_ID_CODE:

return CONTENT_ITEM_TYPE;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

// *** POINT 2 *** Verify if the certificate of a requesting application

// has been registered in the own white list.

(continues on next page)

156

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

throw new SecurityException("Calling application is not a partner␣

→˓application.");

}

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner

// applications can be returned.

// It depends on application whether the query result can be disclosed

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case DOWNLOADS_ID_CODE:

return sDownloadCursor;

case ADDRESSES_CODE:

case ADDRESSES_ID_CODE:

return sAddressCursor;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 2 *** Verify if the certificate of a requesting application

// has been registered in the own white list.

if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

throw new SecurityException("Calling application is not a partner␣

→˓application.");

}

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner

// applications can be returned.

// It depends on application whether the issued ID has sensitive meaning

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:

(continues on next page)

157

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

// *** POINT 2 *** Verify if the certificate of a requesting application

// has been registered in the own white list.

if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

throw new SecurityException("Calling application is not a partner␣

→˓application.");

}

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner

// applications can be returned.

// It depends on application whether the number of updated records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 15;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 2 *** Verify if the certificate of a requesting application

// has been registered in the own white list.

if (!checkPartner(getContext(), getCallingPackage(getContext()))) {

throw new SecurityException("Calling application is not a partner␣

→˓application.");

}

(continues on next page)

158

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from a partner application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to partner

// applications can be returned.

// It depends on application whether the number of deleted records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 20;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

}

Next is an example of Activity which use partner only Content Provider.

Points (Using a Content Provider):

5. Verify if the certificate of the target application has been registered in the own white list.

6. Information that is granted to disclose to partner applications can be sent.

7. Handle the received result data carefully and securely, even though the data comes from a partner application.

PartnerUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

159

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.provider.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;

import android.content.Context;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PartnerUserActivity extends Activity {

// Target Content Provider Information

private static final String AUTHORITY =

"org.jssec.android.provider.partnerprovider";

private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

// *** POINT 4 *** Verify if the certificate of the target application has

// been registered in the own white list.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// org.jssec.android.provider.partnerprovider.

sWhitelists.add("org.jssec.android.provider.partnerprovider", isdebug ?

// Certificate hash value of "androiddebugkey" in the debug.keystore.

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of "partner key" in the keystore.

"D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2␣

→˓42E142CA");

// Register following other partner applications in the same way.

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

// Get package name of target content provider.

private String providerPkgname(Uri uri) {

String pkgname = null;

ProviderInfo pi =

getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

(continues on next page)

160

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (pi != null) pkgname = pi.packageName;

return pkgname;

}

public void onQueryClick(View view) {

logLine("[Query]");

// *** POINT 4 *** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

logLine(" The target content provider is not served by partner␣

→˓applications.");

return;

}

Cursor cursor = null;

try {

// *** POINT 5 *** Information that is granted to disclose to partner

// applications can be sent.

cursor = getContentResolver().query(Address.CONTENT_URI,

null, null, null, null);

// *** POINT 6 *** Handle the received result data carefully and

// securely, even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {

logLine(" null cursor");

} else {

boolean moved = cursor.moveToFirst();

while (moved) {

logLine(String.format(" %d, %s", cursor.getInt(0),

cursor.getString(1)));

moved = cursor.moveToNext();

}

}

}

finally {

if (cursor != null) cursor.close();

}

}

public void onInsertClick(View view) {

logLine("[Insert]");

// *** POINT 4 *** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

logLine(" The target content provider is not served by partner␣

→˓applications.");

return;

}

// *** POINT 5 *** Information that is granted to disclose to partner

(continues on next page)

161

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// applications can be sent.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *** POINT 6 *** Handle the received result data carefully and securely,

// even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(" uri:" + uri);

}

public void onUpdateClick(View view) {

logLine("[Update]");

// *** POINT 4 *** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

logLine(" The target content provider is not served by partner␣

→˓applications.");

return;

}

// *** POINT 5 *** Information that is granted to disclose to partner

// applications can be sent.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = ?";

String[] args = { "4" };

int count =

getContentResolver().update(Address.CONTENT_URI, values, where, args);

// *** POINT 6 *** Handle the received result data carefully and securely,

// even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records updated", count));

}

public void onDeleteClick(View view) {

logLine("[Delete]");

// *** POINT 4 *** Verify if the certificate of the target application has

// been registered in the own white list.

if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {

logLine(" The target content provider is not served by partner␣

→˓applications.");

return;

}

// *** POINT 5 *** Information that is granted to disclose to partner

// applications can be sent.

int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

(continues on next page)

162

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 6 *** Handle the received result data carefully and securely,

// even though the data comes from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records deleted", count));

}

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

(continues on next page)

163

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

(continues on next page)

164

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

4.3.1.4 Creating/Using In-house Content Providers

In-house Content Provider is the Content Provider which prohibits to be used by applications other than In house
only applications.

Sample code of how to implement an In house only Content Provider is shown below.

Points (Creating a Content Provider):

1. Define an in-house signature permission.

2. Require the in-house signature permission.

3. Explicitly set the exported attribute to true.

165

Secure Coding Guide Documentation Release 2025-01-29

4. Verify if the in-house signature permission is defined by an in-house application.

5. Verify the safety of the parameter even if it's a request from In house only application.

6. Sensitive information can be returned since the requesting application is in-house.

7. When exporting an APK, sign the APK with the same developer key as that of the requesting application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Define an in-house signature permission -->

<permission

android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION"

android:protectionLevel="signature" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- *** POINT 2 *** Require the in-house signature permission -->

<!-- *** POINT 3 *** Explicitly set the exported attribute to true. -->

<provider

android:name=".InhouseProvider"

android:authorities="org.jssec.android.provider.inhouseprovider"

android:permission="org.jssec.android.provider.inhouseprovider.MY_

→˓PERMISSION"

android:exported="true" />

</application>

</manifest>

InhouseProvider.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.inhouseprovider;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

(continues on next page)

166

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class InhouseProvider extends ContentProvider {

public static final String AUTHORITY =

"org.jssec.android.provider.inhouseprovider";

public static final String CONTENT_TYPE =

"vnd.android.cursor.dir/vnd.org.jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =

"vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.

public interface Download {

public static final String PATH = "downloads";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

public interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

// UriMatcher

private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID_CODE = 2;

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE = 4;

private static UriMatcher sUriMatcher;

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);

sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);

sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);

}

// Since this is a sample program, query method returns the following

// fixed result always without using database.

private static MatrixCursor sAddressCursor =

new MatrixCursor(new String[] { "_id", "city" });

static {

sAddressCursor.addRow(new String[] { "1", "New York" });

sAddressCursor.addRow(new String[] { "2", "London" });

sAddressCursor.addRow(new String[] { "3", "Paris" });

}

private static MatrixCursor sDownloadCursor =

new MatrixCursor(new String[] { "_id", "path" });

static {

sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" }

→˓);

sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" }

→˓);

(continues on next page)

167

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" in the

// debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" in the keystore.

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

@Override

public boolean onCreate() {

return true;

}

@Override

public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:

case ADDRESSES_ID_CODE:

return CONTENT_ITEM_TYPE;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

// *** POINT 4 *** Verify if the in-house signature permission is defined

// by an in-house application.

if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

throw new SecurityException("The in-house signature permission is not␣

→˓declared by in-house application.");

}

(continues on next page)

168

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the

// requesting application is in-house.

// It depends on application whether the query result has sensitive

// meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case DOWNLOADS_ID_CODE:

return sDownloadCursor;

case ADDRESSES_CODE:

case ADDRESSES_ID_CODE:

return sAddressCursor;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 4 *** Verify if the in-house signature permission is defined

// by an in-house application.

if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

throw new SecurityException("The in-house signature permission is not␣

→˓declared by in-house application.");

}

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the

// requesting application is in-house.

// It depends on application whether the issued ID has sensitive meaning

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:

return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

(continues on next page)

169

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

@Override

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

// *** POINT 4 *** Verify if the in-house signature permission is defined

// by an in-house application.

if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

throw new SecurityException("The in-house signature permission is not␣

→˓declared by in-house application.");

}

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the

// requesting application is in-house.

// It depends on application whether the number of updated records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 15;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 4 *** Verify if the in-house signature permission is defined

// by an in-house application.

if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

throw new SecurityException("The in-house signature permission is not␣

→˓declared by in-house application.");

}

// *** POINT 5 *** Handle the received request data carefully and securely,

// even though the data came from an in-house application.

// Here, whether uri is within expectations or not, is verified by

(continues on next page)

170

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 6 *** Sensitive information can be returned since the

// requesting application is in-house.

// It depends on application whether the number of deleted records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 20;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

(continues on next page)

171

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

(continues on next page)

172

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting application.

173

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.3.2: Sign the APK with the same developer key as the requesting application

Next is the example of Activity which uses In house only Content Provider.

Point (Using a Content Provider):

8. Declare to use the in-house signature permission.

9. Verify if the in-house signature permission is defined by an in-house application.0

10. Verify if the destination application is signed with the in-house certificate.

11. Sensitive information can be sent since the destination application is in-house one.

12. Handle the received result data carefully and securely, even though the data comes from an in-house application.

13. When exporting an APK, sign the APK with the same developer key as that of the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 8 *** Declare to use the in-house signature permission. -->

<uses-permission

android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name=".InhouseUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

InhouseUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

(continues on next page)

174

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.inhouseuser;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ContentValues;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class InhouseUserActivity extends Activity {

// Target Content Provider Information

private static final String AUTHORITY =

"org.jssec.android.provider.inhouseprovider";

private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" in the

// debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" in the keystore.

(continues on next page)

175

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

// Get package name of target content provider.

private static String providerPkgname(Context context, Uri uri) {

String pkgname = null;

PackageManager pm = context.getPackageManager();

ProviderInfo pi = pm.resolveContentProvider(uri.getAuthority(), 0);

if (pi != null) pkgname = pi.packageName;

return pkgname;

}

public void onQueryClick(View view) {

logLine("[Query]");

// *** POINT 9 *** Verify if the in-house signature permission is defined

// by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

logLine(" The in-house signature permission is not declared by in-

→˓house application.");

return;

}

// *** POINT 10 *** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, myCertHash(this))) {

logLine(" The target content provider is not served by in-house␣

→˓applications.");

return;

}

Cursor cursor = null;

try {

// *** POINT 11 *** Sensitive information can be sent since the

// destination application is in-house one.

cursor =

getContentResolver().query(Address.CONTENT_URI,

null, null, null, null);

// *** POINT 12 *** Handle the received result data carefully and

// securely, even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {

logLine(" null cursor");

} else {

boolean moved = cursor.moveToFirst();

while (moved) {

logLine(String.format(" %d, %s", cursor.getInt(0),

cursor.getString(1)));

(continues on next page)

176

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

moved = cursor.moveToNext();

}

}

}

finally {

if (cursor != null) cursor.close();

}

}

public void onInsertClick(View view) {

logLine("[Insert]");

// *** POINT 9 *** Verify if the in-house signature permission is defined

// by an in-house application.

String correctHash = myCertHash(this);

if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

logLine(" The in-house signature permission is not declared by in-

→˓house application.");

return;

}

// *** POINT 10 *** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, correctHash)) {

logLine(" The target content provider is not served by in-house␣

→˓applications.");

return;

}

// *** POINT 11 *** Sensitive information can be sent since the

// destination application is in-house one.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

// *** POINT 12 *** Handle the received result data carefully and securely,

// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(" uri:" + uri);

}

public void onUpdateClick(View view) {

logLine("[Update]");

// *** POINT 9 *** Verify if the in-house signature permission is defined

// by an in-house application.

String correctHash = myCertHash(this);

if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

logLine(" The in-house signature permission is not declared by in-

→˓house application.");

return;

}

(continues on next page)

177

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 10 *** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, correctHash)) {

logLine(" The target content provider is not served by in-house␣

→˓applications.");

return;

}

// *** POINT 11 *** Sensitive information can be sent since the

// destination application is in-house one.

ContentValues values = new ContentValues();

values.put("city", "Tokyo");

String where = "_id = ?";

String[] args = { "4" };

int count =

getContentResolver().update(Address.CONTENT_URI, values, where, args);

// *** POINT 12 *** Handle the received result data carefully and securely,

// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(String.format(" %s records updated", count));

}

public void onDeleteClick(View view) {

logLine("[Delete]");

// *** POINT 9 *** Verify if the in-house signature permission is defined

// by an in-house application.

String correctHash = myCertHash(this);

if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {

logLine(" The target content provider is not served by in-house␣

→˓applications.");

return;

}

// *** POINT 10 *** Verify if the destination application is signed with

// the in-house certificate.

String pkgname = providerPkgname(this, Address.CONTENT_URI);

if (!PkgCert.test(this, pkgname, correctHash)) {

logLine(" The target content provider is not served by in-house␣

→˓applications.");

return;

}

// *** POINT 11 *** Sensitive information can be sent since the

// destination application is in-house one.

int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

// *** POINT 12 *** Handle the received result data carefully and securely,

// even though the data comes from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

(continues on next page)

178

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

logLine(String.format(" %s records deleted", count));

}

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

(continues on next page)

179

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

(continues on next page)

180

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point 13 *** When exporting an APK, sign the APK with the same developer key as that of the destination
application.

181

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.3.3: Sign the APK with the same developer key as the destination application

4.3.1.5 Creating/Using Temporary permit Content Providers

Temporary permit Content Provider is basically a private Content Provider, but this permits the particular applications
to access the particular URI. By sending an Intent which special flag is specified to the target applications, temporary
access permission is provided to those applications. Contents provider side application can give the access permission
actively to other applications, and it can also give access permission passively to the application which claims the
temporary access permission.

Sample code of how to implement a temporary permit Content Provider is shown below.

Points (Creating a Content Provider):

1. Explicitly set the exported attribute to false.

2. Specify the path to grant access temporarily with the grant-uri-permission.

3. Handle the received request data carefully and securely, even though the data comes from the application
granted access temporarily.

4. Information that is granted to disclose to the temporary access applications can be returned.

5. Specify URI for the intent to grant temporary access.

6. Specify access rights for the intent to grant temporary access.

7. Send the explicit intent to an application to grant temporary access.

8. Return the intent to the application that requests temporary access.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name=".TemporaryActiveGrantActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

(continues on next page)

182

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

</intent-filter>

</activity>

<!-- Temporary Content Provider -->

<!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

<provider

android:name=".TemporaryProvider"

android:authorities="org.jssec.android.provider.temporaryprovider"

android:exported="false" >

<!-- *** POINT 2 *** Specify the path to grant access temporarily with the␣

→˓grant-uri-permission. -->

<grant-uri-permission android:path="/addresses" />

</provider>

<activity

android:name=".TemporaryPassiveGrantActivity"

android:label="@string/app_name"

android:exported="true" />

</application>

</manifest>

TemporaryProvider.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.temporaryprovider;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.MatrixCursor;

import android.net.Uri;

public class TemporaryProvider extends ContentProvider {

public static final String AUTHORITIY =

"org.jssec.android.provider.temporaryprovider";

public static final String CONTENT_TYPE =

"vnd.android.cursor.dir/vnd.org.jssec.contenttype";

public static final String CONTENT_ITEM_TYPE =

(continues on next page)

183

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

"vnd.android.cursor.item/vnd.org.jssec.contenttype";

// Expose the interface that the Content Provider provides.

public interface Download {

public static final String PATH = "downloads";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITIY + "/" + PATH);

}

public interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITIY + "/" + PATH);

}

// UriMatcher

private static final int DOWNLOADS_CODE = 1;

private static final int DOWNLOADS_ID_CODE = 2;

private static final int ADDRESSES_CODE = 3;

private static final int ADDRESSES_ID_CODE = 4;

private static UriMatcher sUriMatcher;

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

sUriMatcher.addURI(AUTHORITIY, Download.PATH, DOWNLOADS_CODE);

sUriMatcher.addURI(AUTHORITIY, Download.PATH + "/#", DOWNLOADS_ID_CODE);

sUriMatcher.addURI(AUTHORITIY, Address.PATH, ADDRESSES_CODE);

sUriMatcher.addURI(AUTHORITIY, Address.PATH + "/#", ADDRESSES_ID_CODE);

}

// Since this is a sample program,

// query method returns the following fixed result always without using

// database.

private static MatrixCursor sAddressCursor =

new MatrixCursor(new String[] { "_id", "city" });

static {

sAddressCursor.addRow(new String[] { "1", "New York" });

sAddressCursor.addRow(new String[] { "2", "London" });

sAddressCursor.addRow(new String[] { "3", "Paris" });

}

private static MatrixCursor sDownloadCursor =

new MatrixCursor(new String[] { "_id", "path" });

static {

sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" }

→˓);

sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" }

→˓);

}

@Override

public boolean onCreate() {

return true;

}

@Override

public String getType(Uri uri) {

switch (sUriMatcher.match(uri)) {

(continues on next page)

184

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

case DOWNLOADS_CODE:

case ADDRESSES_CODE:

return CONTENT_TYPE;

case DOWNLOADS_ID_CODE:

case ADDRESSES_ID_CODE:

return CONTENT_ITEM_TYPE;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to the

// temporary access applications can be returned.

// It depends on application whether the query result can be disclosed

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

case DOWNLOADS_ID_CODE:

return sDownloadCursor;

case ADDRESSES_CODE:

case ADDRESSES_ID_CODE:

return sAddressCursor;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public Uri insert(Uri uri, ContentValues values) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to the

// temporary access applications can be returned.

(continues on next page)

185

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// It depends on application whether the issued ID has sensitive meaning

// or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

case ADDRESSES_CODE:

return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to the

// temporary access applications can be returned.

// It depends on application whether the number of updated records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 5; // Return number of updated records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 15;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

// *** POINT 3 *** Handle the received request data carefully and securely,

// even though the data comes from the application granted access

// temporarily.

// Here, whether uri is within expectations or not, is verified by

// UriMatcher#match() and switch case.

(continues on next page)

186

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Checking for other parameters are omitted here, due to sample.

// Please refer to "3.2 Handle Input Data Carefully and Securely."

// *** POINT 4 *** Information that is granted to disclose to the

// temporary access applications can be returned.

// It depends on application whether the number of deleted records has

// sensitive meaning or not.

switch (sUriMatcher.match(uri)) {

case DOWNLOADS_CODE:

return 10; // Return number of deleted records

case DOWNLOADS_ID_CODE:

return 1;

case ADDRESSES_CODE:

return 20;

case ADDRESSES_ID_CODE:

return 1;

default:

throw new IllegalArgumentException("Invalid URI:" + uri);

}

}

}

TemporaryActiveGrantActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class TemporaryActiveGrantActivity extends Activity {

// User Activity Information

private static final String TARGET_PACKAGE =

(continues on next page)

187

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

"org.jssec.android.provider.temporaryuser";

private static final String TARGET_ACTIVITY =

"org.jssec.android.provider.temporaryuser.TemporaryUserActivity";

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.active_grant);

}

// In the case that Content Provider application grants access permission to

// other application actively.

public void onSendClick(View view) {

try {

Intent intent = new Intent();

// *** POINT 5 *** Specify URI for the intent to grant temporary

// access.

intent.setData(TemporaryProvider.Address.CONTENT_URI);

// *** POINT 6 *** Specify access rights for the intent to grant

// temporary access.

intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

// *** POINT 7 *** Send the explicit intent to an application to grant

// temporary access.

intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

startActivity(intent);

} catch (ActivityNotFoundException e) {

Toast.makeText(this,

"User Activity not found.", Toast.LENGTH_LONG).show();

}

}

}

TemporaryPassiveGrantActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;

(continues on next page)

188

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class TemporaryPassiveGrantActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.passive_grant);

}

// In the case that Content Provider application passively grants access

// permission to the application that requested Content Provider access.

public void onGrantClick(View view) {

Intent intent = new Intent();

// *** POINT 5 *** Specify URI for the intent to grant temporary access.

intent.setData(TemporaryProvider.Address.CONTENT_URI);

// *** POINT 6 *** Specify access rights for the intent to grant temporary

// access.

intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

// *** POINT 8 *** Return the intent to the application that requests

// temporary access.

setResult(Activity.RESULT_OK, intent);

finish();

}

public void onCloseClick(View view) {

finish();

}

}

Next is the example of temporary permit Content Provider.

Points (Using a Content Provider):

9. Do not send sensitive information.

10. When receiving a result, handle the result data carefully and securely.

TemporaryUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

189

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.provider.temporaryuser;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Intent;

import android.content.pm.ProviderInfo;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class TemporaryUserActivity extends Activity {

// Information of the Content Provider's Activity to request temporary content

// provider access.

private static final String TARGET_PACKAGE =

"org.jssec.android.provider.temporaryprovider";

private static final String TARGET_ACTIVITY =

"org.jssec.android.provider.temporaryprovider.TemporaryPassiveGrantActivity

→˓";

// Target Content Provider Information

private static final String AUTHORITY =

"org.jssec.android.provider.temporaryprovider";

private interface Address {

public static final String PATH = "addresses";

public static final Uri CONTENT_URI =

Uri.parse("content://" + AUTHORITY + "/" + PATH);

}

private static final int REQUEST_CODE = 1;

public void onQueryClick(View view) {

logLine("[Query]");

Cursor cursor = null;

try {

if (!providerExists(Address.CONTENT_URI)) {

logLine(" Content Provider doesn't exist.");

return;

}

// *** POINT 9 *** Do not send sensitive information.

// If no problem when the information is taken by malware, it can be

// included in the request.

cursor = getContentResolver().query(Address.CONTENT_URI,

null, null, null, null);

// *** POINT 10 *** When receiving a result, handle the result data

// carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

if (cursor == null) {

(continues on next page)

190

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

logLine(" null cursor");

} else {

boolean moved = cursor.moveToFirst();

while (moved) {

logLine(String.format(" %d, %s", cursor.getInt(0),

cursor.getString(1)));

moved = cursor.moveToNext();

}

}

} catch (SecurityException ex) {

logLine(" Exception:" + ex.getMessage());

}

finally {

if (cursor != null) cursor.close();

}

}

// In the case that this application requests temporary access to the Content

// Provider and the Content Provider passively grants temporary access

// permission to this application.

public void onGrantRequestClick(View view) {

Intent intent = new Intent();

intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

try {

startActivityForResult(intent, REQUEST_CODE);

} catch (ActivityNotFoundException e) {

logLine("Content Provider's Activity not found.");

}

}

private boolean providerExists(Uri uri) {

ProviderInfo pi =

getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

return (pi != null);

}

private TextView mLogView;

// In the case that the Content Provider application grants temporary access

// to this application actively.

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView)findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

191

Secure Coding Guide Documentation Release 2025-01-29

4.3.2 Rule Book

Be sure to follow the rules below when Implementing or using a content provider.

1. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

2. Handle the Received Request Parameter Carefully and Securely (Required)

3. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house Application
(Required)

4. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Desti-
nation Application (Required)

5. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of Protection (Required)

And user side should follow the below rules, too.

6. Handle the Returned Result Data from the Content Provider Carefully and Securely (Required)

4.3.2.1 Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

Content Provider which is used only in a single application is not necessary to be accessed by other applications, and
the access which attacks the Content Provider is not often considered by developers. A Content Provider is basically
the system to share data, so it's handled as public by default. A Content Provider which is used only in a single
application should be set as private explicitly, and it should be a private Content Provider. In Android 2.3.1 (API
Level 9) or later, a Content Provider can be set as private by specifying android:exported="false" in provider element.

AndroidManifest.xml

<!-- 4.3.1.1 - *** POINT 1 *** Explicitly set the exported attribute to false.␣

→˓-->

<provider

android:name=".PrivateProvider"

android:authorities="org.jssec.android.provider.privateprovider"

android:exported="false" />

4.3.2.2 Handle the Received Request Parameter Carefully and Securely (Required)

Risks differ depending on the types of Content Providers, but when processing request parameters, the first thing you
should do is input validation.

Although each method of a Content Provider has the interface which is supposed to receive the component parameter
of SQL statement, actually it simply hands over the arbitrary character string in the system, so it's necessary to pay
attention that Contents Provider side needs to suppose the case that unexpected parameter may be provided.

Since Public Content Providers can receive requests from untrusted sources, they can be attacked by malware. On
the other hand, Private Content Providers will never receive any requests from other applications directly, but it is
possible that a Public Activity in the targeted application may forward a malicious Intent to a Private Content Provider
so you should not assume that Private Content Providers cannot receive any malicious input.

Since other Content Providers also have the risk of a malicious intent being forwarded to them as well, it is necessary
to perform input validation on these requests as well.

Please refer to "3.2. Handling Input Data Carefully and Securely".

4.3.2.3 Use an In-house Defined Signature Permission after Verifying that it is Defined by an
In-house Application (Required)

Make sure to protect your in-house Content Providers by defining an in-house signature permission when creating the
Content Provider. Since defining a permission in the AndroidManifest.xml file or declaring a permission request does

192

Secure Coding Guide Documentation Release 2025-01-29

not provide adequate security, please be sure to refer to "5.2.1.2.How to Communicate Between In-house Applications
with In-house-defined Signature Permission."

4.3.2.4 When Returning a Result, Pay Attention to the Possibility of Information Leakage of that
Result from the Destination Application (Required)

In case of query() or insert(), Cursor or Uri is returned to the request sending application as a result information.
When sensitive information is included in the result information, the information may be leaked from the destination
application. In case of update() or delete(), number of updated/deleted records is returned to the request sending
application as a result information. In rare cases, depending on some application specs, the number of updated/deleted
records has the sensitive meaning, so please pay attention to this.

4.3.2.5 When Providing an Asset Secondarily, the Asset should be Protected with the Same
Level of Protection (Required)

When an information or function asset, which is protected by a permission, is provided to another application sec-
ondhand, you need to make sure that it has the same required permissions needed to access the asset. In the Android
OS permission security model, only an application that has been granted proper permissions can directly access a
protected asset. However, there is a loophole because an application with permissions to an asset can act as a proxy
and allow access to an unprivileged application. Substantially this is the same as re-delegating a permission, so it is
referred to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4. Permission Re-delegation Problem."

4.3.2.6 Handle the Returned Result Data from the Content Provider Carefully and Securely (Re-
quired)

Risks differ depending on the types of Content Provider, but when processing a result data, the first thing you should
do is input validation.

In case that the destination Content Provider is a public Content Provider, Malware which masquerades as the public
Content Provider may return the attack result data. On the other hand, in case that the destination Content Provider is
a private Content Provider, it is less risk because it receives the result data from the same application, but you should
not assume that private Content Providers cannot receive any malicious input. Since other Content Providers also
have the risk of a malicious data being returned to them as well, it is necessary to perform input validation on that
result data as well.

Please refer to "3.2. Handling Input Data Carefully and Securely"

4.3.3 Advanced

4.3.3.1 Content URI Permission Management

Prior to Android 15, content URI permission management was insufficient, resulting in several issues. First, permis-
sion checks were insufficient, and there was a risk that malicious apps could access data from content providers. In
addition, when sharing data between apps, permission settings and management were not unified, which sometimes
led to security holes.

To address these issues, Android 15 introduces new content URI permission checking APIs to improve security when
sharing data between applications.

The following is a method for managing the permissions of content URIs between a content provider application and
a content consumer application.

Content Providing App (MyApplication)

Check the access permission for the content URI passed from the content consuming application. The MainActivity
class gets the content URI from the Intent and performs a permission check using the checkContentUriPermission
method. This method checks the read and write permission for the specified URI and displays a toast message
according to the result.

193

Secure Coding Guide Documentation Release 2025-01-29

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

// Get content URI from Intent

val uri: Uri? = intent.data

// Content URI authority check

uri?.let {

checkContentUriPermission(it)

}

}

private fun checkContentUriPermission(uri: Uri) {

val modeFlags = Intent.FLAG_GRANT_READ_URI_PERMISSION or Intent.FLAG_GRANT_

→˓WRITE_URI_PERMISSION

val pid = android.os.Process.myPid()

val uid = android.os.Process.myUid()

val permissionResult = checkContentUriPermissionFull(uri, pid, uid,␣

→˓modeFlags)

if (permissionResult == PackageManager.PERMISSION_GRANTED) {

showToast("Access granted")

} else {

showToast("Access denied")

}

}

private fun showToast(message: String) {

Toast.makeText(this, message, Toast.LENGTH_SHORT).show()

}

}

In the manifest file, we force a permission check when launching an activity using the requireContentUriPermission-
FromCaller attribute. This attribute indicates that the content URI included in the intent that launches the activity
requires the specified permissions (in this case, read and write). This prevents access from apps that do not have
the appropriate permissions. We also set the appropriate permissions for the content provider and use the grant-
uri-permission element to define read and write permissions for specific patterns.

<activity

android:name=".MainActivity"

android:exported="true"

android:requireContentUriPermissionFromCaller="readAndWrite">

<!-- Intent filters and other settings -->

</activity>

<provider

android:name=".MyContentProvider"

android:authorities="com.example.provider"

android:grantUriPermissions="true">

<grant-uri-permission

android:pathPattern=".*"

android:readPermission="com.example.myapplication.READ_PERMISSION"

android:writePermission="com.example.myapplication.WRITE_PERMISSION"/>

</provider>

<permission

(continues on next page)

194

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:name="com.example.myapplication.READ_PERMISSION"

android:protectionLevel="signature"/>

<permission

android:name="com.example.myapplication.WRITE_PERMISSION"

android:protectionLevel="signature"/>

Content Use App (CallerApp)

Attempt to access the content URI provided by the content provider application. In the CallerActivity class,
launch the MainActivity of MyApplication and pass the content URI to request access permission. At this
time, grant temporary permission by setting the Intent.FLAG_GRANT_READ_URI_PERMISSION and In-
tent.FLAG_GRANT_WRITE_URI_PERMISSION flags.

class CallerActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

// Specify the package name of MainApp and MainActivity

val packageName = "com.example.myapplication"

val className = "com.example.myapplication.MainActivity"

val contentUri: Uri = Uri.parse("content://com.example.provider/some_

→˓content")

val intent = Intent().apply {

setClassName(packageName, className)

data = contentUri

flags = Intent.FLAG_GRANT_READ_URI_PERMISSION or Intent.FLAG_GRANT_

→˓WRITE_URI_PERMISSION

}

startActivity(intent)

}

}

The manifest file declares the permissions required. The permissions declared here are signature-level permissions,
so only apps with the same signature can use these permissions. This ensures that data can only be shared between
trusted apps.

<uses-permission android:name="com.example.myapplication.READ_PERMISSION"/>

<uses-permission android:name="com.example.myapplication.WRITE_PERMISSION"/>

4.4 Creating/Using Services

4.4.1 Sample Code

The risks and countermeasures of using Services differ depending on how that Service is being used. You can find
out which type of Service you are supposed to create through the following chart shown below. Since the secure
coding best practice varies according to how the service is created, we will also explain about the implementation of
the Service as well.

Table 4.4.1: Definition of service types

Type Definition
Private Service A service that cannot be used another application, and therefore is the safest service.
Public Service A service that is supposed to be used by an unspecified large number of applications
Partner Service A service that can only be used by the specific applications made by a trusted partner

company.
In-house Service A service that can only be used by other in-house applications.

195

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.4.1: Flow Figure to select Service Type

There are several implementation methods for Service, and you will select the method which matches with the type
of Service that you suppose to create. The items of vertical columns in the table show the implementation methods,
and these are divided into 5 types. "OK" stands for the possible combination and others show impossible/difficult
combinations in the table.

Please refer to "4.4.3.2. How to Implement Service" and Sample code of each Service type (with * mark in a table)
for detailed implementation methods of Service.

Table 4.4.2: Implementation Methods of Service

Category Private Service Public Service Partner Service In-house Service
startService type OK* OK - OK
IntentService type OK OK* - OK
local bind type OK - - -
Messenger bind
type

OK OK - OK*

AIDL bind type OK OK OK* OK

Sample code for each security type of Service are shown as below, by using combination of * mark in Table 4.4.2.

4.4.1.1 Creating/Using Private Services

Private Services are Services which cannot be launched by the other applications and therefore it is the safest Service.

When using Private Services that are only used within the application, as long as you use explicit Intents to the class
then you do not have to worry about accidently sending it to any other application.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):

1. Explicitly set the exported attribute to false.

2. Handle the received intent carefully and securely, even though the intent was sent from the same application.

3. Sensitive information can be sent since the requesting application is in the same application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

(continues on next page)

196

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name=".PrivateUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Private Service derived from Service class -->

<!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

<service android:name=".PrivateStartService" android:exported="false"/>

<!-- Private Service derived from IntentService class -->

<!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->

<service android:name=".PrivateIntentService" android:exported="false"/>

</application>

</manifest>

PrivateStartService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.privateservice;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.widget.Toast;

public class PrivateStartService extends Service {

// The onCreate gets called only one time when the service starts.

@Override

public void onCreate() {

(continues on next page)

197

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Toast.makeText(this, "PrivateStartService - onCreate()",

Toast.LENGTH_SHORT).show();

}

// The onStartCommand gets called each time after the startService gets called.

@Override

public int onStartCommand(Intent intent, int flags, int startId) {

// *** POINT 2 *** Handle the received intent carefully and securely,

// even though the intent was sent from the same application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = intent.getStringExtra("PARAM");

Toast.makeText(this,

String.format("PrivateStartService\nReceived param: \"%s\"",

param),

Toast.LENGTH_LONG).show();

return Service.START_NOT_STICKY;

}

// The onDestroy gets called only one time when the service stops.

@Override

public void onDestroy() {

Toast.makeText(this,

"PrivateStartService - onDestroy()",

Toast.LENGTH_SHORT).show();

}

@Override

public IBinder onBind(Intent intent) {

// This service does not provide binding, so return null

return null;

}

}

Next is sample code for Activity which uses Private Service.

Points (Using a Service):

4. Use the explicit intent with class specified to call a service in the same application.

5. Sensitive information can be sent since the destination service is in the same application.

6. Handle the received result data carefully and securely, even though the data came from a service in the same
application.

PrivateUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

(continues on next page)

198

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.privateservice;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class PrivateUserActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.privateservice_activity);

}

// --- StartService control ---

public void onStartServiceClick(View v) {

// *** POINT 4 *** Use the explicit intent with class specified to call

// a service in the same application.

Intent intent = new Intent(this, PrivateStartService.class);

// *** POINT 5 *** Sensitive information can be sent since the destination

// service is in the same application.

intent.putExtra("PARAM", "Sensitive information");

startService(intent);

}

// -- StopService control --

public void onStopServiceClick(View v) {

doStopService();

}

@Override

public void onStop() {

super.onStop();

// Stop service if the service is running.

doStopService();

}

private void doStopService() {

// *** POINT 4 *** Use the explicit intent with class specified to call

// a service in the same application.

Intent intent = new Intent(this, PrivateStartService.class);

stopService(intent);

}

// --- IntentService control ---

public void onIntentServiceClick(View v) {

(continues on next page)

199

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 4 *** Use the explicit intent with class specified to call

// a service in the same application.

Intent intent = new Intent(this, PrivateIntentService.class);

// *** POINT 5 *** Sensitive information can be sent since the destination

// service is in the same application.

intent.putExtra("PARAM", "Sensitive information");

startService(intent);

}

}

4.4.1.2 Creating/Using Public Services

Public Service is the Service which is supposed to be used by the unspecified large number of applications. It's
necessary to pay attention that it may receive the information (Intent etc.) which was sent by Malware. In addition,
since an Intent to start Service may be received by Malware, explicit Intent should be used for launching Public
Service, and <intent-filter> should not be declared in Service.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):

1. Explicitly set exported = “true” without defining the intent filter.

2. Handle the received intent carefully and securely.

3. When returning a result, do not include sensitive information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- API 28 -->

<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<!-- Most standard Service -->

<!-- *** POINT 1 *** Explicitly set exported = "true" without defining the␣

→˓intent filter. -->

<service android:name=".PublicStartService" android:exported="true" />

<!-- Public Service derived from IntentService class -->

<!-- *** POINT 1 *** Explicitly set exported = "true" without defining the␣

→˓intent filter. -->

<service android:name=".PublicIntentService" android:exported="true" />

</application>

</manifest>

200

Secure Coding Guide Documentation Release 2025-01-29

PublicIntentService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.publicservice;

import android.app.IntentService;

import android.app.Notification;

import android.app.NotificationChannel;

import android.app.NotificationManager;

import android.content.Context;

import android.content.Intent;

import android.os.Build;

import android.widget.Toast;

public class PublicIntentService extends IntentService{

public static final String INTENT_CHANNEL = "intent_channel";

/**

* Default constructor must be provided when a service extends

* IntentService class.

* If it does not exist, an error occurs.

*/

public PublicIntentService() {

super("CreatingTypeBService");

}

// The onCreate gets called only one time when the Service starts.

@Override

public void onCreate() {

super.onCreate();

Toast.makeText(this,

this.getClass().getSimpleName() + " - onCreate()",

Toast.LENGTH_SHORT).show();

}

// The onHandleIntent gets called each time after the startService gets called.

@Override

protected void onHandleIntent(Intent intent) {

if (Build.VERSION.SDK_INT >= 26) {

Context context = getApplicationContext();

String title = context.getString(R.string.app_name);

NotificationChannel default_channel =
(continues on next page)

201

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

new NotificationChannel(INTENT_CHANNEL, "Intent Channel",

NotificationManager.IMPORTANCE_DEFAULT);

NotificationManager notificationManager =

(NotificationManager) this.getSystemService(Context.NOTIFICATION_

→˓SERVICE);

notificationManager.createNotificationChannel(default_channel);

Notification notification =

new Notification.Builder(context, INTENT_CHANNEL)

.setContentTitle(title)

.setSmallIcon(android.R.drawable.btn_default)

.setContentText("Intent Channel")

.setAutoCancel(true)

.setWhen(System.currentTimeMillis())

.build();

startForeground(1, notification);

}

// *** POINT 2 *** Handle intent carefully and securely.

// Since it's public service, the intent may come from malicious

// application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = intent.getStringExtra("PARAM");

Toast.makeText(this,

String.format("Recieved parameter \"%s\"", param),

Toast.LENGTH_LONG).show();

}

// The onDestroy gets called only one time when the service stops.

@Override

public void onDestroy() {

Toast.makeText(this,

this.getClass().getSimpleName() + " - onDestroy()",

Toast.LENGTH_SHORT).show();

}

}

Next is sample code for Activity which uses Public Service.

Points (Using a Service):

4. Call service by Explicit Intent

5. Do not send sensitive information.

6. When receiving a result, handle the result data carefully and securely.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<queries>

<package android:name="org.jssec.android.service.publicservice" />

</queries>

<application

(continues on next page)

202

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name=".PublicUserActivity"

android:label="@string/app_name"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

PublicUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.publicserviceuser;

import android.app.Activity;

import android.content.Intent;

import android.os.Build;

import android.os.Bundle;

import android.view.View;

public class PublicUserActivity extends Activity {

// Using Service Info

private static final String TARGET_PACKAGE =

"org.jssec.android.service.publicservice";

private static final String TARGET_START_CLASS =

"org.jssec.android.service.publicservice.PublicStartService";

private static final String TARGET_INTENT_CLASS =

"org.jssec.android.service.publicservice.PublicIntentService";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.publicservice_activity);

(continues on next page)

203

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

// --- StartService control ---

public void onStartServiceClick(View v) {

Intent intent = new Intent("org.jssec.android.service.publicservice.action.

→˓startservice");

// *** POINT 4 *** Call service by Explicit Intent

intent.setClassName(TARGET_PACKAGE, TARGET_START_CLASS);

// *** POINT 5 *** Do not send sensitive information.

intent.putExtra("PARAM", "Not sensitive information");

if (Build.VERSION.SDK_INT >= 26) {

startForegroundService(intent);

} else {

startService(intent);

}

startService(intent);

// *** POINT 6 *** When receiving a result, handle the result data

// carefully and securely.

// This sample code uses startService(), so receiving no result.

}

// --- StopService control ---

public void onStopServiceClick(View v) {

doStopService();

}

// --- IntentService control ---

public void onIntentServiceClick(View v) {

Intent intent = new Intent("org.jssec.android.service.publicservice.action.

→˓intentservice");

// *** POINT 4 *** Call service by Explicit Intent

intent.setClassName(TARGET_PACKAGE, TARGET_INTENT_CLASS);

// *** POINT 5 *** Do not send sensitive information.

intent.putExtra("PARAM", "Not sensitive information");

if (Build.VERSION.SDK_INT >= 26) {

startForegroundService(intent);

} else {

startService(intent);

}

}

@Override

public void onStop(){

super.onStop();

// Stop service if the service is running.

doStopService();

(continues on next page)

204

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

// Stop service

private void doStopService() {

Intent intent = new Intent("org.jssec.android.service.publicservice.action.

→˓startservice");

// *** POINT 4 *** Call service by Explicit Intent

intent.setClassName(TARGET_PACKAGE, TARGET_START_CLASS);

stopService(intent);

}

}

4.4.1.3 Creating/Using Partner Services

Partner Service is Service which can be used only by the particular applications. System consists of partner company's
application and In house application, this is used to protect the information and features which are handled between
a partner application and In house application.

Following is an example of AIDL bind type Service.

Points (Creating a Service):

1. Explicitly set exported = “true” without defining the intent filter.

2. Verify that the certificate of the requesting application has been registered in the own white list.

3. Do not (Cannot) recognize whether the requesting application is partner or not by onBind (onStartCommand,
onHandleIntent).

4. Handle the received intent carefully and securely, even though the intent was sent from a partner application.

5. Return only information that is granted to be disclosed to a partner application.

In addition, refer to "5.2.1.3. How to Verify the Hash Value of an Application's Certificate" for how to verify the
certification hash value of destination application which is specified to white list.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<!-- Service using AIDL -->

<!-- *** POINT 1 *** Explicitly set exported = "true" without defining the␣

→˓intent filter. -->

<service

android:name="org.jssec.android.service.partnerservice.aidl.

→˓PartnerAIDLService"

android:exported="true" />

</application>

</manifest>

205

Secure Coding Guide Documentation Release 2025-01-29

In this example, 2 AIDL files are to be created. One is for callback interface to give data from Service to Activity.
The other one is Interface to give data from Activity to Service and to get information. In addition, package name
that is described in AIDL file should be consistent with directory hierarchy in which AIDL file is created, same like
package name described in java file.

IPartnerAIDLServiceCallback.aidl

package org.jssec.android.service.partnerservice.aidl;

interface IPartnerAIDLServiceCallback {

/**

* It's called when the value is changed.

*/

void valueChanged(String info);

}

IPartnerAIDLService.aidl

package org.jssec.android.service.partnerservice.aidl;

import org.jssec.android.service.partnerservice.aidl.IExclusiveAIDLServiceCallback;

interface IPartnerAIDLService {

/**

* Register Callback

*/

void registerCallback(IPartnerAIDLServiceCallback cb);

/**

* Get Information

*/

String getInfo(String param);

/**

* Unregister Callback

*/

void unregisterCallback(IPartnerAIDLServiceCallback cb);

}

PartnerAIDLService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.partnerservice.aidl;

import org.jssec.android.shared.PkgCertWhitelists;

(continues on next page)

206

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import org.jssec.android.shared.Utils;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteCallbackList;

import android.os.RemoteException;

import android.widget.Toast;

public class PartnerAIDLService extends Service {

private static final int REPORT_MSG = 1;

private static final int GETINFO_MSG = 2;

// The value which this service informs to client

private int mValue = 0;

// *** POINT 2 *** Verify that the certificate of the requesting application

// has been registered in the own white list.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner application

// "org.jssec.android.service.partnerservice.aidluser"

sWhitelists.add("org.jssec.android.service.partnerservice.aidluser",␣

→˓isdebug ?

// Certificate hash value of debug.keystore "androiddebugkey"

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of keystore "partner key"

"1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D␣

→˓4C0EC35A");

// Register other partner applications in the same way

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

// Object to register callback

// Methods which RemoteCallbackList provides are thread-safe.

private final RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks =

new RemoteCallbackList<IPartnerAIDLServiceCallback>();

// Handler to send data when callback is called.

private static class ServiceHandler extends Handler{

private Context mContext;

private RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks;

private int mValue = 0;

(continues on next page)

207

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public ServiceHandler(Context context,

RemoteCallbackList<IPartnerAIDLServiceCallback> callback, int value){

this.mContext = context;

this.mCallbacks = callback;

this.mValue = value;

}

@Override

public void handleMessage(Message msg) {

switch (msg.what) {

case REPORT_MSG: {

if(mCallbacks == null){

return;

}

// Start broadcast

// To call back on to the registered clients, use beginBroadcast().

// beginBroadcast() makes a copy of the currently registered

// callback list.

final int N = mCallbacks.beginBroadcast();

for (int i = 0; i < N; i++) {

IPartnerAIDLServiceCallback target =

mCallbacks.getBroadcastItem(i);

try {

// *** POINT 5 *** Information that is granted to disclose

// to partner applications can be returned.

target.valueChanged("Information disclosed to partner␣

→˓application (callback from Service) No." + (++mValue));

} catch (RemoteException e) {

// Callbacks are managed by RemoteCallbackList, do not

// unregister callbacks here.

// RemoteCallbackList.kill() unregister all callbacks

}

}

// finishBroadcast() cleans up the state of a broadcast previously

// initiated by calling beginBroadcast().

mCallbacks.finishBroadcast();

// Repeat after 10 seconds

sendEmptyMessageDelayed(REPORT_MSG, 10000);

break;

}

case GETINFO_MSG: {

if(mContext != null) {

Toast.makeText(mContext,

(String) msg.obj, Toast.LENGTH_LONG).show();

}

break;

}

default:

super.handleMessage(msg);

break;

} // switch

}

}

(continues on next page)

208

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

protected final ServiceHandler mHandler =

new ServiceHandler(this, mCallbacks, mValue);

// Interfaces defined in AIDL

private final IPartnerAIDLService.Stub mBinder =

new IPartnerAIDLService.Stub() {

private boolean checkPartner() {

Context ctx = PartnerAIDLService.this;

if (!PartnerAIDLService.checkPartner(ctx,

Utils.getPackageNameFromUid(ctx, getCallingUid()))) {

mHandler.post(new Runnable(){

@Override

public void run(){

Toast.makeText(PartnerAIDLService.this,

"Requesting application is not partner application.

→˓",

Toast.LENGTH_LONG).show();

}

});

return false;

}

return true;

}

public void registerCallback(IPartnerAIDLServiceCallback cb) {

// *** POINT 2 *** Verify that the certificate of the requesting

// application has been registered in the own white list.

if (!checkPartner()) {

return;

}

if (cb != null) mCallbacks.register(cb);

}

public String getInfo(String param) {

// *** POINT 2 *** Verify that the certificate of the requesting

// application has been registered in the own white list.

if (!checkPartner()) {

return null;

}

// *** POINT 4 *** Handle the received intent carefully and

// securely, even though the intent was sent from a partner

// application

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Message msg = new Message();

msg.what = GETINFO_MSG;

msg.obj = String.format("Method calling from partner application.␣

→˓Recieved \"%s\"", param);

PartnerAIDLService.this.mHandler.sendMessage(msg);

// *** POINT 5 *** Return only information that is granted to be

// disclosed to a partner application.

return "Information disclosed to partner application (method from␣

→˓Service)";

}

public void unregisterCallback(IPartnerAIDLServiceCallback cb) {

(continues on next page)

209

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 2 *** Verify that the certificate of the requesting

// application has been registered in the own white list.

if (!checkPartner()) {

return;

}

if (cb != null) mCallbacks.unregister(cb);

}

};

@Override

public IBinder onBind(Intent intent) {

// *** POINT 3 *** Verify that the certificate of the requesting

// application has been registered in the own white list.

// So requesting application must be validated in methods defined

// in AIDL every time.

return mBinder;

}

@Override

public void onCreate() {

Toast.makeText(this,

this.getClass().getSimpleName() + " - onCreate()",

Toast.LENGTH_SHORT).show();

// During service is running, inform the incremented number periodically.

mHandler.sendEmptyMessage(REPORT_MSG);

}

@Override

public void onDestroy() {

Toast.makeText(this,

this.getClass().getSimpleName() + " - onDestroy()",

Toast.LENGTH_SHORT).show();

// Unregister all callbacks

mCallbacks.kill();

mHandler.removeMessages(REPORT_MSG);

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

(continues on next page)

210

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

(continues on next page)

211

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

(continues on next page)

212

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

Next is sample code of Activity which uses partner only Service.

Points (Using a Service):

6. Verify if the certificate of the target application has been registered in the own white list.

7. Return only information that is granted to be disclosed to a partner application.

8. Use the explicit intent to call a partner service.

9. Handle the received result data carefully and securely, even though the data came from a partner application.

PartnerAIDLUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.partnerservice.aidluser;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLService;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLServiceCallback;

import org.jssec.android.shared.PkgCertWhitelists;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.RemoteException;

import android.view.View;

import android.widget.Toast;

public class PartnerAIDLUserActivity extends Activity {

private boolean mIsBound;

(continues on next page)

213

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private Context mContext;

private final static int MGS_VALUE_CHANGED = 1;

// *** POINT 6 *** Verify if the certificate of the target application has

// been registered in the own white list.

private static PkgCertWhitelists sWhitelists = null;

private static void buildWhitelists(Context context) {

boolean isdebug = Utils.isDebuggable(context);

sWhitelists = new PkgCertWhitelists();

// Register certificate hash value of partner service application

// "org.jssec.android.service.partnerservice.aidl"

sWhitelists.add("org.jssec.android.service.partnerservice.aidl", isdebug ?

// Certificate hash value of debug.keystore "androiddebugkey"

"0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255" :

// Certificate hash value of keystore "my company key"

"D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2␣

→˓42E142CA");

// Register other partner service applications in the same way

}

private static boolean checkPartner(Context context, String pkgname) {

if (sWhitelists == null) buildWhitelists(context);

return sWhitelists.test(context, pkgname);

}

// Information about destination (requested) partner activity.

private static final String TARGET_PACKAGE =

"org.jssec.android.service.partnerservice.aidl";

private static final String TARGET_CLASS =

"org.jssec.android.service.partnerservice.aidl.PartnerAIDLService";

private static class ReceiveHandler extends Handler{

private Context mContext;

public ReceiveHandler(Context context){

this.mContext = context;

}

@Override

public void handleMessage(Message msg) {

switch (msg.what) {

case MGS_VALUE_CHANGED: {

String info = (String)msg.obj;

Toast.makeText(mContext,

String.format("Received \"%s\" with callback.", info),

Toast.LENGTH_SHORT).show();

break;

}

default:

super.handleMessage(msg);

break;

} // switch

(continues on next page)

214

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

private final ReceiveHandler mHandler = new ReceiveHandler(this);

// Interfaces defined in AIDL. Receive notice from service

private final IPartnerAIDLServiceCallback.Stub mCallback =

new IPartnerAIDLServiceCallback.Stub() {

@Override

public void valueChanged(String info) throws RemoteException {

Message msg = mHandler.obtainMessage(MGS_VALUE_CHANGED, info);

mHandler.sendMessage(msg);

}

};

// Interfaces defined in AIDL. Inform service.

private IPartnerAIDLService mService = null;

// Connection used to connect with service. This is necessary when service is

// implemented with bindService().

private ServiceConnection mConnection = new ServiceConnection() {

// This is called when the connection with the service has been

// established.

@Override

public void onServiceConnected(ComponentName className,

IBinder service) {

mService = IPartnerAIDLService.Stub.asInterface(service);

try{

// connect to service

mService.registerCallback(mCallback);

}catch(RemoteException e){

// service stopped abnormally

}

Toast.makeText(mContext,

"Connected to service",

Toast.LENGTH_SHORT).show();

}

// This is called when the service stopped abnormally and connection

// is disconnected.

@Override

public void onServiceDisconnected(ComponentName className) {

Toast.makeText(mContext,

"Disconnected from service",

Toast.LENGTH_SHORT).show();

}

};

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

(continues on next page)

215

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

setContentView(R.layout.partnerservice_activity);

mContext = this;

}

// -- StartService control --

public void onStartServiceClick(View v) {

// Start bindService

doBindService();

}

// -- GetInfo control --

public void onGetInfoClick(View v) {

getServiceinfo();

}

// -- StopService control --

public void onStopServiceClick(View v) {

doUnbindService();

}

@Override

public void onDestroy() {

super.onDestroy();

doUnbindService();

}

/**

* Connect to service

*/

private void doBindService() {

if (!mIsBound){

// *** POINT 6 *** Verify if the certificate of the target application

// has been registered in the own white list.

if (!checkPartner(this, TARGET_PACKAGE)) {

Toast.makeText(this,

"Destination(Requested) sevice application is not registered␣

→˓in white list.", Toast.LENGTH_LONG).show();

return;

}

Intent intent = new Intent();

// *** POINT 7 *** Return only information that is granted to be

// disclosed to a partner application.

intent.putExtra("PARAM",

"Information disclosed to partner application");

// *** POINT 8 *** Use the explicit intent to call a partner service.

intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

bindService(intent, mConnection, Context.BIND_AUTO_CREATE);

mIsBound = true;

}

}

(continues on next page)

216

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

/**

* Disconnect service

*/

private void doUnbindService() {

if (mIsBound) {

// Unregister callbacks which have been registered.

if(mService != null){

try{

mService.unregisterCallback(mCallback);

}catch(RemoteException e){

// Service stopped abnormally

// Omitted, since it' s sample.

}

}

unbindService(mConnection);

Intent intent = new Intent();

// *** POINT 8 *** Use the explicit intent to call a partner service.

intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

stopService(intent);

mIsBound = false;

}

}

/**

* Get information from service

*/

void getServiceinfo() {

if (mIsBound && mService != null) {

String info = null;

try {

// *** POINT 7 *** Return only information that is granted to be

// disclosed to a partner application.

info = mService.getInfo("Information disclosed to partner␣

→˓application (method from activity)");

} catch (RemoteException e) {

e.printStackTrace();

}

// *** POINT 9 *** Handle the received result data carefully and

// securely, even though the data came from a partner application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(mContext,

String.format("Received \"%s\" from service.", info),

Toast.LENGTH_SHORT).show();

}

}

}

PkgCertWhitelists.java

/*

(continues on next page)

217

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

(continues on next page)

218

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

(continues on next page)

219

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

4.4.1.4 Creating/Using In-house Services

In-house Services are the Services which are prohibited to be used by applications other than in-house applications.
They are used in applications developed internally that want to securely share information and functionality.

Following is an example which uses Messenger bind type Service.

Points (Creating a Service):

1. Define an in-house signature permission.

2. Require the in-house signature permission.

3. Explicitly set exported = “true” without defining the intent filter.

4. Verify that the in-house signature permission is defined by an in-house application.

5. Handle the received intent carefully and securely, even though the intent was sent from an in-house application.

6. Sensitive information can be returned since the requesting application is in-house.

7. When exporting an APK, sign the APK with the same developer key as the requesting application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Define an in-house signature permission -->

<permission

android:name="org.jssec.android.service.inhouseservice.messenger.MY_

→˓PERMISSION"

android:protectionLevel="signature" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<!-- Service using Messenger -->
(continues on next page)

220

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<!-- *** POINT 2 *** Require the in-house signature permission -->

<!-- *** POINT 3 *** Explicitly set exported = "true" without defining the␣

→˓intent filter. -->

<service

android:name="org.jssec.android.service.inhouseservice.messenger.

→˓InhouseMessengerService"

android:exported="true"

android:permission="org.jssec.android.service.inhouseservice.messenger.MY_

→˓PERMISSION" />

</application>

</manifest>

InhouseMessengerService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.inhouseservice.messenger;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import java.lang.reflect.Array;

import java.util.ArrayList;

import java.util.Iterator;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;

import android.os.RemoteException;

import android.widget.Toast;

public class InhouseMessengerService extends Service{

// In-house signature permission

private static final String MY_PERMISSION =

"org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

// In-house certificate hash value

(continues on next page)

221

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of debug.keystore "androiddebugkey"

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of keystore "my company key"

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

// Manage clients(destinations of sending data) in a list

private ArrayList<Messenger> mClients = new ArrayList<Messenger>();

// Messenger used when service receive data from client

private final Messenger mMessenger =

new Messenger(new ServiceSideHandler(mClients));

// Handler which handles message received from client

private static class ServiceSideHandler extends Handler{

private ArrayList<Messenger> mClients;

public ServiceSideHandler(ArrayList<Messenger> clients){

mClients = clients;

}

@Override

public void handleMessage(Message msg){

switch(msg.what){

case CommonValue.MSG_REGISTER_CLIENT:

// Add messenger received from client

mClients.add(msg.replyTo);

break;

case CommonValue.MSG_UNREGISTER_CLIENT:

mClients.remove(msg.replyTo);

break;

case CommonValue.MSG_SET_VALUE:

// Send data to client

sendMessageToClients(mClients);

break;

default:

super.handleMessage(msg);

break;

}

}

}

/**

* Send data to client

(continues on next page)

222

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*/

private static void sendMessageToClients(ArrayList<Messenger> mClients){

// *** POINT 6 *** Sensitive information can be returned since the

// requesting application is in-house.

String sendValue = "Sensitive information (from Service)";

// Send data to the registered client one by one.

// Use iterator to send all clients even though clients are removed in the

// loop process.

Iterator<Messenger> ite = mClients.iterator();

while(ite.hasNext()){

try {

Message sendMsg =

Message.obtain(null, CommonValue.MSG_SET_VALUE, null);

Bundle data = new Bundle();

data.putString("key", sendValue);

sendMsg.setData(data);

Messenger next = ite.next();

next.send(sendMsg);

} catch (RemoteException e) {

// If client does not exits, remove it from a list.

ite.remove();

}

}

}

@Override

public IBinder onBind(Intent intent) {

// *** POINT 4 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this,"In-house defined signature permission is not␣

→˓defined by in-house application.", Toast.LENGTH_LONG).show();

return null;

}

// *** POINT 5 *** Handle the received intent carefully and securely,

// even though the intent was sent from an in-house application.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String param = intent.getStringExtra("PARAM");

Toast.makeText(this,

String.format("Received parameter \"%s\".", param),

Toast.LENGTH_LONG).show();

return mMessenger.getBinder();

}

@Override

public void onCreate() {

Toast.makeText(this, "Service - onCreate()", Toast.LENGTH_SHORT).show();

(continues on next page)

223

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

@Override

public void onDestroy() {

Toast.makeText(this, "Service - onDestroy()", Toast.LENGTH_SHORT).show();

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

(continues on next page)

224

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

(continues on next page)

225

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point 7 *** When exporting an APK, sign the APK with the same developer key as the requesting application.

Fig. 4.4.2: Sign the APK with the same developer key as the requesting application

Next is the sample code of Activity which uses in house only Service.

Points (Using a Service):

8. Declare to use the in-house signature permission.

9. Verify that the in-house signature permission is defined by an in-house application.

10. Verify that the destination application is signed with the in-house certificate.

11. Sensitive information can be sent since the destination application is in-house.

226

Secure Coding Guide Documentation Release 2025-01-29

12. Use the explicit intent to call an in-house service.

13. Handle the received result data carefully and securely, even though the data came from an in-house application.

14. When exporting an APK, sign the APK with the same developer key as the destination application.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<queries>

<package android:name="org.jssec.android.service.inhouseservice.messenger" />

</queries>

<!-- *** POINT 8 *** Declare to use the in-house signature permission. -->

<uses-permission

android:name="org.jssec.android.service.inhouseservice.messenger.MY_

→˓PERMISSION" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name="org.jssec.android.service.inhouseservice.messengeruser.

→˓InhouseMessengerUserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

InhouseMessengerUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.service.inhouseservice.messengeruser;

import org.jssec.android.shared.PkgCert;

(continues on next page)

227

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;

import android.os.RemoteException;

import android.view.View;

import android.widget.Toast;

public class InhouseMessengerUserActivity extends Activity {

private boolean mIsBound;

private Context mContext;

// Destination (Requested) service application information

private static final String TARGET_PACKAGE =

"org.jssec.android.service.inhouseservice.messenger";

private static final String TARGET_CLASS =

"org.jssec.android.service.inhouseservice.messenger.InhouseMessengerService

→˓";

// In-house signature permission

private static final String MY_PERMISSION =

"org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of debug.keystore "androiddebugkey"

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of keystore "my company key"

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

// Messenger used when this application receives data from service.

private Messenger mServiceMessenger = null;

// Messenger used when this application sends data to service.

private final Messenger mActivityMessenger =

new Messenger(new ActivitySideHandler());

(continues on next page)

228

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Handler which handles message received from service

private class ActivitySideHandler extends Handler {

@Override

public void handleMessage(Message msg) {

switch (msg.what) {

case CommonValue.MSG_SET_VALUE:

Bundle data = msg.getData();

String info = data.getString("key");

// *** POINT 13 *** Handle the received result data carefully and

// securely, even though the data came from an in-house application

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

Toast.makeText(mContext,

String.format("Received \"%s\" from service.", info),

Toast.LENGTH_SHORT).show();

break;

default:

super.handleMessage(msg);

}

}

}

// Connection used to connect with service. This is necessary when service is

// implemented with bindService().

private ServiceConnection mConnection = new ServiceConnection() {

// This is called when the connection with the service has been

// established.

@Override

public void onServiceConnected(ComponentName className,

IBinder service) {

mServiceMessenger = new Messenger(service);

Toast.makeText(mContext,

"Connect to service",

Toast.LENGTH_SHORT).show();

try {

// Send own messenger to service

Message msg =

Message.obtain(null, CommonValue.MSG_REGISTER_CLIENT);

msg.replyTo = mActivityMessenger;

mServiceMessenger.send(msg);

} catch (RemoteException e) {

// Service stopped abnormally

}

}

// This is called when the service stopped abnormally and connection

// is disconnected.

@Override

public void onServiceDisconnected(ComponentName className) {

mServiceMessenger = null;

Toast.makeText(mContext,

"Disconnected from service",

Toast.LENGTH_SHORT).show();

(continues on next page)

229

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

};

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.inhouseservice_activity);

mContext = this;

}

// --- StartService control ---

public void onStartServiceClick(View v) {

// Start bindService

doBindService();

}

// -- GetInfo control --

public void onGetInfoClick(View v) {

getServiceinfo();

}

// -- StopService control --

public void onStopServiceClick(View v) {

doUnbindService();

}

@Override

protected void onDestroy() {

super.onDestroy();

doUnbindService();

}

/**

* Connect to service

*/

void doBindService() {

if (!mIsBound){

// *** POINT 9 *** Verify that the in-house signature permission is

// defined by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this, "In-house defined signature permission is not␣

→˓defined by in-house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 10 *** Verify that the destination application is signed

// with the in-house certificate.

if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {

Toast.makeText(this, "Destination(Requested) service application␣

→˓is not in-house application.", Toast.LENGTH_LONG).show();

return;

}

Intent intent = new Intent();

(continues on next page)

230

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 11 *** Sensitive information can be sent since the

// destination application is in-house one.

intent.putExtra("PARAM", "Sensitive information");

// *** POINT 12 *** Use the explicit intent to call an in-house

// service.

intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

bindService(intent, mConnection, Context.BIND_AUTO_CREATE);

mIsBound = true;

}

}

/**

* Disconnect service

*/

void doUnbindService() {

if (mIsBound) {

unbindService(mConnection);

mIsBound = false;

}

}

/**

* Get information from service

*/

void getServiceinfo() {

if (mServiceMessenger != null) {

try {

// Request sending information

Message msg = Message.obtain(null, CommonValue.MSG_SET_VALUE);

mServiceMessenger.send(msg);

} catch (RemoteException e) {

// Service stopped abnormally

}

}

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

231

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

232

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

(continues on next page)

233

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

*** Point14 *** When exporting an APK, sign the APK with the same developer key as the destination application.

Fig. 4.4.3: Sign the APK with the same developer key as the destination application

4.4.2 Rule Book

Implementing or using service, follow the rules below.

1. Service that Is Used Only in an application, Must Be Set as Private (Required)

2. Handle the Received Data Carefully and Securely (Required)

3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house Application (Re-
quired)

4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

5. When Returning a Result Information, Pay Attention the Result Information Leakage from the Destination Ap-
plication (Required)

6. Use the Explicit Intent if the Destination Service Is fixed (Required)

7. Verify the Destination Service If Linking with the Other Company's Application (Required)

8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level Protection (Required)

9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

4.4.2.1 Service that Is Used Only in an application, Must Be Set as Private (Required)

Service that is used only in an application (or in same UID) must be set as Private. It avoids the application from
receiving Intents from other applications unexpectedly and eventually prevents from damages such as application
functions are used or application behavior becomes abnormal.

All you have to do in implementation is set exported attribute false when defining Service in AndroidManifest.xml.

AndroidManifest.xml

<!-- Private Service derived from Service class -->

<!-- *** 4.4.1.1 - POINT 1 *** Explicitly set the exported attribute to false.␣

(continues on next page)

234

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

→˓-->

<service android:name=".PrivateStartService" android:exported="false"/>

In addition, this is a rare case, but do not set Intent Filter when service is used only within the application. The reason
is that, due to the characteristics of Intent Filter, public service in other application may be called unexpectedly though
you intend to call Private Service within the application.

AndroidManifest.xml(Not recommended)

<!-- Private Service derived from Service class -->

<!-- *** 4.4.1.1 - POINT 1 *** Explicitly set the exported attribute to false.␣

→˓-->

<service android:name=".PrivateStartService" android:exported="false">

<intent-filter>

<action android:name=”org.jssec.android.service.OPEN />

</intent-filter>

</service>

See "4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)".

4.4.2.2 Handle the Received Data Carefully and Securely (Required)

Same like Activity, In case of Service, when processing a received Intent data, the first thing you should do is input
validation. Also in Service user side, it's necessary to verify the safety of result information from Service. Please
refer to "4.1.2.5. Handling the Received Intent Carefully and Securely (Required)" and "4.1.2.9. Handle the Returned
Data from a Requested Activity Carefully and Securely (Required)."

In Service, you should also implement calling method and exchanging data by Message carefully.

Please refer to "3.2. Handling Input Data Carefully and Securely"

4.4.2.3 Use the In-house Defined Signature Permission after Verifying If it's Defined by an
In-house Application (Required)

Make sure to protect your in-house Services by defining in-house signature permission when creating the Service.
Since defining a permission in the AndroidManifest.xml file or declaring a permission request does not provide
adequate security, please be sure to refer to "5.2.1.2. How to Communicate Between In-house Applications with
In-house-defined Signature Permission."

4.4.2.4 Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

Security checks such as Intent parameter verification or in-house-defined Signature Permission verification should
not be included in onCreate, because when receiving new request during Service is running, process of onCreate
is not executed. So, when implementing Service which is started by startService, judgment should be executed by
onStartCommand (In case of using IntentService, judgment should be executed by onHandleIntent.) It's also same
in the case when implementing Service which is started by bindService, judgment should be executed by onBind.

4.4.2.5 WhenReturning aResult Information, Pay Attention theResult Information Leakage from
the Destination Application (Required)

Depends on types of Service, the reliability of result information destination application (callback receiver side/ Mes-
sage destination) are different. Need to consider seriously about the information leakage considering the possibility
that the destination may be Malware.

See, Activity "4.1.2.7.When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)", for details.

235

Secure Coding Guide Documentation Release 2025-01-29

4.4.2.6 Use the Explicit Intent if the Destination Service Is fixed (Required)

When using a Service by implicit Intents, in case the definition of Intent Filter is same, Intent is sent to the Service
which was installed earlier. If Malware with the same Intent Filter defined intentionally was installed earlier, Intent
is sent to Malware and information leakage occurs. On the other hand, when using a Service by explicit Intents, only
the intended Service will receive the Intent so this is much safer.

There are some other points which should be considered, please refer to "4.1.2.8. Use the explicit Intents if the desti-
nation Activity is predetermined. (Required)."

4.4.2.7 Verify the Destination Service If Linking with the Other Company's Application (Re-
quired)

Be sure to sure a whitelist when linking with another company's application. You can do this by saving a copy of
the company's certificate hash inside your application and checking it with the certificate hash of the destination
application. This will prevent a malicious application from being able to spoof Intents. Please refer to sample code
section "4.4.1.3. Creating/Using Partner Services" for the concrete implementation method.

4.4.2.8 When Providing an Asset Secondarily, the Asset should be protected with the Same
Level Protection (Required)

When an information or function asset, which is protected by permission, is provided to another application second-
hand, you need to make sure that it has the same required permissions needed to access the asset. In the Android
OS permission security model, only an application that has been granted proper permissions can directly access a
protected asset. However, there is a loophole because an application with permissions to an asset can act as a proxy
and allow access to an unprivileged application. Substantially this is the same as re-delegating permission so it is
referred to as the "Permission Re-delegation" problem. Please refer to "5.2.3.4. Permission Re-delegation Problem."

4.4.2.9 Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

You should not send sensitive information to untrusted parties.

You need to consider the risk of information leakage when exchanging sensitive information with a Service. You must
assume that all data in Intents sent to a Public Service can be obtained by a malicious third party. In addition, there
is a variety of risks of information leakage when sending Intents to Partner or In-house Services as well depending
on the implementation.

Not sending sensitive data in the first place is the only perfect solution to prevent information leakage therefore you
should limit the amount of sensitive information being sent as much as possible. When it is necessary to send sensitive
information, the best practice is to only send to a trusted Service and to make sure the information cannot be leaked
through LogCat.

4.4.3 Advanced Topics

4.4.3.1 Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)

We have explained how to implement the four types of Services in this guidebook: Private Services, Public Services,
Partner Services, and In-house Services. The various combinations of permitted settings for each type of exported
attribute defined in the AndroidManifest.xml file and the intent-filter elements are defined in the table below. Please
verify the compatibility of the exported attribute and intent-filter element with the Service you are trying to create.

236

Secure Coding Guide Documentation Release 2025-01-29

Table 4.4.3: Combination of Exported Attribute and intent-filter Setting

Value of exported attribute
true false Not specified

Intent Filter defined (Do not Use) (Do not Use) (Do not Use)
Intent Filter Not Defined Public, Partner, In-house Private (Do not Use)

If the exported attribute is not unspecified in a Service, the question of whether or not the Service is public is de-
termined by whether or not intent filters are defined16; however, in this guidebook it is forbidden to set a Service’s
exported attribute to "unspecified". In general, as mentioned previously, it is best to avoid implementations that rely
on the default behavior of any given API; moreover, in cases where explicit methods exist for configuring important
security-related settings such as the exported attribute, it is always a good idea to make use of those methods.

In "Table 4.4.3 Combination of Exported Attribute and intent-filter Setting", all “Intent Filter defined" are set to "(Do
not Use)". This is because when a Service is started using an implicit Intent, it is not possible to know which Service
responds to the Intent, and a malicious Service may respond.

And the reason why "a defined intent filter and an exported attribute of false" should not be used is that there is a
loophole in Android's behavior, and because of how Intent filters work, other application's Services can be called
unexpectedly.

Concretely, Android behaves as per below, so it's necessary to consider carefully when application designing.

• When multiple Services define the same content of intent-filter, the definition of Service within application
installed earlier is prioritized.

• In case explicit Intent is used, prioritized Service is automatically selected and called by OS.

The system that unexpected call is occurred due to Android's behavior is described in the three figures below. Fig.
4.4.4 is an example of normal behavior that Private Service (application A) can be called by implicit Intent only from
the same application. Because only application A defines Intent-filter (action="X" in the Figure), it behaves normally.
This is the normal behavior.

Fig. 4.4.4: An Example of Normal Behavior

Fig. 4.4.5 and Fig. 4.4.6 below show a scenario in which the same Intent filter (action="X") is defined in Application
B as well as Application A.

16 If any intent filters are defined then the Service is public; otherwise it is private. For more information, see https://developer.android.com/
guide/topics/manifest/service-element#exported

237

https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.4.5 shows the scenario that applications are installed in the order, application A -> application B. In this case,
when application C sends implicit Intent, calling Private Service (A-1) fails. On the other hand, since application A
can successfully call Private Service within the application by implicit Intent as expected, there won't be any problems
in terms of security (counter-measure for Malware).

Fig. 4.4.5: Applications are installed in the order, application A -> application B

Fig. 4.4.6 shows the scenario that applications are installed in the order, applicationB -> applicationA. There is a
problem here, in terms of security. It shows an example that applicationA tries to call Private Service within the
application by sending implicit Intent, but actually Public Activity (B-1) in application B which was installed earlier,
is called. Due to this loophole, it is possible that sensitive information can be sent from applicationA to applicationB.
If applicationB is Malware, it will lead the leakage of sensitive information.

238

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.4.6: Applications are installed in the order, applicationB -> applicationA

As shown above, using Intent filters to send implicit Intents to Private Service may result in unexpected behavior so
it is best to avoid this setting.

4.4.3.2 How to Implement Service

Because methods for Service implementation are various and should be selected with consideration of security type
which is categorized by sample code, each characteristics are briefly explained. It's divided roughly into the case
using startService and the case using bindService. And it's also possible to create Service which can be used in both
startService and bindService. Following items should be investigated to determine the implementation method of
Service.

• Whether to disclose Service to other applications or not (Disclosure of Service)

• Whether to exchange data during running or not (Mutual sending/receiving data)

• Whether to control Service or not (Launch or complete)

• Whether to execute as another process (communication between processes)

• Whether to execute multiple processes in parallel (Parallel process)

Table 4.4.4 shows category of implementation methods and feasibility of each item.

"NG" stands for impossible case or case that another frame work which is different from the provided function is
required.

239

Secure Coding Guide Documentation Release 2025-01-29

Table 4.4.4: Category of implementation methods for Service

Category Disclosure of
Service

Mutual send-
ing/receiving
data

Control
Service
(Boot/Exit)

Communica-
tion between
processes

Parallel pro-
cess

startService
type

OK NG OK OK NG

IntentService
type

OK NG NG OK NG

local bind type NG OK OK NG NG
Messenger bind
type

OK OK OK OK NG

AIDL bind type OK OK OK OK OK

startService type

This is the most basic Service. This inherits Service class, and executes processes by onStartCommand.

In user side, specify Service by Intent, and call by startService. Because data such as results cannot be returned to
source of Intent directly, it should be achieved in combination with another method such as Broadcast. Please refer
to "4.4.1.1. Creating/Using Private Services" for the concrete example.

Checking in terms of security should be done by onStartCommand, but it cannot be used for partner only Service
since the package name of the source cannot be obtained.

IntentService type

IntentService is the class which was created by inheriting Service. Calling method is same as startService type.
Following are characteristics compared with standard service (startService type.)

• Processing Intent is done by onHandleIntent (onStartCommand is not used.)

• It's executed by another thread.

• Process is to be queued.

Call is immediately returned because process is executed by another thread, and process towards Intents is sequentially
executed by Queuing system. Each Intent is not processed in parallel, but it is also selectable depending on the
product's requirement, as an option to simplify implementation. Since data such as results cannot be returned to
source of Intent, it should be achieved in combination with another method such as Broadcast. Please refer to "4.4.1.2.
Creating/Using Public Services" for the concrete example of implementation.

Checking in terms of security should be done by onHandleIntent, but it cannot be used for partner only Service since
the package name of the source cannot be obtained.

local bind type

This is a method to implement local Service which works only within the process same as an application. Define the
class which was derived from Binder class, and prepare to provide the feature (method) which was implemented in
Service to caller side.

From user side, specify Service by Intent and call Service by using bindService. This is the most simple implemen-
tation method among all methods of binding Service, but it has limited usages since it cannot be launched by another
process and also Service cannot be disclosed. See project "Service PrivateServiceLocalBind" which is included in
Sample code, for the concrete implementation example.

From the security point of view, only private Service can be implemented.

Messenger bind type

This is the method to achieve the linking with Service by using Messenger system.

Since Messenger can be given as a Message destination from Service user side, the mutual data exchanging can be
achieved comparatively easily. In addition, since processes are to be queued, it has a characteristic that behaves
"thread-safely”. Parallel process for each process is not possible, but it is also selectable as an option to simplify
the implementation depending on the product's requirement. Regarding user side, specify Service by Intent, and

240

Secure Coding Guide Documentation Release 2025-01-29

call Service by using bindService. See "4.4.1.4. Creating/Using In-house Services" for the concrete implementation
example.

Security check in onBind or by Message Handler is necessary, however, it cannot be used for partner only Service
since package name of source cannot be obtained.

AIDL bind type

This is a method to achieve linking with Service by using AIDL system. Define interface by AIDL, and provide
features that Service has as a method. In addition, call back can be also achieved by implementing interface defined
by AIDL in user side, Multi-thread calling is possible, but it's necessary to implement explicitly in Service side for
exclusive process.

User side can call Service, by specifying Intent and using bindService. Please refer to "4.4.1.3. Creating/Using Partner
Services" for the concrete implementation example.

Security must be checked in onBind for In-house only Service and by each method of interface defined by AIDL for
partner only Service.

This can be used for all security types of Service which are described in this Guidebook.

4.4.3.3 Requirement for Specifying of Service Types

When browsing the web in one window and playing music in another, for instance, the more applications running at
the same time, the greater the load on the system. Therefore, since Android 8, the creation of a background service
from a background application is no longer allowed, and a Context.startForegroundService () method has been added
to create the service as a user-recognizable foreground service.

When a service is created by startForegroundService, it is necessary to notify the user that the service is running in
the notification drawer while the service in question is operating.

The following is an excerpt of code that uses MediaPlayer to play music in a foreground service.

AndroidManifest.xml

<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

<uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

MainActivity.java

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

// ...

buttonStart.setOnClickListener(v -> {

Intent intent = new Intent(getApplication(), MediaPlaybackService.class);

intent.putExtra("REQUEST_CODE", 1);

// The launcher with the Intent you want to start

requestPermissionLauncher.launch(Manifest.permission.POST_NOTIFICATIONS);

// Start Service

startForegroundService(intent);

});

This code works without any issues up to Android 13, but starting with Android 14, it is necessary to explicitly specify
the foreground service type.

The service type is specified in the <service> element of AndroidManifest.xml. An example of the modification is
shown below.

AndroidManifest.xml

241

Secure Coding Guide Documentation Release 2025-01-29

<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

<uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

<uses-permission android:name="android.permission.FOREGROUND_SERVICE_MEDIA_PLAYBACK

→˓" />

<!--Omitted-->

<service

android:name=".MediaPlaybackService"

android:foregroundServiceType="mediaPlayback"

android:exported="false">

</service>

If the service type is not specified in an application targeting Android 14, the exception MissingForegroundService-
TypeException will occur when startForegroundService is executed.

android.app.MissingForegroundServiceTypeException: Starting FGS without a type ␣

→˓callerApp=ProcessRecord{5efdc61 5490:com.example.myapplication/u0a261}␣

→˓targetSDK=34

The following is a list of service types that are required to be specified.

• camera

• connectedDevice

• dataSync

• health

• location

• mediaPlayback

• mediaProjection

• microphone

• phoneCall

• remoteMessaging

• shortService

• specialUse

• systemExempted

4.4.3.4 Foreground Service Changes

Android 15 introduces several behavioral changes to foreground services with the goal of improving security and pri-
vacy. These changes aim to prevent applications from inappropriately using system resources and reduce unintended
user behavior. Below are the main changes and the associated security measures:

Data Sync Foreground Service Timeout Behavior

Android 15 introduced a new timeout behavior for the dataSync foreground service. As a result, the dataSync service
is allowed to run for a total of 6 hours within a 24-hour period, and the Service.onTimeout(int, int) method is called
when that is exceeded.

This change is intended to prevent long-running foreground services from continuing to occupy system resources,
thereby adversely affecting the performance of other applications and the system as a whole. It is also intended to
reduce the risk of privacy violations due to prolonged unintended user manipulation of data.

Countermeasures

242

Secure Coding Guide Documentation Release 2025-01-29

1. Implementing timeout method:

override fun onTimeout(startId: Int, timeout: Int) {

stopSelf(startId)

}

2. Service runtime limit: Design the app’s dataSync service so that it does not run for more than a total of 6 hours
in a 24-hour period. Ensure that the timer is reset only when the user operates the app in the foreground.

3. use of alternative APIs: improve the efficiency and security of background processing by using alternative APIs
such as WorkManager instead of the dataSync foreground service.

New Media Processing Foreground Service Type

Android 15 introduces the mediaProcessing foreground service type, which is suitable for media file code conversion.
This service is also allowed to run for a total of 6 hours within a 24-hour period, and the Service.onTimeout(int, int)
method is called if that is exceeded.

This change is to prevent long periods of media processing from using excessive system resources and negatively
affecting the performance of other applications and the overall system.

Countermeasures

1. Implementing timeout method:

override fun onTimeout(startId: Int, timeout: Int) {

stopSelf(startId)

}

2. Service Runtime Limit: Design the app’s mediaProcessing service to run for a total of more than 6 hours within
24 hours. Ensure that the timer is reset only if the user interacts with the app in the foreground.

3. Using Alternate APIs: Using alternative APIs such as WorkManager without using mediaProcessing fore-
ground services, improve background processing efficiency.

4. Splitting Media Processing: Splitting long media processing into smaller tasks so that each task completes
within the time limit

5. User Notification: Notify users of progress when long media processing is required, allowing them to pause or
resume processing if necessary.

Restrictions on starting foreground services by BOOT_COMPLETED broadcast receivers

Android 15 restricts certain foreground services (e.g. dataSync, camera, mediaPlayback, etc.) from launching with
BOOT_COMPLETED broadcast receivers.

Security Risk, this change is intended to prevent services that start automatically at system startup from causing
unintended background behavior by the user, leading to privacy violations and excessive resource consumption.

Countermeasures

1. Compliance with boot restrictions: Design to prevent restricted foreground services from starting with the
BOOT_COMPLETED receiver

2. Consider alternatives: If necessary, make sure that the service starts with clear user interaction and permissions

Restrictions on starting foreground services when holding the SYSTEM_ALERT_WINDOW privilegeSYS-
TEM_ALERT_WINDOW

In Android 15, if an app has the SYSTEM_ALERT_WINDOW permission, it must show a TYPE_APPLICA-
TION_OVERLAY window before starting a foreground service.

This change is intended to prevent the risk of unintended user operations or malicious behavior by apps with SYS-
TEM_ALERT_WINDOW privilege from freely launching foreground services from the background.

Countermeasures

1. Check the display of the overlay window: make sure the TYPE_APPLICATION_OVERLAY window is dis-
played before the app starts foreground services

243

Secure Coding Guide Documentation Release 2025-01-29

// Check if the overlay window is currently being displayed

if (isOverlayWindowVisible()) {

// Start the foreground service

startForegroundService()

} else {

// Show overlay window and then start the foreground service

showOverlayWindow()

// Optionally, you could delay the start of the service until the overlay is␣

→˓visible

}

2. Visibility monitoring: Override View.onWindowVisibilityChanged to receive notifications whenever the win-
dow visibility changes.

override fun onWindowVisibilityChanged(visibility: Int) {

super.onWindowVisibilityChanged(visibility)

// Handle visibility changes

}

3. Check process order: Check your app’s process order and ensure that there is an active overlay window before
starting a foreground service from the background.

4.5 Using SQLite

Herein after, some cautions in terms of security when creating/operating database by using SQLite. Main points are
appropriate setting of access right to database file, and counter-measures for SQL injection. Database which permits
reading/writing database file from outside directly (sharing among multiple applications) is not supposed here, but
suppose the usage in backend of Content Provider and in an application itself. In addition, it is recommended to
adopt counter-measures mentioned below in case of handling not so much sensitive information, though handling a
certain level of sensitive information is supposed here.

4.5.1 Sample Code

4.5.1.1 Creating/Operating Database

When handling database in Android application, appropriate arrangements of database files and access right setting
(Setting for denying other application's access) can be achieved by using SQLiteOpenHelper17. Here is an example
of easy application that creates database when it's launched, and executes searching/adding/changing/deleting data
through UI. Sample code is what counter-measure for SQL injection is done, to avoid from incorrect SQL being
executed against the input from outside.

17 As regarding file storing, the absolute file path can be specified as the 2nd parameter (name) of SQLiteOpenHelper constructor. Therefore,
need attention that the stored files can be read and written by the other applications if the SD Card path is specified.

244

Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.5.1: Using Database in Android Application

Points:

1. SQLiteOpenHelper should be used for database creation.

2. Use place holder.

3. Validate the input value according the application requirements.

SampleDbOpenHelper.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.sqlite;

import android.content.Context;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

(continues on next page)

245

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.util.Log;

import android.widget.Toast;

public class SampleDbOpenHelper extends SQLiteOpenHelper {

private SQLiteDatabase mSampleDb; //Database to store the data to be handled

public static SampleDbOpenHelper newHelper(Context context)

{

//*** POINT 1 *** SQLiteOpenHelper should be used for database creation.

return new SampleDbOpenHelper(context);

}

public SQLiteDatabase getDb() {

return mSampleDb;

}

//Open DB by Writable mode

public void openDatabaseWithHelper() {

try {

if (mSampleDb != null && mSampleDb.isOpen()) {

if (!mSampleDb.isReadOnly())// Already opened by writable mode

return;

mSampleDb.close();

}

mSampleDb = getWritableDatabase(); //It's opened here.

} catch (SQLException e) {

//In case fail to construct database, output to log

Log.e(mContext.getClass().toString(),

mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));

Toast.makeText(mContext,

R.string.DATABASE_OPEN_ERROR_MESSAGE,

Toast.LENGTH_LONG).show();

}

}

//Open DB by ReadOnly mode.

public void openDatabaseReadOnly() {

try {

if (mSampleDb != null && mSampleDb.isOpen()) {

if (mSampleDb.isReadOnly())// Already opened by ReadOnly.

return;

mSampleDb.close();

}

SQLiteDatabase.openDatabase(mContext.getDatabasePath(CommonData.DBFILE_

→˓NAME).getPath(),null, SQLiteDatabase.OPEN_READONLY);

} catch (SQLException e) {

//In case failed to construct database, output to log

Log.e(mContext.getClass().toString(),

mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));

Toast.makeText(mContext,

R.string.DATABASE_OPEN_ERROR_MESSAGE,

Toast.LENGTH_LONG).show();

}

}

//Database Close

(continues on next page)

246

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void closeDatabase() {

try {

if (mSampleDb != null && mSampleDb.isOpen()) {

mSampleDb.close();

}

} catch (SQLException e) {

//In case failed to construct database, output to log

Log.e(mContext.getClass().toString(),

mContext.getString(R.string.DATABASE_CLOSE_ERROR_MESSAGE));

Toast.makeText(mContext,

R.string.DATABASE_CLOSE_ERROR_MESSAGE,

Toast.LENGTH_LONG).show();

}

}

//Remember Context

private Context mContext;

//Table creation command

private static final String CREATE_TABLE_COMMANDS

= "CREATE TABLE " + CommonData.TABLE_NAME + " ("

+ "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

+ "idno INTEGER UNIQUE, "

+ "name VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ") NOT NULL, "

+ "info VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ")"

+ ");";

public SampleDbOpenHelper(Context context) {

super(context, CommonData.DBFILE_NAME, null, CommonData.DB_VERSION);

mContext = context;

}

@Override

public void onCreate(SQLiteDatabase db) {

try {

db.execSQL(CREATE_TABLE_COMMANDS); //Execute DB construction command

} catch (SQLException e) {

//In case failed to construct database, output to log

Log.e(this.getClass().toString(),

mContext.getString(R.string.DATABASE_CREATE_ERROR_MESSAGE));

}

}

@Override

public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {

// It's to be executed when database version up. Write processes like data

// transition.

}

}

DataSearchTask.java(SQLite Database Project)

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

(continues on next page)

247

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.sqlite.task;

import org.jssec.android.sqlite.CommonData;

import org.jssec.android.sqlite.DataValidator;

import org.jssec.android.sqlite.MainActivity;

import org.jssec.android.sqlite.R;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

import android.os.AsyncTask;

import android.util.Log;

//Data search task

public class DataSearchTask extends AsyncTask<String, Void, Cursor> {

private MainActivity mActivity;

private SQLiteDatabase mSampleDB;

public DataSearchTask(SQLiteDatabase db, MainActivity activity) {

mSampleDB = db;

mActivity = activity;

}

@Override

protected Cursor doInBackground(String... params) {

String idno = params[0];

String name = params[1];

String info = params[2];

String cols[] = {"_id", "idno","name","info"};

Cursor cur;

//*** POINT 3 *** Validate the input value according the application

// requirements.

if (!DataValidator.validateData(idno, name, info))

{

return null;

}

//When all parameters are null, execute all search

if ((idno == null || idno.length() == 0) &&

(name == null || name.length() == 0) &&

(info == null || info.length() == 0)) {

try {

(continues on next page)

248

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

cur = mSampleDB.query(CommonData.TABLE_NAME,

cols, null, null, null, null, null);

} catch (SQLException e) {

Log.e(DataSearchTask.class.toString(),

mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

return null;

}

return cur;

}

//When No is specified, execute searching by No

if (idno != null && idno.length() > 0) {

String selectionArgs[] = {idno};

try {

//*** POINT 2 *** Use place holder.

cur = mSampleDB.query(CommonData.TABLE_NAME, cols,

"idno = ?", selectionArgs, null, null, null);

} catch (SQLException e) {

Log.e(DataSearchTask.class.toString(),

mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

return null;

}

return cur;

}

//When Name is specified, execute perfect match search by Name

if (name != null && name.length() > 0) {

String selectionArgs[] = {name};

try {

//*** POINT 2 *** Use place holder.

cur = mSampleDB.query(CommonData.TABLE_NAME, cols,

"name = ?", selectionArgs, null, null, null);

} catch (SQLException e) {

Log.e(DataSearchTask.class.toString(),

mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

return null;

}

return cur;

}

//Other than above, execute partly match searching with the condition

// of info.

//Escape @ in info which was received as input.

String argString = info.replaceAll("@", "@@");

//Escape % in info which was received as input.

argString = argString.replaceAll("%", "@%");

//Escape _ in info which was received as input.

argString = argString.replaceAll("_", "@_");

String selectionArgs[] = {argString};

try {

//*** POINT 2 *** Use place holder.

cur = mSampleDB.query(CommonData.TABLE_NAME, cols,

"info LIKE '%' || ? || '%' ESCAPE '@'",

selectionArgs, null, null, null);

(continues on next page)

249

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

} catch (SQLException e) {

Log.e(DataSearchTask.class.toString(),

mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));

return null;

}

return cur;

}

@Override

protected void onPostExecute(Cursor resultCur) {

mActivity.updateCursor(resultCur);

}

}

DataValidator.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.sqlite;

public class DataValidator {

//Validate the Input value

//validate numeric characters

public static boolean validateNo(String idno) {

//null and blank are OK

if (idno == null || idno.length() == 0) {

return true;

}

//Validate that it's numeric character.

try {

if (!idno.matches("[1-9][0-9]*")) {

//Error if it's not numeric value

return false;

}

} catch (NullPointerException e) {

//Detected an error

return false;

}

return true;

}

(continues on next page)

250

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Validate the length of a character string

public static boolean validateLength(String str, int max_length) {

//null and blank are OK

if (str == null || str.length() == 0) {

return true;

}

//Validate the length of a character string is less than MAX

try {

if (str.length() > max_length) {

//When it's longer than MAX, error

return false;

}

} catch (NullPointerException e) {

//Bug

return false;

}

return true;

}

// Validate the Input value

public static boolean validateData(String idno, String name, String info) {

if (!validateNo(idno)) {

return false;

}

if (!validateLength(name, CommonData.TEXT_DATA_LENGTH_MAX)) {

return false;

}else if(!validateLength(info, CommonData.TEXT_DATA_LENGTH_MAX)) {

return false;

}

return true;

}

}

4.5.2 Rule Book

Using SQLite, follow the rules below accordingly.

1. Set DB File Location and Access Right Correctly (Required)

2. Use Content Provider for Access Control When Sharing DB Data with Other Application (Required)

3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation. (Required)

4.5.2.1 Set DB File Location and Access Right Correctly (Required)

Considering the protection of DB file data, DB file location and access right setting is the very important elements
that need to be considered together.

For example, even if file access right is set correctly, a DB file can be accessed from anybody in case that it is arranged
in a location which access right cannot be set, e.g. SD card. And in case that it's arranged in application directory, if
the access right is not correctly set, it will eventually allow the unexpected access. Following are some points to be
met regarding the correct allocation and access right setting, and the methods to realize them.

About location and access right setting, considering in terms of protecting DB file (data), it's necessary to execute 2
points as per below.

251

Secure Coding Guide Documentation Release 2025-01-29

1. Location

Locate in file path that can be obtained by Context#getDatabasePath(String name), or in some cases, directory that
can be obtained by Context#getFilesDir18.

2. Access right

Set to MODE_PRIVATE (= it can be accessed only by the application which creates file) mode.

By executing following 2 points, DB file which cannot be accessed by other applications can be created. Here are
some methods to execute them.

1. Use SQLiteOpenHelper

2. Use Context#openOrCreateDatabase

When creating DB file, SQLiteDatabase#openOrCreateDatabase can be used. However, when using this method,
DB files which can be read out from other applications are created, in some Android smartphone devices. So it is
recommended to avoid this method, and using other methods. Each characteristics for the above 2 methods are as
per below.

Using SQLiteOpenHelper

When using SQLiteOpenHelper, developers don’t need to be worried about many things. Create a class derived from
SQLiteOpenHelper, and specify DB name (which is used for file name)19 to constructer’s parameter, then DB file
which meets above security requirements, are to be created automatically.

Refer to specific usage method for "4.5.1.1. Creating/Operating Database" for how to use.

Using Context#openOrCreateDatabase

When creating DB by using Context#openOrCreateDatabase method, file access right should be specified by option,
in this case specify MODE_PRIVATE explicitly.

Regarding file arrangement, specifying DB name (which is to be used to file name) can be done as same as SQLi-
teOpenHelper, a file is to be created automatically, in the file path which meets the above mentioned security require-
ments. However, full path can be also specified, so it's necessary to pay attention that when specifying SD card, even
though specifying MODE_PRIVATE, other applications can also access.

Example to execute access permission setting to DB explicitly: MainActivity.java

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

//Construct database

try {

//Create DB by setting MODE_PRIVATE

db = Context.openOrCreateDatabase("Sample.db", MODE_PRIVATE, null);

} catch (SQLException e) {

//In case failed to construct DB, log output

Log.e(this.getClass().toString(),

getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));

return;

}

//Omit other initial process

}

There are three possible settings for access privileges: MODE_PRIVATE, MODE_WORLD_READABLE, and
MODE_WORLD_WRITEABLE. These constants can be specified together by “OR” operator. However, all settings
other thanMODE_PRIVATE are deprecated in API Level 17 and later versions, and will result in a security exception

18 Both methods provide the path under (package) directory which is able to be read and written only by the specified application.
19 (Undocumented in Android reference) Since the full file path can be specified as the database name in SQLiteOpenHelper implementation,

need attention that specifying the place (path) which does not have access control feature (e.g. SD cards) unintentionally.

252

Secure Coding Guide Documentation Release 2025-01-29

in API Level 24 and later versions. Even for apps intended for API Level 15 and earlier, it is generally best not to
use these flags20.

• MODE_PRIVATE Only creator application can read and write

• MODE_WORLD_READABLE Creator application can read and write, Others can only read in

• MODE_WORLD_WRITEABLE Creator application can read and write, Others can only write in

4.5.2.2 Use Content Provider for Access Control When Sharing DB Data with Other Application
(Required)

The method to share DB data with other application is that create DB file as WORLD_READABLE,
WORLD_WRITEABLE, to other applications to access directly. However, this method cannot limit applications
which access to DB or operations to DB, so data can be read-in or written by unexpected party (application). As a
result, it can be considered that some problems may occur in confidentiality or consistency of data, or it may be an
attack target of Malware.

As mentioned above, when sharing DB data with other applications in Android, it's strongly recommended to use
Content Provider. By using Content Provider, there are some merits, not only the merits from the security point of
view which is the access control on DB can be achieved, but also merits from the designing point of view which is
DB scheme structure can be hidden into Content Provider.

4.5.2.3 Place Holder Must Be Used in the Case Handling Variable Parameter during DB Opera-
tion. (Required)

In the sense that preventing from SQL injection, when incorporating the arbitrary input value to SQL statement,
placeholder should be used. There are 2 methods as per below to execute SQL using placeholder.

1. Get SQLiteStatement by using SQLiteDatabase#compileStatement(), and after that place parameter to place-
holder by using SQLiteStatement#bindString() or bindLong() etc.

2. When calling execSQL(), insert(), update(), delete(), query(), rawQuery() and replace() in SQLiteDatabase
class, use SQL statement which has placeholder.

In addition, when executing SELECT command, by using SQLiteDatabase#compileStatement(), there is a limitation
that "only the top 1 element can be obtained as a result of SELECT command", so usages are limited.

In either method, the data content which is given to placeholder is better to be checked in advance according the
application requirements. Following is the further explanation for each method.

When Using SQLiteDatabase#compileStatement():

Data is given to placeholder in the following steps.

1. Get the SQL statement which includes placeholder by using SQLiteDatabase#compileStatement(), as SQLiteS-
tatement.

2. Set the created as SQLiteStatement objects to placeholder by using the method like bindLong() and bind-
String().

3. Execute SQL by method like execute() of ExecSQLiteStatement object.

Use case of placeholder: DataInsertTask.java (an extra)

//Adding data task

public class DataInsertTask extends AsyncTask<String, Void, Void> {

private MainActivity mActivity;

private SQLiteDatabase mSampleDB;

public DataInsertTask(SQLiteDatabase db, MainActivity activity) {

(continues on next page)

20 For more information as to MODE_WORLD_READABLE andMODE_WORLD_WRITEABLE and points of caution regarding their use,
see Section "4.6.3.2. Access Permission Setting for the Directory".

253

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

mSampleDB = db;

mActivity = activity;

}

@Override

protected Void doInBackground(String... params) {

String idno = params[0];

String name = params[1];

String info = params[2];

// *** POINT 3 *** Validate the input value according the application

// requirements.

if (!DataValidator.validateData(idno, name, info))

{

return null;

}

// *** POINT 2 *** Use place holder

// Adding data task

String commandString =

"INSERT INTO " + CommonData.TABLE_NAME + " (idno, name, info) VALUES (?,

→˓ ?, ?)";

SQLiteStatement sqlStmt = mSampleDB.compileStatement(commandString);

sqlStmt.bindString(1, idno);

sqlStmt.bindString(2, name);

sqlStmt.bindString(3, info);

try {

sqlStmt.executeInsert();

} catch (SQLException e) {

Log.e(DataInsertTask.class.toString(),

mActivity.getString(R.string.UPDATING_ERROR_MESSAGE));

} finally {

sqlStmt.close();

}

return null;

}

... Abbreviation ...

}

This is a type that SQL statement to be executed as object is created in advance, and parameters are allocated to
it. The process to execute is fixed, so there's no room for SQL injection to occur. In addition, there is a merit that
process efficiency is enhanced by reutilizing SQLiteStatement object.

In the Case Using Method for Each Process which SQLiteDatabase provides:

There are 2 types of DB operation methods that SQLiteDatabase provides. One is what SQL statement is used,
and another is what SQL statement is not used. Methods that SQL statement is used are SQLiteDatabase#exec-
SQL()/rawQuery() and it's executed in the following steps.

1. Prepare SQL statement which includes placeholder.

2. Create data to allocate to placeholder.

3. Send SQL statement and data as parameter, and execute a method for process.

On the other hand, SQLiteDatabase#insert()/update()/delete()/query()/replace() is the method that SQL statement is
not used. When using them, data should be sent as per the following steps.

1. In case there's data to insert/update to DB, register to ContentValues.

2. Send ContentValues as parameter, and execute a method for each process (In the following example, SQLite-
Database#insert())

254

Secure Coding Guide Documentation Release 2025-01-29

Use case of metod for each process (SQLiteDatabase#insert())

private SQLiteDatabase mSampleDB;

private void addUserData(String idno, String name, String info) {

// Validity check of the value(Type, range), escape process

if (!validateInsertData(idno, name, info)) {

// If failed to pass the validation, log output

Log.e(this.getClass().toString(),

getString(R.string.VALIDATION_ERROR_MESSAGE));

return;

}

// Prepare data to insert

ContentValues insertValues = new ContentValues();

insertValues.put("idno", idno);

insertValues.put("name", name);

insertValues.put("info", info);

// Execute Insert

try {

mSampleDb.insert("SampleTable", null, insertValues);

} catch (SQLException e) {

Log.e(this.getClass().toString(),

getString(R.string.DB_INSERT_ERROR_MESSAGE));

return;

}

}

In this example, SQL command is not directly written, for instead, a method for inserting which SQLiteDatabase
provides, is used. SQL command is not directly used, so there's no room for SQL injection in this method, too.

4.5.3 Advanced Topics

4.5.3.1 When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be
Implemented

When using character string which includes wild card (%, _) of LIKE predicate, as input value of place holder, it
will work as a wild card unless it is processed properly, so it's necessary to implement escape process in advance
according the necessity. It is the case which escape process is necessary that wild card should be used as a single
character ("%" or "_").

The actual escape process is executed by using ESCAPE clause as per below sample code.

Example of ESCAPE process in case of using LIKE

// Data search task

public class DataSearchTask extends AsyncTask<String, Void, Cursor> {

private MainActivity mActivity;

private SQLiteDatabase mSampleDB;

private ProgressDialog mProgressDialog;

public DataSearchTask(SQLiteDatabase db, MainActivity activity) {

mSampleDB = db;

mActivity = activity;

}

@Override
(continues on next page)

255

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

protected Cursor doInBackground(String... params) {

String idno = params[0];

String name = params[1];

String info = params[2];

String cols[] = {"_id", "idno","name","info"};

Cursor cur;

... Abbreviation ...

// Execute like search(partly match) with the condition of info

// Point: Escape process should be performed on characters

// which is applied to wild card

// Escape @ in info which was received as input

String argString = info.replaceAll("@", "@@");

// Escape % in info which was received as input

argString = argString.replaceAll("%", "@%");

// Escape _ in info which was received as input

argString = argString.replaceAll("_", "@_");

String selectionArgs[] = {argString};

try {

// Point: Use place holder

cur = mSampleDB.query("SampleTable", cols,

"info LIKE '%' || ? || '%' ESCAPE '@'",

selectionArgs, null, null, null);

} catch (SQLException e) {

Toast.makeText(mActivity,

R.string.SERCHING_ERROR_MESSAGE, Toast.LENGTH_LONG).show();

return null;

}

return cur;

}

@Override

protected void onPostExecute(Cursor resultCur) {

mProgressDialog.dismiss();

mActivity.updateCursor(resultCur);

}

}

4.5.3.2 Use External Input to SQL Command in which Place Holder Cannot Be Used

When executing SQL statement which process targets are DB objects like table creation/deletion etc., placeholder
cannot be used for the value of table name. Basically, DB should not be designed using arbitrary character string
which was input from outside in case that placeholder cannot be used for the value.

When placeholder cannot be used due to the restriction of specifications or features, whether the Input value is
dangerous or not, should be verified before execution, and it's necessary to implement necessary processes.

Basically,

1. When using as character string parameter, escape or quote process for character should be made.

2. When using as numeric value parameter, verify that characters other than numeric value are not included.

3. When using as identifier or command, verify whether characters which cannot be used are not included, along
with 1.

256

Secure Coding Guide Documentation Release 2025-01-29

should be executed.

> Reference: [https://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf](https://www.ipa.go.jp/se-
curity/vuln/documents/website_security_sql.pdf) (Japanese)

4.5.3.3 Take a Countermeasure that Database Is Not Overwritten Unexpectedly

In case getting instance of DB by SQLiteOpenHelper#getReadableDatabase, getWriteableDatabase, DB is to be
opened in readable/WRITEABLE state by using either method21. In addition, it’s same to Context#openOrCreate-
Database, SQLiteDatabase#openOrCreateDatabase, etc.

It means that contents of DB may be overwritten unexpectedly by application operation or by defects in implemen-
tation. Basically, it can be supported by the application’s spec and range of implementation, but when implementing
the function which requires only read in function like application’s searching function etc., opening database by read-
only, it may lead to simplify designing or inspection and furthermore, lead to enhance application quality, so it’s
recommended depends on the situation.

Specifically, open database by specifying OPEN_READONLY to SQLiteDatabase#openDatabase.

Open database by read-only.

... Abbreviation ...

// Open DB(DB should be created in advance)

SQLiteDatabase db

= SQLiteDatabase.openDatabase(SQLiteDatabase.getDatabasePath("Sample.db"),

null, OPEN_READONLY);

> Reference: [https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.
html - getReadableDatabase()](https://developer.android.com/reference/android/database/sqlite/
SQLiteOpenHelper.html#getReadableDatabase())

4.5.3.4 Verify the Validity of Input/Output Data of DB, According to Application's Requirement

SQLite is the database which is tolerant types, and it can store character type data into columns which is declared
as Integer in DB. Regarding data in database, all data including numeric value type is stored in DB as character data
of plain text. So searching of character string type, can be executed to Integer type column. (LIKE '%123%' etc.)
In addition, the limitation for the value in SQLite (validity verification) is untrustful since data which is longer than
limitation can be input in some case, e.g. VARCHAR(100).

So, applications which use SQLite, need to be very careful about this characteristics of DB, and it is necessary take
actions according to application requirements, not to store unexpected data to DB or not to get unexpected data.
Countermeasures are as per below 2 points.

1. When storing data in database, verify that type and length are matched.

2. When getting the value from database, verify whether data is beyond the supposed type and length, or not.

Following is an example of the code which verifies that the Input value is more than 1.

Verify that the Input value is more than 1 (Extract from MainActivity.java)

public class MainActivity extends Activity {

... Abbreviation ...

// Process for adding

private void addUserData(String idno, String name, String info) {

(continues on next page)

21 getReableDatabase() returns the same object which can be got by getWritableDatabase. This spec is, in case writable object cannot be
generated due to disc full etc., it will return Read- only object. (getWritableDatabase() will be execution error under the situation like disc full
etc.)

257

https://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf{]}(https://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf
https://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf{]}(https://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper
https://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper

Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Check for No

if (!validateNo(idno, CommonData.REQUEST_NEW)) {

return;

}

// Inserting data process

DataInsertTask task = new DataInsertTask(mSampleDb, this);

task.execute(idno, name, info);

}

... Abbreviation ...

private boolean validateNo(String idno, int request) {

if (idno == null || idno.length() == 0) {

if (request == CommonData.REQUEST_SEARCH) {

// When search process, unspecified is considered as OK.

return true;

} else {

// Other than search process, null and blank are error.

Toast.makeText(this,

R.string.IDNO_EMPTY_MESSAGE, Toast.LENGTH_LONG).show();

return false;

}

}

// Verify that it's numeric character

try {

// Value which is more than 1

if (!idno.matches("[1-9][0-9]*")) {

// In case of not numeric character, error

Toast.makeText(this, R.string.IDNO_NOT_NUMERIC_MESSAGE,

Toast.LENGTH_LONG).show();

return false;

}

} catch (NullPointerException e) {

// It never happen in this case

return false;

}

return true;

}

... Abbreviation ...

}

4.5.3.5 Consideration - the Data Stored into Database

In SQLite implementation, when storing data to file is as per below.

• All data including numeric value type are stored into DB file as character data of plain text.

• When executing data deletion to DB, data itself is not deleted form DB file. (Only deletion mark is added.)

• When updating data, data before updating has not been deleted, and still remains there in DB file.

So, the information which "must have" been deleted may still remain in DB file. Even in this case, take counter-
measures according this Guidebook, and when Android security function is enabled, data/file may not be directly
accessed by the third party including other applications. However, considering the case that files are picked out by

258

Secure Coding Guide Documentation Release 2025-01-29

passing through Android's protection system like root privilege is taken, in case the data which gives huge influence
on business is stored, data protection which doesn't depend on Android protection system, should be considered.

As above reasons, the important data which is necessary to be protected even when device's root privilege is taken,
should not be stored in DB of SQLite, as it is. In case need to store the important data, it's necessary to implement
counter-measures, or encrypt overall DB.

When encryption is necessary, there are so many issues that are beyond the range of this Guidebook, like handling
the key which is used for encryption or code obfuscation, so as of now it's recommended to consult the specialist
when developing an application which handles data that has huge business impact.

Please refer to "4.5.3.6. [Reference] Encrypt SQLite Database (SQLCipher for Android)" library which encrypts
database is introduced here.

4.5.3.6 [Reference] Encrypt SQLite Database (SQLCipher for Android)

Developed by Zetetic LLC, SQLCipher provides transparent 256-bit AES encryption of SQLite databases. It is an
SQLite extension library implemented in C language, and it uses OpenSSL for encryption. It also provides APIs
for Obj-C, Java, Python, and other languages. In addition to the commercial version, an open source version (called
“community edition”) is also available, and it can be used for commercial purposes with a BSD license. It supports
a wide range of platforms including Windows, Linux, macOS, and more, and in the mobile space, besides Android,
it is also widely used in Nokia / QT and Apple’s iOS.

Among these versions, SQLCipher for Android was packaged specifically for Android use22. Although content
can be created by compiling from the available source code, a library is also distributed in AAR format (android-
database-sqlcipher-xxxx.aar), and this may convenient for simple usage23. Some standard SQLite APIs can be
changed to match SQLCipher to enable developers to use databases encrypted with the same coding as usual. This
section provides a brief introduction of how to use libraries in AAR format.

Reference: https://www.zetetic.net/sqlcipher/

How to Use

The following procedure is used in Android Studio to enable use of SQLCipher.

1. Place android-database-sqlcipher-3.5.9.aar in the libs directory of the application. [(https://www.zetetic.net/
sqlcipher/open-source/){]}(https://www.zetetic.net/sqlcipher/open-source/)

2. Specify the dependency in app/gradle.

dependencies {

:

implementation 'net.zetetic:android-database-sqlcipher:3.5.9@aar'

:

}

```

3. Instead of the normal android.database.sqlite.*, import net.sqlcipher.database.*. (The android.database.Cursor
can be used without any changes.)

4. Before using the database, load and initialize the library, and specify the password when opening the database.

The code shown below is used to execute the initialization process for using the database. Before an activity uses
the database, it is assumed that SQLCipherInitializer.Initialize() is called. First, SQLiteDatabase.loadLibs(this)
is called, and then the required library is loaded and initialized. Also, when a database is opened using SQLite-
Database.openOrCreateDatabase(), the password is passed. The database is encrypted using an encryption key gen-
erated based on the password provided here. The key point here is that a database created in plain text cannot be
converted into an encrypted database later, and the password must be specified when the database is created.

22 https://github.com/sqlcipher/android-database-sqlcipher
23 In these explanations, xxxx is the version number of the library, and the latest version at the time of this writing was 3.5.9. The explanations

below assume use of this version.

259

https://www.zetetic.net/sqlcipher/
https://www.zetetic.net/sqlcipher/open-source/){]}(https://www.zetetic.net/sqlcipher/open-source/
https://www.zetetic.net/sqlcipher/open-source/){]}(https://www.zetetic.net/sqlcipher/open-source/
https://github.com/sqlcipher/android-database-sqlcipher


Secure Coding Guide Documentation Release 2025-01-29

package android.jssec.org.samplesqlcipher;

import android.content.Context;

// instead of the normal android.database.sqlite*, import net.sqlcipher.database*

import net.sqlcipher.database.SQLiteDatabase;

import java.io.File;

public class SQLCipherInitializer {

static SQLiteDatabase Initialize(Context ctx, String dbName, String password) {

// before using DB, load neccessary libraries and initialize

SQLiteDatabase.loadLibs(ctx);

// create databe file uder the package local directory

File databaseFile = ctx.getDatabasePath(dbName);

// password must be specified when the databse is created

return SQLiteDatabase.openOrCreateDatabase(databaseFile, password, null);

}

}

The above shows an example using SQLiteDatabase.openOrCreateDatabase(), but the SQLiteOpen-
Helper#getWritableDatabase() and SQLiteOpenHelper#getReadableDatabase() APIs have been modified so
that the password can be passed as an argument. In either case, if null is specified for the password, a normal SQLite
database is created without encrypting the database.

Another key point is that Context#openOrCreateDatabase() cannot be used. As a result, it is not possible to force
setting of protection mode for the database files or force creation of a database in the local directory of the pack-
age. Consequently, when a database is created using SQLiteDatabase.openOrCreateDatabase(), at the minimum, as
shown in the example above, it is recommended that a database be created in the database directory of the pack-
age itself using getDatabasePath(). On the other hand, there are no modifications to the constructor API of SQLi-
teOpenHelper, and if this is used, a database is created in the local directory of the package in the same way as
android.database.sqlite.SQLiteOpenHelper.

4.6 Handling Files

According to Android security designing idea, files are used only for making information persistence and temporary
save (cache), and it should be private in principle. Exchanging information between applications should not be direct
access to files, but it should be exchanged by inter-application linkage system, like Content Provider or Service. By
using this, inter-application access control can be achieved.

Since enough access control cannot be performed on external memory device like SD card etc., so it should be limited
to use only when it's necessary by all means in terms of function, like when handling huge size files or transferring
information to another location (PC etc.). Basically, files that include sensitive information should not be saved in
external memory device. In case sensitive information needs to be saved in a file of external device at any rate,
counter-measures like encryption are necessary, but it's not referred here.

4.6.1 Sample Code

As mentioned above, files should be private in principle. However, sometimes files should be read out/written by
other applications directly for some reasons. File types which are categorized from the security point of view and
comparison are shown in Table 4.6.1. These are categorized into 4 types of files based on the file storage location or
access permission to other application. Sample code for each file category is shown below and explanation for each
of them are also added there.

260



Secure Coding Guide Documentation Release 2025-01-29

Table 4.6.1: File category and comparison from security point of view

File category Access per-
mission to
other appli-
cation

Storage loca-
tion

Overview

Private file NA In application
directory • Can read and write only in an application.

• Sensitive information can be handled.
• File should be this type in principle.

Read out public
file

Read out In application
directory • Other applications and users can read.

• Information that can be disclosed to outside of
application is handled.

• The MODE_WORLD_READABLE variable
used to create a public file is deprecated from
API level 17, and will trigger a security excep-
tion from API level 24.

Read write pub-
lic file

Read out/Write
in

In application
directory • Other applications and users can read and write.

• It should not be used from both security and ap-
plication designing points of view.

External mem-
ory device
(Read write
public)

Read out/Write
in

External mem-
ory device like
SD card

• No access control.
• Other applications and users can always
read/write/delete files.

• Usage should be minimum requirement.
• Comparatively huge size of files cn be handled.
• Use filtered view in API Level 29 or later.

External mem-
ory device (API
Level 29 or
later)

Read out/Write
in

External mem-
ory device like
SD card

• The filtered view for external storage can be used
to save the app file to the app-specific directory.

• To access files that other apps have created, both
of the following conditions must be true.

– The app has been granted the READ_EX-
TERNAL_STORAGE permission

– The files reside in one of the following me-
dia collections: MediaStore.Images, Medi-
aStore.Video, or MediaStore.Audio

• In order to access any other file (including files
in a downloads directory), the app must use the
Storage Access Framework.

• Comparatively huge size of files cn be handled.

4.6.1.1 Using Private Files

This is the case to use files that can be read/written only in the same application, and it is a very safe way to use files.
In principle, whether the information stored in the file is public or not, keep files private as much as possible, and
when exchanging the necessary information with other applications, it should be done using another Android system
(Content Provider, Service.)

Points:

261



Secure Coding Guide Documentation Release 2025-01-29

1. Files must be created in application directory.

2. The access privilege of file must be set private mode in order not to be used by other applications.

3. Sensitive information can be stored.

4. Regarding the information to be stored in files, handle file data carefully and securely.

PrivateFileActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.privatefile;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateFileActivity extends Activity {

private TextView mFileView;

private static final String FILE_NAME = "private_file.dat";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.file);

mFileView = (TextView) findViewById(R.id.file_view);

}

/**

* Create file process

*

* @param view

*/

public void onCreateFileClick(View view) {

FileOutputStream fos = null;

(continues on next page)

262



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

try {

// *** POINT 1 *** Files must be created in application directory.

// *** POINT 2 *** The access privilege of file must be set private

// mode in order not to be used by other applications.

fos = openFileOutput(FILE_NAME, MODE_PRIVATE);

// *** POINT 3 *** Sensitive information can be stored.

// *** POINT 4 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

fos.write(new String("Not sensotive information (File Activity)\n")

.getBytes());

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("PrivateFileActivity",

"failed to read file");

} finally {

if (fos != null) {

try {

fos.close();

} catch (IOException e) {

android.util.Log.e("PrivateFileActivity",

"failed to close file");

}

}

}

finish();

}

/**

* Read file process

*

* @param view

*/

public void onReadFileClick(View view) {

FileInputStream fis = null;

try {

fis = openFileInput(FILE_NAME);

byte[] data = new byte[(int) fis.getChannel().size()];

fis.read(data);

String str = new String(data);

mFileView.setText(str);

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("PrivateFileActivity",

"failed to read file");

} finally {

if (fis != null) {

(continues on next page)

263



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

try {

fis.close();

} catch (IOException e) {

android.util.Log.e("PrivateFileActivity",

"failed to close file");

}

}

}

}

/**

* Delete file process

*

* @param view

*/

public void onDeleteFileClick(View view) {

File file = new File(this.getFilesDir() + "/" + FILE_NAME);

file.delete();

mFileView.setText(R.string.file_view);

}

}

PrivateUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.privatefile;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PrivateUserActivity extends Activity {

(continues on next page)

264



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private TextView mFileView;

private static final String FILE_NAME = "private_file.dat";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user);

mFileView = (TextView) findViewById(R.id.file_view);

}

private void callFileActivity() {

Intent intent = new Intent();

intent.setClass(this, PrivateFileActivity.class);

startActivity(intent);

}

/**

* Call file Activity process

*

* @param view

*/

public void onCallFileActivityClick(View view) {

callFileActivity();

}

/**

* Read file process

*

* @param view

*/

public void onReadFileClick(View view) {

FileInputStream fis = null;

try {

fis = openFileInput(FILE_NAME);

byte[] data = new byte[(int) fis.getChannel().size()];

fis.read(data);

// *** POINT 4 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String str = new String(data);

mFileView.setText(str);

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("PrivateUserActivity",

"failed to read file");

} finally {

if (fis != null) {

try {

(continues on next page)

265



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

fis.close();

} catch (IOException e) {

android.util.Log.e("PrivateUserActivity",

"failed to close file");

}

}

}

}

/**

* Rewrite file process

*

* @param view

*/

public void onWriteFileClick(View view) {

FileOutputStream fos = null;

try {

// *** POINT 1 *** Files must be created in application directory.

// *** POINT 2 *** The access privilege of file must be set private

// mode in order not to be used by other applications.

fos = openFileOutput(FILE_NAME, MODE_APPEND);

// *** POINT 3 *** Sensitive information can be stored.

// *** POINT 4 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

fos.write(new String("Sensitive information (User Activity)\n").

→˓getBytes());

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("PrivateUserActivity",

"failed to read file");

} finally {

if (fos != null) {

try {

fos.close();

} catch (IOException e) {

android.util.Log.e("PrivateUserActivity",

"failed to close file");

}

}

}

callFileActivity();

}

}

4.6.1.2 Using Public Read Only Files

This is the case to use files to disclose the contents to unspecified large number of applications. If you im-
plement by following the below points, it's also comparatively safe file usage method. Note that using the
MODE_WORLD_READABLE variable to create a public file is deprecated in API Level 17 and later versions,
and will trigger a security exception in API Level 24 and later versions, therefore, the following sample code does not
work ;thus file-sharing methods using Content Provider are preferable.

266



Secure Coding Guide Documentation Release 2025-01-29

Points:

1. Files must be created in application directory.

2. The access privilege of file must be set to read only to other applications.

3. Sensitive information must not be stored.

4. Regarding the information to be stored in files, handle file data carefully and securely.

PublicFileActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.publicfile.readonly;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicFileActivity extends Activity {

private TextView mFileView;

private static final String FILE_NAME = "public_file.dat";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.file);

mFileView = (TextView) findViewById(R.id.file_view);

}

/**

* Create file process

*

* @param view

*/

public void onCreateFileClick(View view) {
(continues on next page)

267



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

FileOutputStream fos = null;

try {

// *** POINT 1 *** Files must be created in application directory.

// *** POINT 2 *** The access privilege of file must be set to read

// only to other applications.

// (MODE_WORLD_READABLE is deprecated API Level 17,

// don't use this mode as much as possible and exchange data by using

// ContentProvider().)

fos = openFileOutput(FILE_NAME, MODE_WORLD_READABLE);

// *** POINT 3 *** Sensitive information must not be stored.

// *** POINT 4 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

fos.write(new String("Not sensitive information (Public File Activity)\

→˓n").getBytes());

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("PublicFileActivity",

"failed to read file");

} finally {

if (fos != null) {

try {

fos.close();

} catch (IOException e) {

android.util.Log.e("PublicFileActivity",

"failed to close file");

}

}

}

finish();

}

/**

* Read file process

*

* @param view

*/

public void onReadFileClick(View view) {

FileInputStream fis = null;

try {

fis = openFileInput(FILE_NAME);

byte[] data = new byte[(int) fis.getChannel().size()];

fis.read(data);

String str = new String(data);

mFileView.setText(str);

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

(continues on next page)

268



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android.util.Log.e("PublicFileActivity",

"failed to read file");

} finally {

if (fis != null) {

try {

fis.close();

} catch (IOException e) {

android.util.Log.e("PublicFileActivity",

"failed to close file");

}

}

}

}

/**

* Delete file process

*

* @param view

*/

public void onDeleteFileClick(View view) {

File file = new File(this.getFilesDir() + "/" + FILE_NAME);

file.delete();

mFileView.setText(R.string.file_view);

}

}

PublicUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.publicuser.readonly;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.content.ActivityNotFoundException;

import android.content.Context;

(continues on next page)

269



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.Intent;

import android.content.pm.PackageManager.NameNotFoundException;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class PublicUserActivity extends Activity {

private TextView mFileView;

private static final String TARGET_PACKAGE =

"org.jssec.android.file.publicfile.readonly";

private static final String TARGET_CLASS =

"org.jssec.android.file.publicfile.readonly.PublicFileActivity";

private static final String FILE_NAME = "public_file.dat";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user);

mFileView = (TextView) findViewById(R.id.file_view);

}

private void callFileActivity() {

Intent intent = new Intent();

intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

try {

startActivity(intent);

} catch (ActivityNotFoundException e) {

mFileView.setText("(File Activity does not exist)");

}

}

/**

* Call file Activity process

*

* @param view

*/

public void onCallFileActivityClick(View view) {

callFileActivity();

}

/**

* Read file process

*

* @param view

*/

public void onReadFileClick(View view) {

FileInputStream fis = null;

try {

File file = new File(getFilesPath(FILE_NAME));

fis = new FileInputStream(file);

byte[] data = new byte[(int) fis.getChannel().size()];

(continues on next page)

270



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

fis.read(data);

// *** POINT 4 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String str = new String(data);

mFileView.setText(str);

} catch (FileNotFoundException e) {

android.util.Log.e("PublicUserActivity", "no file");

} catch (IOException e) {

android.util.Log.e("PublicUserActivity", "failed to read file");

} finally {

if (fis != null) {

try {

fis.close();

} catch (IOException e) {

android.util.Log.e("PublicUserActivity",

"failed to close file");

}

}

}

}

/**

* Rewrite file process

*

* @param view

*/

public void onWriteFileClick(View view) {

FileOutputStream fos = null;

boolean exception = false;

try {

File file = new File(getFilesPath(FILE_NAME));

// Fail to write in. FileNotFoundException occurs.

fos = new FileOutputStream(file, true);

fos.write(new String("Not sensitive information (Public User Activity)\

→˓n").getBytes());

} catch (IOException e) {

mFileView.setText(e.getMessage());

exception = true;

} finally {

if (fos != null) {

try {

fos.close();

} catch (IOException e) {

exception = true;

}

}

}

if (!exception)

callFileActivity();

(continues on next page)

271



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private String getFilesPath(String filename) {

String path = "";

try {

Context ctx = createPackageContext(TARGET_PACKAGE,

Context.CONTEXT_RESTRICTED);

File file = new File(ctx.getFilesDir(), filename);

path = file.getPath();

} catch (NameNotFoundException e) {

android.util.Log.e("PublicUserActivity", "no file");

}

return path;

}

}

4.6.1.3 Using Public Read/Write Files

This is the usage of the file which permits read-write access to unspecified large number of application.

Unspecified large number of application can read and write, means that needless to say. Malware can also read
and write, so the credibility and safety of data will be never guaranteed. In addition, even in case of not malicious
intention, data format in file or timing to write in cannot be controlled. So this type of file is almost not practical in
terms of functionality.

As above, it's impossible to use read-write files safely from both security and application designing points of view, so
using read-write files should be avoided.

Point:

1. Must not create files that be allowed to read/write access from other applications.

4.6.1.4 Using Eternal Memory (Read Write Public) Files

This is the case when storing files in an external memory like SD card. It's supposed to be used when storing com-
paratively huge information (placing file which was downloaded from Web), or when bring out the information to
outside (backup etc.).

"External memory file (Read Write public)" has the equal characteristics with "Read Write public file" to unspecified
large number of applications. In addition, it has the equal characteristics with "Read Write public file" to applications
which declares to use android.permission.WRITE_EXTERNAL_STORAGE Permission. So, the usage of "External
memory file (Read Write public) file" should be minimized as less as possible.

A Backup file is most probably created in an external memory device as Android application's customary practice.
However, as mentioned as above, files in an external memory have the risk that is tampered/deleted by other ap-
plications including malware. Hence, in applications which output backup, some contrivances to minimize risks in
terms of application spec or designing like displaying a caution "Copy Backup files to the safety location like PC etc.,
a.s.a.p.", are necessary.

Because the filtered view for external storage (see "4.6.3.6. Storage access for Android 10 and later (internal and
external storage)") is used as the default in Android 10 (API level 29), the following sample code (user side) does not
run. However, the manifest attribute requestLegacyExternalStorage can be set to temporarily opt out of the scoped
storage function. This is used only for temporary applications before the app is fully compatible or before app testing,
and its use in the release version and other versions is not allowed. In the next major platform release, it is expected
that scoped storage will be required in all apps regardless of the target SDK level.

Points:

272



Secure Coding Guide Documentation Release 2025-01-29

1. Sensitive information must not be stored.

2. Files must be stored in the unique directory per application.

3. Regarding the information to be stored in files, handle file data carefully and securely.

4. Writing file by the requesting application should be prohibited as the specification.

Sample code for create

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- declare android.permission.WRITE_EXTERNAL_STORAGE permission to write to␣

→˓the external strage -->

<!-- In Android 4.4 (API Level 19) and later, the application, which read/write␣

→˓only files in its specific

directories on external storage media, need not to require the permission␣

→˓and it should declare

the maxSdkVersion -->

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

android:maxSdkVersion="18"/>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name=".ExternalFileActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

ExternalFileActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

273



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.file.externalfile;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class ExternalFileActivity extends Activity {

private TextView mFileView;

private static final String TARGET_TYPE = "external";

private static final String FILE_NAME = "external_file.dat";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.file);

mFileView = (TextView) findViewById(R.id.file_view);

}

/**

* Create file process

*

* @param view

*/

public void onCreateFileClick(View view) {

FileOutputStream fos = null;

try {

// *** POINT 1 *** Sensitive information must not be stored.

// *** POINT 2 *** Files must be stored in the unique directory per

// application.

File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);

fos = new FileOutputStream(file, false);

// *** POINT 3 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

fos.write(new String("Non-Sensitive Information(ExternalFileActivity)\n

→˓").getBytes());

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("ExternalFileActivity",

"failed to read file");

} finally {

if (fos != null) {

(continues on next page)

274



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

try {

fos.close();

} catch (IOException e) {

android.util.Log.e("ExternalFileActivity",

"failed to close file");

}

}

}

finish();

}

/**

* Read file process

*

* @param view

*/

public void onReadFileClick(View view) {

FileInputStream fis = null;

try {

File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);

fis = new FileInputStream(file);

byte[] data = new byte[(int) fis.getChannel().size()];

fis.read(data);

// *** POINT 3 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String str = new String(data);

mFileView.setText(str);

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("ExternalFileActivity",

"failed to read file");

} finally {

if (fis != null) {

try {

fis.close();

} catch (IOException e) {

android.util.Log.e("ExternalFileActivity",

"failed to close file");

}

}

}

}

/**

* Delete file process

*

* @param view

*/

(continues on next page)

275



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void onDeleteFileClick(View view) {

File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);

file.delete();

mFileView.setText(R.string.file_view);

}

}

Sample code for use

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<queries>

<package android:name="org.jssec.android.file.externalfile" />

</queries>

<!-- In Android 4.0.3 (API Level 14) and later, the permission for reading␣

→˓external storages

has been defined and the application should decalre that it requires the␣

→˓permission.

In fact in Android 4.4 (API Level 19) and later, that must be declared to␣

→˓read other directories

than the package specific directories. -->

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name=".ExternalUserActivity"

android:label="@string/app_name"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

ExternalUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

276



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.externaluser;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import android.Manifest;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.ActivityNotFoundException;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.os.Build;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class ExternalUserActivity extends Activity {

private TextView mFileView;

private static final String TARGET_PACKAGE =

"org.jssec.android.file.externalfile";

private static final String TARGET_CLASS =

"org.jssec.android.file.externalfile.ExternalFileActivity";

private static final String TARGET_TYPE = "external";

private static final String FILE_NAME = "external_file.dat";

private final int MY_PERMISSIONS_REQUEST_READ_EXTERNAL_STORAGE = 1000;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user);

mFileView = (TextView) findViewById(R.id.file_view);

// Android 6.0 (API level 23) or later requires dangerous permission

// (in this case READ_EXTERNAL_STORAGE permission)

// must be granted at runtime by user.

// (Refer to “5.2.3.6. Modification to the Permission model Specifications

// in Android versions 6.0 and later”)

if (Build.VERSION.SDK_INT >= 23) {

if (checkSelfPermission(Manifest.permission.READ_EXTERNAL_STORAGE)

!= PackageManager.PERMISSION_GRANTED) {

requestPermissions(

(continues on next page)

277



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

new String[]{Manifest.permission.READ_EXTERNAL_STORAGE},

MY_PERMISSIONS_REQUEST_READ_EXTERNAL_STORAGE);

}

}

}

@Override

public void onRequestPermissionsResult(int requestCode,

String permissions[],

int[] grantResults) {

if (requestCode == MY_PERMISSIONS_REQUEST_READ_EXTERNAL_STORAGE) {

if (grantResults[0] != PackageManager.PERMISSION_GRANTED) {

finish();

}

}

}

private void callFileActivity() {

Intent intent = new Intent();

intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

try {

startActivity(intent);

} catch (ActivityNotFoundException e) {

mFileView.setText("(File Activity does not exist)");

}

}

/**

* Call file Activity process

*

* @param view

*/

public void onCallFileActivityClick(View view) {

callFileActivity();

}

/**

* Read file process

*

* @param view

*/

public void onReadFileClick(View view) {

FileInputStream fis = null;

try {

File file = new File(getFilesPath(FILE_NAME));

fis = new FileInputStream(file);

byte[] data = new byte[(int) fis.getChannel().size()];

fis.read(data);

// *** POINT 3 *** Regarding the information to be stored in files,

// handle file data carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

(continues on next page)

278



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

String str = new String(data);

mFileView.setText(str);

} catch (FileNotFoundException e) {

mFileView.setText(R.string.file_view);

} catch (IOException e) {

android.util.Log.e("ExternalUserActivity",

"failed to read file");

} finally {

if (fis != null) {

try {

fis.close();

} catch (IOException e) {

android.util.Log.e("ExternalUserActivity",

"failed to close file");

}

}

}

}

/**

* Rewrite file process

*

* @param view

*/

public void onWriteFileClick(View view) {

// *** POINT 4 *** Writing file by the requesting application should be

// prohibited as the specification.

// Application should be designed supposing malicious application may

// overwrite or delete file.

final AlertDialog.Builder alertDialogBuilder =

new AlertDialog.Builder(this);

alertDialogBuilder.setTitle("POINT 4");

alertDialogBuilder.setMessage("Do not write in calling appllication.");

alertDialogBuilder.setPositiveButton("OK",

new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialog, int which) {

callFileActivity();

}

});

alertDialogBuilder.create().show();

}

private String getFilesPath(String filename) {

String path = "";

try {

Context ctx = createPackageContext(TARGET_PACKAGE,

Context.CONTEXT_IGNORE_SECURITY);

File file = new File(ctx.getExternalFilesDir(TARGET_TYPE), filename);

(continues on next page)

279



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

path = file.getPath();

} catch (NameNotFoundException e) {

android.util.Log.e("ExternalUserActivity", "no file");

}

return path;

}

}

4.6.2 Rule Book

Handling files follow the rules below.

1. File Must Be Created as a Private File in Principle (Required)

2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications (Required)

3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Required)

4. Application Should Be Designed Considering the Scope of File (Required)

4.6.2.1 File Must Be Created as a Private File in Principle (Required)

As mentioned in "4.6.Handling Files" and "4.6.1.1.Using Private Files," regardless of the contents of the information
to be stored, files should be set private, in principle. From Android security designing point of view, exchanging
information and its access control should be done in Android system like Content Provider and Service, etc., and in
case there's a reason that is impossible, it should be considered to be substituted by file access permission as alternative
method.

Please refer to sample code of each file type and following rule items.

4.6.2.2 Must Not Create Files that Be Allowed to Read/Write Access from Other Applications
(Required)

As mentioned in "4.6.1.3. Using Public Read/Write Files," when permitting other applications to read/write files,
information stored in files cannot be controlled. So, sharing information by using read/write public files should not
be considered from both security and function/designing points of view.

4.6.2.3 Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Re-
quired)

As mentioned in "4.6.1.4. Using Eternal Memory (Read Write Public) Files," storing files in external memory device
like SD card, leads to holding the potential problems from security and functional points of view. On the other hand,
SD card can handle files which have longer scope, compared with application directory, and this is the only one
storage that can be always used to bring out the data to outside of application. So, there may be many cases that
cannot help using it, depends on application's spec.

When storing files in external memory device, considering unspecified large number of applications and users can
read/write/delete files, so it's necessary that application is designed considering the points as per below as well as the
points mentioned in sample code.

• Sensitive information should not be saved in a file of external memory device, in principle.

• In case sensitive information is saved in a file of external memory device, it should be encrypted.

• In case saving in a file of external memory device information that will be trouble if it's tampered by other
application or users, it should be saved with electrical signature.

• When reading in files in external memory device, use data after verifying the safety of data to read in.

280



Secure Coding Guide Documentation Release 2025-01-29

• Application should be designed supposing that files in external memory device can be always deleted.

Please refer to "4.6.2.4. Application Should Be Designed Considering the Scope of File (Required)."

4.6.2.4 Application Should Be Designed Considering the Scope of File (Required)

Data saved in application directory is deleted by the following user operations. It's consistent with the application's
scope, and it's distinctive that it's shorter than the scope of application.

• Uninstalling application.

• Delete data and cache of each application. ("Setting" > "Apps" > "select target application")

Files that were saved in external memory device like SD card, it's distinctive that the scope of the file is longer than
the scope of the application. In addition, the following situations are also necessary to be considered.

• File deletion by user

• Pick off/replace/unmount SD card

• File deletion by Malware

As mentioned above, since scope of files are different depends on the file saving location, not only from the viewpoint
to protect sensitive information, but also form view point to achieve the right behavior as application, it's necessary
to select the file save location.

4.6.3 Advanced Topics

4.6.3.1 File Sharing Through File Descriptor

There is a method to share files through file descriptor, not letting other applications access to public files. This method
can be used in Content Provider and in Service. Opponent application can read/write files through file descriptors
which are got by opening private files in Content Provider or in Service.

Comparison between the file sharing method of direct access by other applications and the file sharing method via file
descriptor, is as per below Table 4.6.2. Variation of access permission and range of applications that are permitted
to access, can be considered as merits. Especially, from security point of view, this is a great merit that, applicaions
that are permitted to accesss can be controlled in detail.

Table 4.6.2: Comparison of inter-application file sharing method

File sharing
method

Variation or access permission setting Range of applications that are permitted
to access

File sharing that
permits other ap-
plications to access
files directry

• Read in
• Write in
• Read in + Write in

Give all application access permissions
equally

File sharing through
file descriptor • Read in

• Write in
• Only add
• Read in + Write in
• Read in + Only add

Can control whether to give access permis-
sion or not, to application which try to ac-
cess indivisually and temporarily, to Con-
tent provider or Service

This is common in both of above file sharing methods, when giving write permission for files to other applications,
integrity of file contents are difficult to be guaranteed. When several applications write in in parallel, there's a risk
that data structure of file contents are destroyed, and application doesn't work normally. So, in sharing files with other
applications, giving only read only permission is preferable.

Herein below an implementation example of file sharing by Content Provider and its sample code, are published.

281



Secure Coding Guide Documentation Release 2025-01-29

Point

1. The source application is In house application, so sensitive information can be saved.

2. Even if it's a result from In house only Content Provider application, verify the safety of the result data.

InhouseProvider.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.inhouseprovider;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.content.ContentProvider;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.net.Uri;

import android.os.ParcelFileDescriptor;

public class InhouseProvider extends ContentProvider {

private static final String FILENAME = "sensitive.txt";

// In-house signature permission

private static final String MY_PERMISSION =

"org.jssec.android.file.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of debug.keystore "androiddebugkey"

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of keystore "my company key"
(continues on next page)

282



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

@Override

public boolean onCreate() {

File dir = getContext().getFilesDir();

FileOutputStream fos = null;

try {

fos = new FileOutputStream(new File(dir, FILENAME));

// *** POINT 1 *** The source application is In house application,

// so sensitive information can be saved.

fos.write(new String("Sensitive information").getBytes());

} catch (IOException e) {

android.util.Log.e("InhouseProvider", "failed to read file");

} finally {

try {

fos.close();

} catch (IOException e) {

android.util.Log.e("InhouseProvider", "failed to close file");

}

}

return true;

}

@Override

public ParcelFileDescriptor openFile(Uri uri, String mode)

throws FileNotFoundException {

// Verify that in-house-defined signature permission is defined by

// in-house application.

if (!SigPerm

.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {

throw new SecurityException("In-house-defined signature permission is␣

→˓not defined by in-house application.");

}

File dir = getContext().getFilesDir();

File file = new File(dir, FILENAME);

// Always return read-only, since this is sample

int modeBits = ParcelFileDescriptor.MODE_READ_ONLY;

return ParcelFileDescriptor.open(file, modeBits);

}

@Override

public String getType(Uri uri) {

return "";

}

@Override

(continues on next page)

283



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

return null;

}

@Override

public Uri insert(Uri uri, ContentValues values) {

return null;

}

@Override

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

return 0;

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

return 0;

}

}

InhouseUserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.file.inhouseprovideruser;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.ProviderInfo;

import android.net.Uri;

import android.os.Bundle;

import android.os.ParcelFileDescriptor;

(continues on next page)

284



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.view.View;

import android.widget.TextView;

public class InhouseUserActivity extends Activity {

// Content Provider information of destination (requested provider)

private static final String AUTHORITY =

"org.jssec.android.file.inhouseprovider";

// In-house signature permission

private static final String MY_PERMISSION =

"org.jssec.android.file.inhouseprovider.MY_PERMISSION";

// In-house certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of debug.keystore "androiddebugkey"

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of keystore "my company key"

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

// Get package name of destination (requested) content provider.

private static String providerPkgname(Context context, String authority) {

String pkgname = null;

PackageManager pm = context.getPackageManager();

ProviderInfo pi = pm.resolveContentProvider(authority, 0);

if (pi != null)

pkgname = pi.packageName;

return pkgname;

}

public void onReadFileClick(View view) {

logLine("[ReadFile]");

// Verify that in-house-defined signature permission is defined by

// in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

logLine(" In-house-defined signature permission is not defined by in-

→˓house application.");

return;

}

// Verify that the certificate of destination (requested) content provider

// application is in-house certificate.

(continues on next page)

285



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

String pkgname = providerPkgname(this, AUTHORITY);

if (!PkgCert.test(this, pkgname, myCertHash(this))) {

logLine(" Destination (Requested) Content Provider is not in-house␣

→˓application.");

return;

}

// Only the information which can be disclosed to in-house only content

// provider application, can be included in a request.

ParcelFileDescriptor pfd = null;

try {

pfd = getContentResolver()

.openFileDescriptor(Uri.parse("content://" + AUTHORITY), "r");

} catch (FileNotFoundException e) {

android.util.Log.e("InhouseUserActivity", "no file");

}

if (pfd != null) {

FileInputStream fis = new FileInputStream(pfd.getFileDescriptor());

if (fis != null) {

try {

byte[] buf = new byte[(int) fis.getChannel().size()];

fis.read(buf);

// *** POINT 2 *** Handle received result data carefully and

// securely, even though the data came from in-house

// applications.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

logLine(new String(buf));

} catch (IOException e) {

android.util.Log.e("InhouseUserActivity",

"failed to read file");

} finally {

try {

fis.close();

} catch (IOException e) {

android.util.Log.e("ExternalFileActivity",

"failed to close file");

}

}

}

try {

pfd.close();

} catch (IOException e) {

android.util.Log.e("ExternalFileActivity",

"failed to close file descriptor");

}

} else {

logLine(" null file descriptor");

}

}

private TextView mLogView;

(continues on next page)

286



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mLogView = (TextView) findViewById(R.id.logview);

}

private void logLine(String line) {

mLogView.append(line);

mLogView.append("\n");

}

}

4.6.3.2 Access Permission Setting for the Directory

Herein above, security considerations are explained, focusing on files. It's also necessary to consider the security for
directory which is a file container. Herein below, security considerations of access permission setting for directory
are explained.

In Android, there are some methods to get/create subdirectory in application directory. The major ones are as per
below Table 4.6.3.

Table 4.6.3: Methods to get/create subdirectory in application directory

Specify access permission to other ap-
plications

Deletion by User

Context#getFilesDir() Impossible (Only execution permission) “Setting” > “Apps” > select target appli-
cation > “Clear data”

Context#”getCacheDir() Impossible (Only execution permission) “Setting” > “Apps” > select target appli-
cation > “Clear cache” (It can be deleted
by “Clear data,” too.)

Context#getDir(String
name, int mode)

modes MODE_PRIVATE,
MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE can
be specified as a MODE

“Setting” > “Apps” > select target appli-
cation > “Clear data”

Here especially what needs to pay attention is access permission setting by Context#getDir(). As explained in file
creation, basically directory also should be set private from the security designing point of view. When sharing
information depends on access permission setting, there may be an unexpected side effect, so other methods should
be taken as information sharing.

MODE_WORLD_READABLE

This is a flag to give all applications read-only permission to directory. So all applications can get file list and individual
file attribute information in the directory. Because secret files may not be placed in these directories, in general this
flag must not be used.24

MODE_WORLD_WRITEABLE

This flag gives other applications write permission to directory. All applications can create/move25/rename/delete
files in the directory. These operations has no relation with access permission setting (Read/Write/Execute) of file
itself, so it's necessary to pay attention that operations can be done only with write permission to directory. This flag
allows other apps to delete or replace files arbitrarily, so in general it must not be used.24

24 MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE are deprecated in API Level17 and later versions, and in API Level
24 and later versions their use will trigger a security exception.

25 Files cannot be moved over mount point (e.g. from internal storage to external storage). Therefore, moving the protected files from internal
storage to external storage cannot be happened.

287



Secure Coding Guide Documentation Release 2025-01-29

Regarding Table 4.6.3 "Deletion by User", refer to "4.6.2.4. Application Should Be Designed Considering the Scope
of File (Required)."

4.6.3.3 Access Permission Setting for Shared Preference and Database File

Shared Preference and database also consist of files. Regarding access permission setting what are explained for files
are applied here. Therefore, both Shared Preference and database, should be created as private files same like files,
and sharing contents should be achieved by the Android's inter-application linkage system.

Herein below, the usage example of Shared Preference is shown. Shared Preference is crated as private file by
MODE_PRIVATE.

Example of setting access restriction to Shared Preference file.

import android.content.SharedPreferences; import android.content.SharedPreferences.Editor;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

... Abbreviation ...

// Get Shared Preference.

// (If there's no Shared Preference, it's to be created.)

// Point: Basically, specify MODE_PRIVATE mode.

SharedPreferences preference = getSharedPreferences(

PREFERENCE_FILE_NAME, MODE_PRIVATE);

// Example of writing preference which value is charcter string.

Editor editor = preference.edit();

// key:"prep_key", value:"prep_value"

editor.putString("prep_key", "prep_value");

editor.commit();

Please refer to "4.5. Using SQLite" for database.

4.6.3.4 Specification Change regarding External Storage Access in Android 4.4 (API Level 19)
and later

The specification regarding External Storage Access has been changed to the followings since Android 4.4 (API Level
19).

(1) In the case that the application needs read/write to its specific directories on external storage media, the
WRITE_EXTERNAL_STORAGE/READ_EXTERNAL_STORAGE permissions need not to be declared
with <uses-permission>. (Changed)

(2) In the case that the application needs read files on other directories than its specific directories on external stor-
age media, the READ_EXTERNAL_STORAGE permission needs to be declared with <uses-permission>.
(Changed)

(3) In the case that the application needs to write files on other directories than its specific directories on the
primary external storage media, the WRITE_EXTERNAL_STORAGE permission needs to be declared with
<uses-permission>.

(4) The application cannot write files on other directories than its specific directories on the secondary external
storage media.

In that specification, whether the permission requisitions are needed is determined according to the version of Android
OS. So in the case that the application supports the versions including Android 4.3 and 4.4, it could lead to a pleasant
situation that the application requires the unnecessary permission of users. Therefore, applications just corresponding
to the paragraph (1) is recommended to use the maxSdkVersion attribute of <uses-permission> like the below.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

(continues on next page)

288



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- declare android.permission.WRITE_EXTERNAL_STORAGE permission to write to␣

→˓the external strage -->

<!-- In Android 4.4 (API Level 19) and later, the application, which read/write␣

→˓only files in its specific

directories on external storage media, need not to require the permission␣

→˓and it should declare

the maxSdkVersion -->

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

android:maxSdkVersion="18"/>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name=".ExternalFileActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

4.6.3.5 Revised specifications in Android 7.0 (API Level 24) for accessing specific directories on
external storage media

On devices running Android 7.0 (API Level 24) or later, a new API known as Scoped Directory Access API has been
introduced. "Scoped Directory Access" allows the application to access to specific directories on external storage
media without permission.

Within Scoped Directory Access, a directory defined in the Environment class is passed as a parameter to the Stor-
ageVolume#createAccessIntent method to create an Intent. By sending this Intent via startActivityForResult, you
can enable a situation in which a dialog box requesting access permission appears on the terminal screen, and—if the
user grants permission—the specified directories on each storage volume become accessible.

Table 4.6.4: Directories that may be accessed via Scoped Directory Access

DIRECTORY_MUSIC Standard location for general music files
DIRECTORY_PODCASTS Standard directory for podcasts
DIRECTORY_RINGTONES Standard directory for ringtones
DIRECTORY_ALARMS Standard directory for alarms
DIRECTORY_NOTIFICATIONS Standard directory for notifications
DIRECTORY_PICTURES Standard directory for pictures
DIRECTORY_MOVIES Standard directory for movies
DIRECTORY_DOWNLOADS Standard directory for user-downloaded files
DIRECTORY_DCIM Standard directory for image/video files produced by cameras
DIRECTORY_DOCUMENTS Standard directory for user-created documents

If the location to be accessed by an app lies within one of the above directories, and if the app is running on an

289



Secure Coding Guide Documentation Release 2025-01-29

Android 7.0 or later device, the use of Scoped Directory Access is recommended for the following reasons. For apps
that must continue to support pre-Android 7.0 devices, see the sample code in the AndroidManifest listed in Section
"4.6.3.4. Specification Change regarding External Storage Access in Android 4.4 (API Level 19) and later".

• When a Permission is granted to access external storage, the app is able to access directories other than its
intended destination.

• Using Storage Access Framework to require users to choose accessible directories results in a cumbersome
procedure in which the user must configure a selector on each access. Also, when access to the root directory
of an external storage is granted, the entirety of that storage becomes accessible.

Because the StorageVolume#createAccessIntent method is deprecated as of Android 10 (API level 29), Intent#AC-
TION_OPEN_DOCUMENT_TREE is used instead for generating Intent26.

4.6.3.6 Storage access for Android 10 and later (internal and external storage)

Android 10 and later has enhanced security and privacy regarding internal and external storage access. To improve
user privacy, changes have been made to restrict access to other apps’ data.

The changes between Android 9 and 10 can be summarized as follows:

Restricting access to storage from other apps (introduction of Scoped Storage)

• Android 9: READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permissions were re-
quired to access other apps’ private data or secondary storage. No permissions were required to access your
own data in external storage (including the SD card).

• Android 10: With the introduction of Scoped Storage, access to other apps’ specific data or secondary storage
is basically prohibited. This significantly limits access to other apps’ data. There is no change to the method
of accessing your own app’s data or the method of obtaining the password, but security and privacy protection
have been strengthened.

Below is a summary of the differences in storage access between Android 9 and 10 and later.
26 https://developer.android.com/reference/android/os/storage/StorageVolume

290

https://developer.android.com/reference/android/os/storage/StorageVolume


Secure Coding Guide Documentation Release 2025-01-29

Table 4.6.5: Android 9 storage access (internal and external storage)

Storage Type Purpose Access Method Path Retrieval
Method

Actual Path Required Per-
missions

Internal Storage Private data for
the app

openFileOut-
put()
openFileInput()
FileOutput-
Stream
FileInput-
Stream

context.get-
FilesDir()

/data/data/<pack-
age_name>/files/

Not required

Private data of
other apps

Normally inac-
cessible

N/A N/A N/A

External Stor-
age (including
SD cards)

App-specific
data

File API
FileOutput-
Stream
FileInput-
Stream

context.getEx-
ternalFiles-
Dir(null)
context.getEx-
ternalFiles-
Dirs(null)[1] (if
available)

/storage/emu-
lated/0/An-
droid/data/<pack-
age_name>/files/
/storage/extSd-
Card/
/storage/sd-
card1/

Not required

App-specific
data of other
apps File API

FileOutput-
Stream
FileInput-
Stream

Direct path
specification

/storage/emu-
lated/0/An-
droid/data/<other_pack-
age_name>/files/
/storage/extSd-
Card/
/storage/sd-
card1/

READ_EX-
TER-
NAL_STOR-
AGE
WRITE_EX-
TER-
NAL_STOR-
AGE

291



Secure Coding Guide Documentation Release 2025-01-29

Table 4.6.6: Android 10 and later storage access (internal and external
storage)

Storage Type Purpose Access Method Path Retrieval
Method

Actual Path Required Per-
missions

Internal Storage Private data for
the app

openFileOut-
put()
openFileInput()
FileOutput-
Stream
FileInput-
Stream

context.get-
FilesDir()

/data/data/<pack-
age_name>/files/

Not required

Private data of
other apps

Normally inac-
cessible

N/A N/A N/A

External Stor-
age (including
SD cards)

App-specific
data

File API
FileOutput-
Stream
FileInput-
Stream

context.getEx-
ternalFiles-
Dir(null)
context.getEx-
ternalFiles-
Dirs(null)[1] (if
available)

/storage/emu-
lated/0/An-
droid/data/<pack-
age_name>/files/
/storage/<exter-
nal_sd>/An-
droid/data/<pack-
age_name>/files/

Not required

App-specific
data of other
apps

Normally
inaccessi-
ble (Scoped
Storage)

N/A N/A N/A

4.6.3.7 Storage access for Android 10 and later (shared storage)

In Android 10 and later, security and privacy enhancements have been implemented for accessing shared storage.
As a result, using MediaStore API or Storage Access Framework (SAF) is recommended instead of the path-based
access methods used in earlier versions.

The differences between Android 9 and Android 10 and later are summarized below.

Changes in Access Methods

• In Android 9, files are accessed directly using the File API or directory paths.

• In Android 10 and later, files are accessed indirectly using MediaStore API or SAF due to enhanced security.

Below is a comparison of storage access differences between Android 9 and Android 10 and later.

292



Secure Coding Guide Documentation Release 2025-01-29

Table 4.6.7: Storage Access in Android 9 (Shared Storage)

Storage Type Purpose Access Method Path Retrieval
Method

Actual Path Required Per-
missions

Shared Storage Shared data for
the app

File API
FileOutput-
Stream
FileInput-
Stream

Environ-
ment.getExter-
nalStoragePub-
licDirectory()
Environ-
ment.DIREC-
TORY_MUSIC
Environ-
ment.DIREC-
TORY_PIC-
TURES
Environ-
ment.DIREC-
TORY_MOVIES
etc.

/storage/emu-
lated/0/Music
/storage/emu-
lated/0/Pictures
/storage/emu-
lated/0/Movies
etc.

READ_EX-
TER-
NAL_STOR-
AGE
WRITE_EX-
TER-
NAL_STOR-
AGE

Shared data for
other apps

File API
FileOutput-
Stream
FileInput-
Stream

Environ-
ment.getExter-
nalStoragePub-
licDirectory()
Environ-
ment.DIREC-
TORY_MUSIC
Environ-
ment.DIREC-
TORY_PIC-
TURES
Environ-
ment.DIREC-
TORY_MOVIES
etc.

/storage/emu-
lated/0/Music
/storage/emu-
lated/0/Pictures
/storage/emu-
lated/0/Movies
etc.

READ_EX-
TER-
NAL_STOR-
AGE
WRITE_EX-
TER-
NAL_STOR-
AGE

293



Secure Coding Guide Documentation Release 2025-01-29

Table 4.6.8: Storage Access in Android 10 and Later (Shared Storage)

Storage Type Purpose Access Method Path Retrieval
Method

Actual Path Required Per-
missions

Shared Storage Shared data for
the app

MediaStore
API
Storage Access
Framework
(SAF)

Access using
MediaStore
API
File selection
using SAF

URI obtained
via MediaStore
API
URI obtained
via SAF

Not required

Shared data for
other apps

MediaStore
API
Storage Access
Framework
(SAF)

Access using
MediaStore
API
File selection
using SAF

URI obtained
via MediaStore
API
URI obtained
via SAF

External storage
read
permissions
required
Explicit user
consent
required when
using SAF

Shared Data for the App

Below are sample codes for accessing shared data in Android 9 and Android 10. Specifically, they demonstrate
creating a text file named “example.txt” in the Documents folder and writing “Hello, World!” into it.

Android 9:

import android.Manifest

import android.content.pm.PackageManager

import android.os.Bundle

import android.os.Environment

import androidx.appcompat.app.AppCompatActivity

import java.io.File

import java.io.FileOutputStream

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

// Check permissions and request access

if (checkSelfPermission(Manifest.permission.WRITE_EXTERNAL_STORAGE) !=␣

→˓PackageManager.PERMISSION_GRANTED) {

requestPermissions(arrayOf(Manifest.permission.WRITE_EXTERNAL_STORAGE),

→˓ 1001)

} else {

writeFileToExternalStorage()

}

}

private fun writeFileToExternalStorage() {

// Get the path to the Documents folder

val documentsDir = Environment.

→˓getExternalStoragePublicDirectory(Environment.DIRECTORY_DOCUMENTS)

(continues on next page)

294



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

val file = File(documentsDir, "example.txt")

// Create the folder if it doesn't exist

if (!documentsDir.exists()) {

documentsDir.mkdirs()

}

// Write data to the file

val fileOutputStream = FileOutputStream(file)

fileOutputStream.write("Hello, World!".toByteArray())

fileOutputStream.close()

}

}

Android 10:

import android.content.ContentValues

import android.os.Build

import android.os.Bundle

import android.provider.MediaStore

import androidx.annotation.RequiresApi

import androidx.appcompat.app.AppCompatActivity

import java.io.OutputStream

@RequiresApi(Build.VERSION_CODES.Q)

class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

writeFileToMediaStore()

}

private fun writeFileToMediaStore() {

// Set up ContentValues for saving to MediaStore

val contentValues = ContentValues().apply {

put(MediaStore.MediaColumns.DISPLAY_NAME, "example.txt")

put(MediaStore.MediaColumns.MIME_TYPE, "text/plain")

put(MediaStore.MediaColumns.RELATIVE_PATH, "Documents/")

}

// Insert a new entry into MediaStore

val uri = contentResolver.insert(MediaStore.Files.getContentUri("external

→˓"), contentValues)

// Use the URI to write data to the file

uri?.let {

val outputStream: OutputStream? = contentResolver.openOutputStream(it)

outputStream?.use {

it.write("Hello, World!".toByteArray())

}

}

}

}

Shared Data of Other Apps

In Android 10 and later, two primary methods are recommended for accessing shared data of other apps: MediaStore
and Storage Access Framework (SAF). MediaStore is the standard method for accessing media content such as

295



Secure Coding Guide Documentation Release 2025-01-29

images, music, videos, and TXT files, while SAF is used for accessing other file types like PDFs and DOCX files.

The access methods via MediaStore have undergone repeated changes. Below is a summary of the differences across
versions:

Android 10:

• Accessing image, music, and video data requires the READ_EXTERNAL_STORAGE permission.

Android 13:

• Accessing image data requires the READ_MEDIA_IMAGES permission.

• Accessing music data requires the READ_MEDIA_AUDIO permission.

• Accessing video data requires the READ_MEDIA_VIDEO permission.

Android 14:

• The access methods and required permissions for image, music, and video data remain the same as in Android
13.

• However, access to user-selected visual media (images and videos) has been added, which requires the
READ_MEDIA_VISUAL_USER_SELECTED permission.

Table 4.6.9: Android 10

Media Type Purpose Access Method Required Permissions
Images Shared image data

of other apps
MediaStore.Images.Media.EX-
TERNAL_CONTENT_URI

READ_EXTERNAL_STOR-
AGE

Music Shared music data
of other apps

MediaStore.Audio.Media.EX-
TERNAL_CONTENT_URI

READ_EXTERNAL_STOR-
AGE

Videos Shared video data
of other apps

MediaStore.Video.Media.EX-
TERNAL_CONTENT_URI

READ_EXTERNAL_STOR-
AGE

Documents Shared document
data of other apps

MediaStore.Files.getConten-
tUri(“external”)

READ_EXTERNAL_STOR-
AGE

Table 4.6.10: Android 13

Media Type Purpose Access Method Required Permissions
Images Shared image data

of other apps
MediaStore.Images.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_IMAGES

Music Shared music data
of other apps

MediaStore.Audio.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_AUDIO

Videos Shared video data
of other apps

MediaStore.Video.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_VIDEO

Documents Shared document
data of other apps

MediaStore.Files.getConten-
tUri(“external”)

READ_EXTERNAL_STOR-
AGE

296



Secure Coding Guide Documentation Release 2025-01-29

Table 4.6.11: Android 14

Media Type Purpose Access Method Required Permissions
Images Shared image data

of other apps
MediaStore.Images.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_IMAGES

Music Shared music data
of other apps

MediaStore.Audio.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_AUDIO

Videos Shared video data
of other apps

MediaStore.Video.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_VIDEO

Documents Shared document
data of other apps

MediaStore.Files.getConten-
tUri(“external”)

READ_EXTERNAL_STOR-
AGE

User-selected visual
media

User-selected
image or video data

System gallery picker via
MediaStore.Images.Media.EX-
TERNAL_CONTENT_URI or
MediaStore.Video.Media.EX-
TERNAL_CONTENT_URI

READ_MEDIA_VI-
SUAL_USER_SELECTED
(commonly used in com-
bination with READ_ME-
DIA_IMAGES or READ_ME-
DIA_VIDEO)

Below is sample code using READ_MEDIA_VIDEO to read the titles of video files stored on the device and display
them on the screen.

<uses-permission android:name="android.permission.READ_MEDIA_VIDEO"/>

package com.example.myapplication

import android.content.pm.PackageManager

import android.os.Build

import android.os.Bundle

import android.provider.MediaStore

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.activity.result.contract.ActivityResultContracts

import androidx.activity.enableEdgeToEdge

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.foundation.layout.padding

import androidx.compose.foundation.lazy.LazyColumn

import androidx.compose.foundation.lazy.items

import androidx.compose.material3.Scaffold

import androidx.compose.material3.Text

import androidx.compose.runtime.*

import androidx.compose.ui.Modifier

import androidx.compose.ui.tooling.preview.Preview

import androidx.core.content.ContextCompat

import com.example.myapplication.ui.theme.MyApplicationTheme

class MainActivity : ComponentActivity() {

private val requestPermissionLauncher = registerForActivityResult(

ActivityResultContracts.RequestPermission()

) { isGranted: Boolean ->

if (isGranted) {

loadVideoFiles()

} else {

// Handle permission denial

}

}

private var videoFiles by mutableStateOf(listOf<String>())
(continues on next page)

297



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

enableEdgeToEdge()

setContent {

MyApplicationTheme {

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

VideoList(

videoFiles = videoFiles,

modifier = Modifier.padding(innerPadding)

)

}

}

}

checkAndRequestPermission()

}

private fun checkAndRequestPermission() {

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {

when {

ContextCompat.checkSelfPermission(

this,

android.Manifest.permission.READ_MEDIA_VIDEO

) == PackageManager.PERMISSION_GRANTED -> {

loadVideoFiles()

}

shouldShowRequestPermissionRationale(android.Manifest.permission.

→˓READ_MEDIA_VIDEO) -> {

// Show explanation to the user

}

else -> {

requestPermissionLauncher.launch(android.Manifest.permission.

→˓READ_MEDIA_VIDEO)

}

}

} else {

// Fallback for older Android versions

loadVideoFiles()

}

}

private fun loadVideoFiles() {

val projection = arrayOf(MediaStore.Video.Media.TITLE)

val cursor = contentResolver.query(

MediaStore.Video.Media.EXTERNAL_CONTENT_URI,

projection,

null,

null,

null

)

cursor?.use {

val titleIndex = it.getColumnIndexOrThrow(MediaStore.Video.Media.TITLE)

val videoList = mutableListOf<String>()

while (it.moveToNext()) {

val title = it.getString(titleIndex)

(continues on next page)

298



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

videoList.add(title)

}

videoFiles = videoList

}

}

}

@Composable

fun VideoList(videoFiles: List<String>, modifier: Modifier = Modifier) {

LazyColumn(modifier = modifier) {

items(videoFiles) { video ->

Text(text = video)

}

}

}

@Preview(showBackground = true)

@Composable

fun VideoListPreview() {

MyApplicationTheme {

VideoList(videoFiles = listOf("Sample Video 1", "Sample Video 2"))

}

}

READ_MEDIA_VISUAL_USER_SELECTED is a permission introduced in Android 14 (API level 34). It allows apps
to access specific visual media (images and videos) selected by the user while ensuring user privacy. This permission
is triggered when an app requests it, prompting the system gallery picker to let the user select specific media for the
app to access.

This permission is typically used in combination with READ_MEDIA_IMAGES or READ_MEDIA_VIDEO. Below is
a sample implementation using READ_MEDIA_VISUAL_USER_SELECTED.

<uses-permission android:name="android.permission.READ_MEDIA_IMAGES" />

<uses-permission android:name="android.permission.READ_MEDIA_VISUAL_USER_SELECTED"␣

→˓/>

import android.Manifest

import android.content.pm.PackageManager

import android.net.Uri

import android.os.Bundle

import android.provider.MediaStore

import androidx.activity.ComponentActivity

import androidx.activity.compose.rememberLauncherForActivityResult

import androidx.activity.compose.setContent

import androidx.activity.result.contract.ActivityResultContracts

import androidx.compose.foundation.Image

import androidx.compose.foundation.layout.*

import androidx.compose.material3.Button

import androidx.compose.material3.Scaffold

import androidx.compose.material3.Text

import androidx.compose.runtime.*

import androidx.compose.ui.Alignment

import androidx.compose.ui.Modifier

import androidx.compose.ui.graphics.asImageBitmap

import androidx.compose.ui.platform.LocalContext

import androidx.compose.ui.tooling.preview.Preview

import androidx.compose.ui.unit.dp
(continues on next page)

299



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import androidx.core.content.ContextCompat

import com.example.myapplication.ui.theme.MyApplicationTheme

class MainActivity : ComponentActivity() {

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContent {

MyApplicationTheme {

Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

SelectImageScreen(modifier = Modifier.padding(innerPadding))

}

}

}

}

}

@Composable

fun SelectImageScreen(modifier: Modifier = Modifier) {

val context = LocalContext.current

var selectedImageUri by remember { mutableStateOf<Uri?>(null) }

val requestPermissionsLauncher =␣

→˓rememberLauncherForActivityResult(ActivityResultContracts.

→˓RequestMultiplePermissions()) { permissions ->

if (permissions.all { it.value == true }) {

// Load image from MediaStore if permissions are granted

selectedImageUri = loadFirstImageFromMediaStore(context)

}

}

Column(

modifier = modifier

.fillMaxSize()

.padding(16.dp),

verticalArrangement = Arrangement.Center,

horizontalAlignment = Alignment.CenterHorizontally

) {

selectedImageUri?.let {

val bitmap = MediaStore.Images.Media.getBitmap(context.contentResolver,

→˓ it)

Image(

bitmap = bitmap.asImageBitmap(),

contentDescription = null,

modifier = Modifier.size(200.dp)

)

}

Spacer(modifier = Modifier.height(16.dp))

Button(onClick = {

val permissions = arrayOf(

Manifest.permission.READ_MEDIA_IMAGES,

Manifest.permission.READ_MEDIA_VISUAL_USER_SELECTED

)

if (permissions.all { ContextCompat.checkSelfPermission(context, it)␣

→˓== PackageManager.PERMISSION_GRANTED }) {

(continues on next page)

300



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

selectedImageUri = loadFirstImageFromMediaStore(context)

} else {

requestPermissionsLauncher.launch(permissions)

}

}) {

Text("Load Image")

}

}

}

fun loadFirstImageFromMediaStore(context: android.content.Context): Uri? {

val projection = arrayOf(MediaStore.Images.Media._ID)

val sortOrder = "${MediaStore.Images.Media.DATE_TAKEN} DESC"

val query = context.contentResolver.query(

MediaStore.Images.Media.EXTERNAL_CONTENT_URI,

projection,

null,

null,

sortOrder

)

query?.use { cursor ->

if (cursor.moveToFirst()) {

val idColumn = cursor.getColumnIndexOrThrow(MediaStore.Images.Media._

→˓ID)

val id = cursor.getLong(idColumn)

val contentUri = Uri.withAppendedPath(MediaStore.Images.Media.EXTERNAL_

→˓CONTENT_URI, id.toString())

return contentUri

}

}

return null

}

@Preview(showBackground = true)

@Composable

fun SelectImageScreenPreview() {

MyApplicationTheme {

SelectImageScreen()

}

}

301



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.6.1: Select phots and videos

4.6.3.8 Enhanced Safety of DCL (Dynamic Code Loading)

Starting with Android 14, when dynamically loading code, it is mandatory to use the setReadOnly () method imme-
diately after opening a file to be read, such as DEX, JAR, or APK, to make it read-only.

This is not only to prevent file conflicts, but also to reduce the risk that the read code itself will be tampered with and
the application will be used improperly.

An implementation example using the setReadOnly() method is shown below.

File jar = new File(dexPath);

try (FileOutputStream os = new FileOutputStream(jar)) {

// Set the file to read-only first to prevent race conditions

jar.setReadOnly();

// Then write the actual file content

} catch (IOException e) {

Log.d("Log", e.toString());

}

PathClassLoader cl = new PathClassLoader(dexPath, getClass().getClassLoader());

302



Secure Coding Guide Documentation Release 2025-01-29

If the setReadOnly() method is not used, the following error occurs when creating the PathClassLoader instance27.

E Attempt to load writable dex file: /data/user/0/com.example.test/cache/Test_dex.

→˓jar

From the standpoint of security, the use of DCL itself is not recommended. As mentioned above, there is a risk
of code injection and code tampering. The user is not aware of what code the application is loading internally. We
believe that all responsibility for the behavior of the application belongs to the provider of the application. Therefore,
if you are currently using DCL, you should consider alternative methods.

The official recommendation is to use the Android App Bundle as an alternative method, and from August 2021, the
use of the Android App Bundle has become mandatory for all new applications in the Google Play Store28.

4.6.3.9 Measures for Preventing Path Traversal by Zip Files

Starting with Android 14, for Zip file entries containing “…” or starting with “/”, a ZipException is thrown.

An example of this type of Zip file is shown below.

$ unzip -l test.zip

Archive: test.zip

Length Date Time Name

--------- ---------- ----- ----

104565 2023/02/28 14:21 ../mkcsv.txt

--------- -------

104565 1 file

In the above file, the entry for test.zip is “. /mkcsv.txt”. The sample code and execution result when accessing such a
Zip file from an application targeting Android 14 are as follows.

filename = this.getFilesDir().getPath() + "/test.zip";

try {

in = new ZipInputStream(new FileInputStream(filename));

while ((zipEntry = in.getNextEntry()) != null) {

// ...

} catch (IOException e) {

e.printStackTrace();

}

W java.util.zip.ZipException: Invalid zip entry path: ../mkcsv.txt

W at com.android.internal.os.SafeZipPathValidatorCallback.

→˓onZipEntryAccess(SafeZipPathValidatorCallback.java:61)

As you can see in the execution result log, a ZipException is thrown, which occurs when getNextEntry() is executed.

This is a measure to protect against a path traversal vulnerability that allows access to unintended paths from relative
paths, and it is intended to encourage developers to take some kind of action.

To temporarily opt out of this specification, execute dalvik.system.ZipPathValidator.clearCallback() as follows.

filename = this.getFilesDir().getPath() + "/test.zip";

try {

(continues on next page)

27 Officially, this is treated as an exception is thrown, but actual verification shows that an error occurs.
https://developer.android.com/about/versions/14/behavior-changes-14?hl=en#safer-dynamic-code-loading
28 “Core app quality” Privacy and Security SC-E1
https://developer.android.com/docs/quality-guidelines/core-app-quality?hl=en

303

https://developer.android.com/about/versions/14/behavior-changes-14?hl=en#safer-dynamic-code-loading
https://developer.android.com/docs/quality-guidelines/core-app-quality?hl=en


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

in = new ZipInputStream(new FileInputStream(filename));

if (Build.VERSION.SDK_INT >= 34) {

ZipPathValidator.clearCallback();

}

while ((zipEntry = in.getNextEntry()) != null) {

// ...

} catch (IOException e) {

e.printStackTrace();

}

4.6.3.10 Query the most recent user’s choice for accessing selected photos

Starting from Android 15, apps can now highlight only the most recently selected photos and videos when partial
media access is granted. This feature improves the user experience for apps that frequently request access to photos
and videos. To take advantage of this feature, apps must enable the QUERY_ARG_LATEST_SELECTION_ONLY
argument when sending queries to MediaStore through a ContentResolver.

Security Advantages

This feature provides several important advantages to user privacy and data security

1. limited access scope: The QUERY_ARG_LATEST_SELECTION_ONLY argument allows apps to access
only the user’s most recently selected photos and videos. This prevents the app from accessing the user’s entire
media library and limits unnecessary data access.

2. minimal data leakage risk: by granting partial access privileges, access is granted only to the minimum neces-
sary data. This reduces the risk of apps unintentionally accessing other personal photos and videos.

3. User peace of mind: Users feel more secure knowing that the app will only access specific photos and videos,
rather than all of their media files. This makes the app more trustworthy and increases user engagement.

4. Compliance: In recent years, many countries and regions have strengthened their data privacy laws and reg-
ulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act
(CCPA). Using this feature makes it easier for apps to comply with these laws and regulations.

5. Selective Data Utilization: App developers can improve the user experience while protecting user data by
allowing users to grant access only to specific photos and videos. This optimizes data usage and prevents
unnecessary data collection.

The following is an example of a specific implementation

val externalContentUri = MediaStore.Files.getContentUri("external")

val mediaColumns = arrayOf(

FileColumns._ID,

FileColumns.DISPLAY_NAME,

FileColumns.MIME_TYPE,

)

val queryArgs = bundleOf(

// Return only items from the last selection (selected photos access)

QUERY_ARG_LATEST_SELECTION_ONLY to true,

// Sort returned items chronologically based on when they were added to the␣

→˓device's storage

QUERY_ARG_SQL_SORT_ORDER to "${FileColumns.DATE_ADDED} DESC",

// Select media type as image or video

QUERY_ARG_SQL_SELECTION to "${FileColumns.MEDIA_TYPE} = ? OR ${FileColumns.

(continues on next page)

304



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

→˓MEDIA_TYPE} = ?",

QUERY_ARG_SQL_SELECTION_ARGS to arrayOf(

FileColumns.MEDIA_TYPE_IMAGE.toString(),

FileColumns.MEDIA_TYPE_VIDEO.toString()

)

)

This code allows the app to obtain access to the user’s most recently selected photos and videos when partial media
permissions are granted; by using the QUERY_ARG_LATEST_SELECTION_ONLY argument, the query results
are limited to the most recently selected content, The QUERY_ARG_SQL_SORT_ORDER argument allows the
results to be ordered chronologically. This allows users to efficiently access recently added media files.

4.6.3.11 Private Space

The Private Space feature has been implemented in Android 15. Private Space is a feature that allows you to create
a safe and isolated environment on your device where you can install apps privately. This feature is created in a way
that is linked to the main user of the device.

Users decide whether to install the released app in their private space. Therefore, app developers do not need to make
any special modifications to their APIs, but it is recommended that they understand the following specifications.

Although it is considered an isolated area, it is in the form of installing applications and storing data in a space created
based on Android’s multi-user model. Therefore, it is not protected by encryption, etc. (If measures are taken as a
normal application, they will be taken in a similar manner.)

The external storage accessed by apps installed in the private space is also provided in a separate storage partition
inaccessible to the main profile that can be accessed by the main user. Therefore, apps in each area cannot access
files stored in the external storage in the other area. Please note that when unlocked, file exchange is limited to only
via Sharesheet and the system gallery picker.

4.7 Using Browsable Intent

Android application can be designed to launch from browser corresponding with a webpage link. This functionality
is called “Browsable Intent”. By specifying URI scheme in Manifest file, an application responds the transition to the
link (user tap, etc.) which has its URI scheme, and the application is launched with the link as a parameter.

In addition, the method to launch the corresponding application from browser by using URI scheme is supported not
only in Android but also in iOS and other platforms, and this is generally used for the linkage betweenWeb application
and external application, etc. For example, the following URI scheme is defined in the X application or Facebook
application, and the corresponding applications are launched from the browser both in Android and in iOS.

Table 4.7.1: URI scheme and Corresponding application

URI scheme Corresponding application
fb:// Facebook
twitter:// X

It seems very convenient function considering the linkage and convenience, but there are some risks that this function
is abused by a malicious third party. What can be supposed are as follows, they abuse application functions by
preparing a malicious Web site with a link in which URL has incorrect parameter, or they get information which is
included in URL by tricking a smartphone owner into installing the Malware which responds the same URI scheme.

There are some points to be aware when using “Browsable Intent” against these risks.

305



Secure Coding Guide Documentation Release 2025-01-29

4.7.1 Sample Code

Sample codes of an application which uses 'Browsable Intent' are shown below. Install 'Starter.html' on the web server
and run it.

Points:

1. (Webpage side) Sensitive information must not be included.

2. Handle the URL parameter carefully and securely.

Starter.html

<html>

<body>

<!-- *** POINT 1 *** Sensitive information must not be included. -->

<!-- Character strings to be passed as URL parameter, should be UTF-8 and␣

→˓URI encoded. -->

<a href="secure://jssec?user=user_id"> Login </a>

</body>

</html>

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:allowBackup="false" >

<activity

android:name=".BrowsableIntentActivity"

android:label="@string/title_activity_browsable_intent"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<!-- Accept implicit Intent -->

<category android:name="android.intent.category.DEFAULT" />

<!-- Accept Browsable intent -->

<category android:name="android.intent.category.BROWSABLE" />

<!-- Accept URI 'secure://jssec' -->

<data android:scheme="secure" android:host="jssec"/>

</intent-filter>

</activity>

</application>

</manifest>

BrowsableIntentActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

(continues on next page)

306



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.browsableintent;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.widget.TextView;

public class BrowsableIntentActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_browsable_intent);

Intent intent = getIntent();

Uri uri = intent.getData();

if (uri != null) {

// Get UserID which is passed by URI parameter

// *** POINT 2 *** Handle the URL parameter carefully and securely.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

String userID = "User ID = " + uri.getQueryParameter("user");

TextView tv = (TextView)findViewById(R.id.text_userid);

tv.setText(userID);

}

}

}

4.7.2 Rule Book

Follow rules listed below when using "Browsable Intent".

1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link (Required)

2. Handle the URL Parameter Carefully and Securely (Required)

4.7.2.1 (Webpage side) Sensitive InformationMust Not Be Included in Parameter of Correspond-
ing Link (Required)

When tapping the link in browser, an intent which has a URL value in its data (It can be retrieve by Intent#getData)
is issued, and an application which has a corresponding Intent Filter is launched from Android system.

307



Secure Coding Guide Documentation Release 2025-01-29

At this moment, when there are several applications which Intent Filter is set to receive the same URI scheme,
application selection dialogue is shown in the same way as normal launch by implicit Intent, and an application which
user selected is launched. In case that a Malware is listed in the selection of application selection dialogue, there is a
risk that user may launch the Malware by mistake and parameters in URL are sent to Malware.

As per above, it is necessary to avoid from include sensitive information directly in URL parameter as it is for creating
general Webpage link since all parameters which are included in Webpage link URL can be given to Malware.

Example that User ID and Password are included in URL.

insecure://sample/login?userID=12345&password=abcdef

In addition, there is a risk that user may launch a Malware and input password to it when it is defined in specs that
password input is executed in an application after being launched by 'Browsable Intent', even if the URL parameter
includes only non-sensitive information like User ID. So it should be considered that specs like a whole Login process
is completed within application side. It must be kept in mind when designing an application and a service that
launching application by 'Browsable Intent' is equivalent to launching by implicit Intent and there is no guarantee that
a valid application is launched.

4.7.2.2 Handle the URL Parameter Carefully and Securely (Required)

URL parameters which are sent to an application are not always from a legitimate Web page, since a link which is
matched with URI scheme can be made by not only developers but anyone. In addition, there is no method to verify
whether the URL parameter is sent from a valid Web page or not.

So it is necessary to verify safety of a URL parameter before using it, e.g. check if an unexpected value is included
or not.

4.8 Outputting Log to LogCat

There's a logging mechanism called LogCat in Android, and not only system log information but also application log
information are also output to LogCat. Log information in LogCat can be read out from other application in the same
device29, so the application which outputs sensitive information to Logcat, is considered that it has the vulnerability
of the information leakage. The sensitive information should not be output to LogCat.

From a security point of view, in release version application, it's preferable that any log should not be output. However,
even in case of release version application, log is output for some reasons in some cases. In this chapter, we introduce
some ways to output messages to LogCat in a safe manner even in a release version application. Along with this
explanation, please refer to "4.8.3.1. Two Ways of Thinking for the Log Outputting in Release version application".

4.8.1 Sample Code

Herein after, the method to control the Log output to LogCat by ProGuard in release version application. ProGuard
is one of the optimization tools which automatically delete the unnecessary code like unused methods, etc.

There are five types of log output methods, Log.e(), Log.w(), Log.i(), Log.d(), Log.v(), in android.util.Log class.
Regarding log information, intentionally output log information (hereinafter referred to as the Operation log infor-
mation) should be distinguished from logging which is inappropriate for a release version application such as debug
log (hereinafter referred to as the Development log information). It's recommended to use Log.e()/w()/i() for out-
putting operation log information, and to use Log.d()/v() for outputting development log. Refer to "4.8.3.2. Selection
Standards of Log Level and Log Output Method" for the details of proper usage of five types of log output methods,
in addition, also refer to "4.8.3.3. DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically".

here's an example of how to use LogCat in a safe manner. This example includes Log.d() and Log.v() for outputting
debug log. If the application is for release, these two methods would be deleted automatically. In this sample code,
ProGuard is used to automatically delete code blocks where Log.d()/v() is called.

29 The log information output to LogCat can be read by applications that declare using READ_LOGS permission. However, in Android 4.1
and later, log information that is output by other application cannot be read. But smartphone user can read every log information output to logcat
through ADB.

308



Secure Coding Guide Documentation Release 2025-01-29

Points:

1. Sensitive information must not be output by Log.e()/w()/i(), System.out/err.

2. Sensitive information should be output by Log.d()/v() in case of need.

3. The return value of Log.d()/v() should not be used (with the purpose of substitution or comparison).

4. When you build an application for release, you should bring the mechanism that automatically deletes inappro-
priate logging method like Log.d() or Log.v() in your code.

5. An APK file for the (public) release must be created in release build configurations.

ProGuardActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.log.proguard;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

public class ProGuardActivity extends Activity {

final static String LOG_TAG = "ProGuardActivity";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_proguard);

// *** POINT 1 *** Sensitive information must not be output by

// Log.e()/w()/i(), System.out/err.

Log.e(LOG_TAG, "Not sensitive information (ERROR)");

Log.w(LOG_TAG, "Not sensitive information (WARN)");

Log.i(LOG_TAG, "Not sensitive information (INFO)");

// *** POINT 2 *** Sensitive information should be output by

// Log.d()/v() in case of need.

// *** POINT 3 *** The return value of Log.d()/v()should not be used

// (with the purpose of substitution or comparison).

Log.d(LOG_TAG, "sensitive information (DEBUG)");

Log.v(LOG_TAG, "sensitive information (VERBOSE)");

}

}

309



Secure Coding Guide Documentation Release 2025-01-29

proguard-project.txt

# prevent from changing class name and method name etc.

-dontobfuscate

# *** POINT 4 *** In release build, the build configurations in which Log.d()/v()

# are deleted automatically should be constructed.

-assumenosideeffects class android.util.Log {

public static int d(...);

public static int v(...);

}

*** Point 5 *** An APK file for the (public) release must be created in release build configurations.

Fig. 4.8.1: How to create release version application

The difference of LogCat output between development version application (debug build) and release version applica-
tion (release build) are shown in below Fig. 4.8.2

Fig. 4.8.2: Difference of LogCat output between development version application and release version application

4.8.2 Rule Book

When you output log messages, follow the rules below.

1. Sensitive Information Must Not Be Included in Operation Log Information (Required)

2. Construct the Build System to Auto-delete Codes which Output Development Log Information When Build for the
Release (Recommended)

3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)

310



Secure Coding Guide Documentation Release 2025-01-29

4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

4.8.2.1 Sensitive Information Must Not Be Included in Operation Log Information (Required)

Log which was output to LogCat can be read out from other applications, so sensitive information like user's login
information should not be output by release version application. It's necessary not to write codewhich outputs sensitive
information to log during development, or it's necessary to delete all of such codes before release.

To follow this rule, first, not to include sensitive information in operation log information. In addition, it's recom-
mended to construct the system to delete code which outputs sensitive information when build for release. Please
refer to "4.8.2.2. Construct the Build System to Auto-delete Codes which Output Development Log Information When
Build for the Release (Recommended)".

4.8.2.2 Construct the Build System to Auto-delete Codes which Output Development Log Infor-
mation When Build for the Release (Recommended)

When application development, sometimes it's preferable if sensitive information is output to log for checking the
process contents and for debugging, for example the interim operation result in the process of complicated logic,
information of program's internal state, communication data structure of communication protocol. It doesn't matter
to output the sensitive information as debug log during developing, in this case, the corresponding log output code
should be deleted before release, as mentioned in "4.8.2.1. Sensitive Information Must Not Be Included in Operation
Log Information (Required)".

To delete surely the code which outputs development log information when release builds, the system which executes
code deletion automatically by using some tools, should be constructed. ProGuard, which was described in "4.8.1.
Sample Code", can work for this method. As described below, there are some noteworthy points on deleting code by
ProGuard. Here it's supposed to apply the system to applications which output development log information by either
of Log.d()/v(), based on "4.8.3.2. Selection Standards of Log Level and Log Output Method".

ProGuard deletes unnecessary code like unused methods, automatically. By specifying Log.d()/v() as parameter of
-assumenosideeffects option, call for Log.d(), Log.v() are granted as unnecessary code, and those are to be deleted.

By specifying -assumenosideeffects to Log.d()/v(), make it auto-deletion target.

-assumenosideeffects class android.util.Log {

public static int d(...);

public static int v(...);

}

In case using this auto deletion system, pay attention that Log.v()/d() code is not deleted when using returned value
of Log.v(), Log.d(), so returned value of Log.v(), Log.d(), should not be used. For example, Log.v() is not deleted
in the next examination code.

Examination code which Log.v() that is specifeied to be deleted is not deketed.

int i = android.util.Log.v("tag", "message");

//Use the returned value of Log.v() for examination.

System.out.println(String.format("Log.v() returned %d.", i));

If you'd like to reuse source code, you should keep the consistency of the project environment including ProGuard
settings. For example, source code that presupposes Log.d() and Log.v() are deleted automatically by above ProGuard
setting. If using this source code in another project which ProGuard is not set, Log.d() and Log.v() are not to be
deleted, so there's a risk that the sensitive information may be leaked. When reusing source code, the consistency of
project environment including ProGuard setting should be secured.

311



Secure Coding Guide Documentation Release 2025-01-29

4.8.2.3 Use Log.d()/v() Method When Outputting Throwable Object (Recommended)

As mentioned in "4.8.1. Sample Code" and "4.8.3.2. Selection Standards of Log Level and Log Output Method",
sensitive information should not be output to log through Log.e()/w()/i(). On the other hand, in order that a developer
wants to output the details of program abnormality to log, when exception occurs, stack trace is output to LogCat by
Log.e(..., Throwable tr)/w(..., Throwable tr)/i(..., Throwable tr), in some cases. However, sensitive information may
sometimes be included in the stack trace because it shows detail internal structure of the program. For example, when
SQLiteException is output as it is, what type of SQL statement is issued is clarified, so it may give the clue for SQL
injection attack. Therefore, it's recommended that use only Log.d()/Log.v() methods, when outputting throwable
object.

4.8.2.4 Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

You may output log by System.out/err to verify the application's behavior whether it works as expected or not, during
development. Of course, log can be output to LogCat by print()/println() method of System.out/err, but it's strongly
recommended to use only methods of android.util.Log class, by the following reasons.

When outputting log, generally, use the most appropriate output method properly based on the urgency of the infor-
mation, and control the output. For example, categories like serious error, caution, simple application's information
notice, etc. are to be used. However, in this case, information which needs to be output at the time of release (op-
eration log information) and information which may include the sensitive information (development log information)
are output by the same method. So, it may happen that when delete code which outputs sensitive information, it's in
danger that some deletion are dropped by oversight.

Along with this, when using android.util.Log and System.out/err for log output, compared with using only an-
droid.util.Log, what needs to be considered will increase, so it's in danger that some mistakes may occur, like some
deletion are dropped by oversight.

To decrease risk of above mentioned mistakes occurrence, it's recommended to use only methods of android.util.Log
class.

4.8.3 Advanced Topics

4.8.3.1 Two Ways of Thinking for the Log Outputting in Release version application

There are two ways of thinking for log output in release version application. One is any log should never be output,
and another is necessary information for later analysis should be output as log. It's favorable that any log should never
be output in release version application from the security point of view, but sometimes, log is output even in release
version application for various reasons. Each way of thinking is described as per below.

The former is "Any log should never be output", this is because outputting log in release version application is not so
much valuable, and there is a risk to leak sensitive information. This comes from there's no method for developers
to collect log information of the release version application in Android application operation environment, which is
different from many Web application operation environments. Based on this thinking, the logging codes are used
only in development phase, and all the logging codes are deleted on building release version application.

The latter is "necessary information should be output as log for the later analysis", as a final option to analyze appli-
cation bugs in customer support, in case of any questions or doubt to your customer support. Based on this idea, as
introduced above, it is necessary to prepare the system that prevent human errors and bring it in your project because
if you don't have the system you have to keep in mind to avoid logging the sensitive information in release version
application.

For more details about logging method, refer to the following document.

Code Style Guidebook for Contributors / Log Sparingly

> [https://source.android.com/setup/contribute/code-style#log-sparingly](https://source.android.com/setup/
contribute/code-style#log-sparingly)

312

https://source.android.com/setup/contribute/code-style
https://source.android.com/setup/contribute/code-style#log-sparingly
https://source.android.com/setup/contribute/code-style#log-sparingly


Secure Coding Guide Documentation Release 2025-01-29

4.8.3.2 Selection Standards of Log Level and Log Output Method

There are five levels of log level (ERROR, WARN, INFO, DEBUG, VERBOSE) are defined in android.util.Log
class in Android. You should select the most appropriate method when using the android.util.Log class to output log
messages according to Table 4.8.1 which shows the selection standards of logging levels and methods.

Table 4.8.1: Selection standards of log levels and log output method

Log level Method Log information to be output Cautions for application release
ERROR Log.e() Log information which is output when

application is in a fatal state.
Log information as per left may be re-
ferred by users, so it could be output both
in development version application and
in release version application. Therefore,
sensitive information should not be out-
put in these levels.

WARN Log.w() Log information which is output when
application faces the unexpected serious
situation.

INFO Log.i() Other than above, log information which
is output to notify any remarkable
changes or results in application state.

DEBUG Log.d() Program’s internal state information
which needs to be output temporarily
for analyzing the cause of specific bug
when developing application.

Log information as per left is only for
application developers. Therefore, this
type of information should not be output
in case of release version application.

VER-
BOSE

Log.v() Log information which is not applied to
any of above. Log information which
application developer outputs for many
purposes, is applied this. For example,
in case of outputting server communica-
tion data to dump.

For more details about logging method, refer to the following document.

Code Style Guidelines for Contributors / Log Sparingly

> [https://source.android.com/setup/contribute/code-style#log-sparingly](https://source.android.com/setup/
contribute/code-style#log-sparingly)

4.8.3.3 DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically

The following is quoted from the developer reference of android.util.Log class30.

The order in terms of verbosity, from least to most is ERROR,WARN, INFO, DEBUG, VERBOSE. Verbose should
never be compiled into an application except during development. Debug logs are compiled in but stripped at runtime.
Error, warning and info logs are always kept.

After reading the above texts, some developers might have misunderstood the Log class behavior as per below.

• Log.v() call is not compiled when release build, VERBOSE log is never output.

• Log.v() call is compiled, but DEBUG log is never output when execution.

However, logging methods never behave in above ways, and all messages are output regardless of whether it is com-
piled with debug mode or release mode. If you read the document carefully, you will be able to realize that the gist
of the document is not about the behavior of logging methods but basic policies for logging.

In this chapter, we introduced the sample code to get the expected result as described above by using ProGuard.
30 https://developer.android.com/reference/android/util/Log.html

313

https://source.android.com/setup/contribute/code-style
https://source.android.com/setup/contribute/code-style#log-sparingly
https://source.android.com/setup/contribute/code-style#log-sparingly
https://developer.android.com/reference/android/util/Log.html


Secure Coding Guide Documentation Release 2025-01-29

4.8.3.4 Remove Sensitive Information from Assembly

If you build the following code with ProGuard for the purpose of deleting Log.d() method, it is necessary to remember
that ProGuard keeps the statement that construct the string for logging message (the first line of the code) even though
it remove the statement of calling Log.d() method (the second line of the code).

String debug_info = String.format("%s:%s",

"Sensitive information 1",

"Sensitive information 2");

if (BuildConfig.DEBUG) android.util.Log.d(TAG, debug_info);

The following disassembly shows the result of release build of the code above with ProGuard. Actually, there's no
Log.d() call process, but you can see that character string consistence definition like "Sensitive information1" and
calling process of String#format() method, are not deleted and still remaining there.

const-string v1, "%s:%s"

const/4 v2, 0x2

new-array v2, v2, [Ljava/lang/Object;

const/4 v3, 0x0

const-string v4, "Sensitive information 1"

aput-object v4, v2, v3

const/4 v3, 0x1

const-string v4, "Sensitive information 2"

aput-object v4, v2, v3

invoke-static {v1, v2}, Ljava/lang/String;->format(Ljava/lang/String;[Ljava/lang/

→˓Object;)Ljava/lang/String;

move-result-object v0

Actually, it's not easy to find the particular part that disassembled APK file and assembled log output information as
above. However, in some application which handles the very confidential information, this type of process should not
be remained in APK file in some cases.

You should implement your application like below to avoid such a consequence of remaining the sensitive information
in bytecode31. In release build, the following codes are deleted completely by the compiler optimization.

if (BuildConfig.DEBUG) {

String debug_info = String.format("%s:%s",

"Sensitive information 1",

"Sensitive information 2");

if (BuildConfig.DEBUG) android.util.Log.d(TAG, debug_info);

}

Besides, ProGuard cannot remove the log message of the following code("result:" + value).

Log.d(TAG, "result:" + value);

In this case, you can solve the problem in the following manner.

if (BuildConfig.DEBUG) Log.d(TAG, "result:" + value);

4.8.3.5 The Contents of Intent Is Output to LogCat

When using Activity, it's necessary to pay attention, since ActivityManager outputs the content of Intent to LogCat.
Refer to "4.1.3.5. Log Output When using Activities".

31 The previous sample code is enclosed in an if statement with BuildConfig.DEBUG as conditional expression. The if statement before the
call to Log.d () is not necessary, but left as it is for comparison with the previous one.

314



Secure Coding Guide Documentation Release 2025-01-29

4.8.3.6 Restrain Log which Is Output to System.out/err

System.out/err method outputs all messages to LogCat. Android could send some messages to System.out/err even
if developers did not use these methods in their code, for example, in the following cases, Android sends stack trace
to System.err method.

• When using Exception#printStackTrace()

• When it's output to System.err implicitly<br/> (When the exception is not caught by application, it's given to
Exception#printStackTrace() by the system.)

You should handle errors and exceptions appropriately since the stack trace includes the unique information of the
application.

We introduce a way of changing default output destination of System.out/err. The following code redirects the output
of System.out/err method to nowhere when you build a release version application. However, you should consider
whether this redirection does not cause amalfunction of application or system because the code temporarily overwrites
the default behavior of System.out/err method. Furthermore, this redirection is effective only to your application and
is worthless to system processes.

OutputRedirectApplication.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.log.outputredirection;

import java.io.IOException;

import java.io.OutputStream;

import java.io.PrintStream;

import android.app.Application;

public class OutputRedirectApplication extends Application {

// PrintStream which is not output anywhere

private final PrintStream emptyStream = new PrintStream(new OutputStream() {

public void write(int oneByte) throws IOException {

// do nothing

}

});

@Override

public void onCreate() {

// Redirect System.out/err to PrintStream which doesn't output anywhere,

// when release build.

(continues on next page)

315



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Save original stream of System.out/err

PrintStream savedOut = System.out;

PrintStream savedErr = System.err;

// Once, redirect System.out/err to PrintStream which doesn't output

// anywhere

System.setOut(emptyStream);

System.setErr(emptyStream);

// Restore the original stream only when debugging. (In release build,

// the following 1 line is deleted byProGuard.)

resetStreams(savedOut, savedErr);

}

// All of the following methods are deleted byProGuard when release.

private void resetStreams(PrintStream savedOut, PrintStream savedErr) {

System.setOut(savedOut);

System.setErr(savedErr);

}

}

AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:name=".OutputRedirectApplication"

android:allowBackup="false" >

<activity

android:name=".LogActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

proguard-project.txt

# Prevent from changing class name and method name, etc.

-dontobfuscate

# In release build, delete call from Log.d()/v() automatically.

-assumenosideeffects class android.util.Log {

public static int d(...);

public static int v(...);

}

# In release build, delete resetStreams() automatically.

-assumenosideeffects class

org.jssec.android.log.outputredirection.OutputRedirectApplication {

private void resetStreams(...);
(continues on next page)

316



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

The difference of LogCat output between development version application (debug build) and release version applica-
tion (release build) are shown as per below Fig. 4.8.3.

Fig. 4.8.3: Difference of System.out/err in LogCat output, between development application and release application.

4.9 Using WebView

WebView enables your application to integrate HTML/JavaScript content.

4.9.1 Sample Code

We need to take proper action, depending on what we'd like to show through WebView although we can easily
show web site and html file by it. And also we need to consider risk from WebView's remarkable function; such as
JavaScript-Java object bind.

Especially what we need to pay attention is JavaScript. (Please note that JavaScript is disabled as default. And we can
enable it by WebSettings#setJavaScriptEnabled()). With enabling JavaScript, there is potential risk that malicious
third party can get device information and operate your device.

The following is principle for application with WebView32:

(1) You can enable JavaScript if the application uses contents which are managed in house.

(2) You should NOT enable JavaScript other than the above case.

Fig. 4.9.1 shows flow chart to choose sample code according to content characteristic.
32 Strictly speaking, you can enable JavaScript if we can say the content is safe. If the contents are managed in house, the contents should be

guaranteed of security. And the company can secure them. In other words, we need to have business representation’s decision to enable JavaScript
for other company’s contents. The contents which are developed by trusted partner might have security guarantee. But there is still potential risk.
Therefore the decision is needed by responsible person.

317



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.9.1: Flow Figure to select Sample code of WebView

4.9.1.1 Show Only Contents Stored under assets/res Directory in the APK

You can enable JavaScript if your application shows only contents stored under assets/ and res/ directory in apk.

The following sample code shows how to use WebView to show contents stored under assets/ and res/.

Points:

1. Disable to access files (except files under assets/ and res/ in apk).

2. You may enable JavaScript.

WebViewAssetsActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.webview.assets;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

(continues on next page)

318



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

/**

* Show contents in assets

*/

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

WebView webView = (WebView) findViewById(R.id.webView);

WebSettings webSettings = webView.getSettings();

// *** POINT 1 *** Disable to access files (except files under assets/

// and res/ in this apk)

webSettings.setAllowFileAccess(false);

// *** POINT 2 *** Enable JavaScript (Optional)

webSettings.setJavaScriptEnabled(true);

// Show contents which were stored under assets/ in this apk

webView.loadUrl("file:///android_asset/sample/index.html");

}

}

4.9.1.2 Show Only Contents which Are Managed In-house

You can enable JavaScript to show only contents which are managed in-house only if your web service and your
Android application can take proper actions to secure both of them.

• Web service side actions:

As Fig. 4.9.2 shows, your web service can only refer to contents which are managed in-house. In addition, the web
service is needed to take appropriate security action. Because there is potential risk if contents which your web service
refers to may have risk; such as malicious attack code injection, data manipulation, etc.

Please refer to "4.9.2.1. Enable JavaScript Only If Contents Are Managed In-house (Required)".

• Android application side actions:

Using HTTPS, the application should establish network connection to your managed web service only if the certifi-
cation is trusted.

The following sample code is an activity to show contents which are managed in-house.

319



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.9.2: Accessible contents and Non-accessible contents from application.

Points:

1. Handle SSL error from WebView appropriately.

2. (Optional) Enable JavaScript of WebView.

3. Restrict URLs to HTTPS protocol only.

4. Restrict URLs to in-house.

WebViewTrustedContentsActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.webview.trustedcontents;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.net.http.SslCertificate;

import android.net.http.SslError;

(continues on next page)

320



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.os.Bundle;

import android.webkit.SslErrorHandler;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import java.text.SimpleDateFormat;

public class WebViewTrustedContentsActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

WebView webView = (WebView) findViewById(R.id.webView);

webView.setWebViewClient(new WebViewClient() {

@Override

public void onReceivedSslError(WebView view,

SslErrorHandler handler,

SslError error) {

// *** POINT 1 *** Handle SSL error from WebView appropriately

// Show SSL error dialog.

AlertDialog dialog = createSslErrorDialog(error);

dialog.show();

// *** POINT 1 *** Handle SSL error from WebView appropriately

// Abort connection in case of SSL error

// Since, there may be some defects in a certificate like

// expiration of validity, or it may be man-in-the-middle attack.

handler.cancel();

}

});

// *** POINT 2 *** Enable JavaScript (optional)

// in case to show contents which are managed in house.

webView.getSettings().setJavaScriptEnabled(true);

// *** POINT 3 *** Restrict URLs to HTTPS protocol only

// *** POINT 4 *** Restrict URLs to in-house

webView.loadUrl("https://url.to.your.contents/");

}

private AlertDialog createSslErrorDialog(SslError error) {

// Error message to show in this dialog

String errorMsg = createErrorMessage(error);

// Handler for OK button

DialogInterface.OnClickListener onClickOk =

new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialog, int which) {

setResult(RESULT_OK);

}

};

// Create a dialog

AlertDialog dialog = new AlertDialog.Builder

(WebViewTrustedContentsActivity.this).setTitle("SSL connection error")

.setMessage(errorMsg).setPositiveButton("OK", onClickOk)

(continues on next page)

321



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

.create();

return dialog;

}

private String createErrorMessage(SslError error) {

SslCertificate cert = error.getCertificate();

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

StringBuilder result = new StringBuilder().append("The site's␣

→˓certification is NOT valid. Connection was disconnected.\n\nError:\n");

switch (error.getPrimaryError()) {

case SslError.SSL_EXPIRED:

result.append("The certificate is no longer valid.\n\nThe expiration␣

→˓date is ").append(dateFormat.format(cert.getValidNotAfterDate()));

return result.toString();

case SslError.SSL_IDMISMATCH:

result.append("Host name doesn't match. \n\nCN=").append(cert.

→˓getIssuedTo().getCName());

return result.toString();

case SslError.SSL_NOTYETVALID:

result.append("The certificate isn't valid yet.\n\nIt will be valid␣

→˓from ").append(dateFormat.format(cert.getValidNotBeforeDate()));

return result.toString();

case SslError.SSL_UNTRUSTED:

result.append("Certificate Authority which issued the certificate is␣

→˓not reliable.\n\nCertificate Authority\n").append(cert.getIssuedBy().getDName());

return result.toString();

default:

result.append("Unknown error occured. ");

return result.toString();

}

}

}

4.9.1.3 Show Contents which Are Not Managed In-house

Don't enable JavaScript if your application shows contents which are not managed in house because there is potential
risk to access to malicious content.

The following sample code is an activity to show contents which are not managed in-house.

This sample code shows contents specified by URLwhich user inputs through address bar. Please note that JavaScript
is disabled and connection is aborted when SSL error occurs. The error handling is the same as "4.9.1.2. Show Only
Contents which AreManaged In-house" for the details of HTTPS communication. Please refer to "5.4.Communicating
via HTTPS" for the details also.

Points:

1. Handle SSL error from WebView appropriately.

2. Disable JavaScript of WebView.

WebViewUntrustActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.
(continues on next page)

322



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.webview.untrust;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.graphics.Bitmap;

import android.net.http.SslCertificate;

import android.net.http.SslError;

import android.os.Bundle;

import android.view.View;

import android.webkit.SslErrorHandler;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import android.widget.Button;

import android.widget.EditText;

import java.text.SimpleDateFormat;

public class WebViewUntrustActivity extends Activity {

/*

* Show contents which are NOT managed in-house (Sample program works as a

* simple browser)

*/

private EditText textUrl;

private Button buttonGo;

private WebView webView;

// Activity definition to handle any URL request

private class WebViewUnlimitedClient extends WebViewClient {

@Override

public boolean shouldOverrideUrlLoading(WebView webView, String url) {

webView.loadUrl(url);

textUrl.setText(url);

return true;

}

// Start reading Web page

@Override

public void onPageStarted(WebView webview, String url, Bitmap favicon) {

buttonGo.setEnabled(false);

textUrl.setText(url);

}

(continues on next page)

323



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Show SSL error dialog

// And abort connection.

@Override

public void onReceivedSslError(WebView webview,

SslErrorHandler handler, SslError error) {

// *** POINT 1 *** Handle SSL error from WebView appropriately

AlertDialog errorDialog = createSslErrorDialog(error);

errorDialog.show();

handler.cancel();

textUrl.setText(webview.getUrl());

buttonGo.setEnabled(true);

}

// After loading Web page, show the URL in EditText.

@Override

public void onPageFinished(WebView webview, String url) {

textUrl.setText(url);

buttonGo.setEnabled(true);

}

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

webView = (WebView) findViewById(R.id.webview);

webView.setWebViewClient(new WebViewUnlimitedClient());

// *** POINT 2 *** Disable JavaScript of WebView

// Explicitly disable JavaScript even though it is disabled by default.

webView.getSettings().setJavaScriptEnabled(false);

webView.loadUrl(getString(R.string.texturl));

textUrl = (EditText) findViewById(R.id.texturl);

buttonGo = (Button) findViewById(R.id.go);

}

public void onClickButtonGo(View v) {

webView.loadUrl(textUrl.getText().toString());

}

private AlertDialog createSslErrorDialog(SslError error) {

// Error message to show in this dialog

String errorMsg = createErrorMessage(error);

// Handler for OK button

DialogInterface.OnClickListener onClickOk =

new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialog, int which) {

setResult(RESULT_OK);

}

};

// Create a dialog

AlertDialog dialog =

(continues on next page)

324



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

new AlertDialog.Builder(WebViewUntrustActivity.this)

.setTitle("SSL connection error")

.setMessage(errorMsg).setPositiveButton("OK", onClickOk)

.create();

return dialog;

}

private String createErrorMessage(SslError error) {

SslCertificate cert = error.getCertificate();

SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

StringBuilder result = new StringBuilder().append("The site's␣

→˓certification is NOT valid. Connection was disconnected.\n\nError:\n");

switch (error.getPrimaryError()) {

case SslError.SSL_EXPIRED:

result.append("The certificate is no longer valid.\n\nThe expiration␣

→˓date is ").append(dateFormat.format(cert.getValidNotAfterDate()));

return result.toString();

case SslError.SSL_IDMISMATCH:

result.append("Host name doesn't match. \n\nCN=").append(cert.

→˓getIssuedTo().getCName());

return result.toString();

case SslError.SSL_NOTYETVALID:

result.append("The certificate isn't valid yet.\n\nIt will be valid␣

→˓from ").append(dateFormat.format(cert.getValidNotBeforeDate()));

return result.toString();

case SslError.SSL_UNTRUSTED:

result.append("Certificate Authority which issued the certificate is␣

→˓not reliable.\n\nCertificate Authority\n").append(cert.getIssuedBy().getDName());

return result.toString();

default:

result.append("Unknown error occured. ");

return result.toString();

}

}

}

4.9.2 Rule Book

Comply with following rule when you need to use WebView.

1. Enable JavaScript Only If Contents Are Managed In-house (Required)

2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)

3. Verify That the URL Received from Others Such as Through Intent Is the Expected URL (Required)

4. Handle SSL Error Properly (Required)

4.9.2.1 Enable JavaScript Only If Contents Are Managed In-house (Required)

What we have to pay attention on WebView is whether we enable the JavaScript or not. As principle, we can only
enable the JavaScript only IF the application will access to services which are managed in-house. And you must not
enable the JavaScript if there is possibility to access services which are not managed in-house.

Services managed In-house

325



Secure Coding Guide Documentation Release 2025-01-29

In case that application accesses contents which are developed IN HOUSE and are distributed through servers which
are managed IN HOUSE, we can say that the contents are ONLY modified by your company. In addition, it is also
needed that each content refers to only contents stored in the servers which have proper security.

In this scenario, we can enable JavaScript on the WebView. Please refer to "4.9.1.2. Show Only Contents which Are
Managed In-house" also.

And you can also enable JavaScript if your application shows only contents stored under assets/ and res/ directory in
the apk. Please refer to "4.9.1.1. Show Only Contents Stored under assets/res Directory in the APK" also.

Services unmanaged in-house

You must NOT think you can secure safety on contents which are NOT managed IN HOUSE. Therefore you have to
disable JavaScript. Please refer to "4.9.1.3. Show Contents which Are Not Managed In-house".

In addition, you have to disable JavaScript if the contents are stored in external storage media; such as microSD
because other application can modify the contents.

4.9.2.2 Use HTTPS to Communicate to Servers which Are Managed In-house (Required)

You have to use HTTPS to communicate to servers which are managed in-house because there is potential risk of
spoofing the services by malicious third party.

Please refer to both "4.9.2.4. Handle SSL Error Properly (Required)", and "5.4. Communicating via HTTPS".

4.9.2.3 Verify That the URL Received from Others Such as Through Intent Is the Expected URL
(Required)

Implementation to receive an Intent from other application and display the URL provided in the Intent parameter on
the WebView is common on many applications. If the URL provided at this point is to be displayed without verifying
the expected URL, malicious websites such as phishing websites may be displayed on the WebView. The problem
with this implementation is that unspecified URLs that are not guaranteed to be safe may become displayed. This
may result in damages even if the JavaScript of the WebView is disabled.

To verify that the URL provided as the parameter of the Intent is the expected URL, there is a method to store the
URLwhitelist to display in the application in advance. Safety can be secured by displaying only the URL that matches
this whitelist on the WebView. In addition, the URL to be registered to the whitelist must be HTTPS.

WebViewActivity.java

// Get the white list from the resource file

String[] allowList = getResources().getStringArray(R.array.allow_url_list);

// Check the URL domain received from Intent is included the white list

Uri uri = Uri.parse("the URL received from Intent");

for (String str : allowList) {

if (uri.getScheme().equals("https") && uri.getHost().equals(str)) {

webView.loadUrl(uri.toString());

}

To show the received URL on a WebView with JavaScript enabled, you must additionally verify that this URL is
managed in-house.

Sample code in the section "4.9.1.2. Show Only Contents which Are Managed In-house" uses the fixed value URL to
show contents which are managed in-house, to secure safety.

4.9.2.4 Handle SSL Error Properly (Required)

You have to terminate the network communication and inform error notice to user when SSL error happens onHTTPS
communication.

326



Secure Coding Guide Documentation Release 2025-01-29

SSL error shows invalid server certification risk or MTIM (man-in-the-middle attack) risk. Please note thatWebView
hasNO error noticemechanism regarding SSL error. Therefore your application has to show the error notice to inform
the risk to the user. Please refer to sample code in the section of "4.9.1.2. Show Only Contents which Are Managed
In-house", and "4.9.1.3. Show Contents which Are Not Managed In-house".

In addition, your application MUST terminate the communication with the error notice.

In other words, you MUST NOT do following.

• Ignore the error to keep the transaction with the service.

• Retry HTTP communication instead of HTTPS.

Please refer to the detail described in "5.4. Communicating via HTTPS".

WebView's default behavior is to terminate the communication in case of SSL error. Therefore what we need to add
is to show SSL error notice. And then we can handle SSL error properly.

4.9.3 Advanced Topics

4.9.3.1 Vulnerability caused by addJavascriptInterface() at Android versions 4.1 or earlier

Android versions under 4.2API Level 17 have a vulnerability caused by addJavascriptInterface(), which could allow
attackers to call native Android methods (Java) via JavaScript on WebView.

As explained in "4.9.2.1. Enable JavaScript Only If Contents Are Managed In-house (Required)", JavaScript must not
be enabled if the services could access services out of in-house control.

In Android 4.2API Level 17 or later, the measure of the vulnerability has been taken to limit access from JavaScript
to only methods with @JavascriptInterface annotation on Java source codes instead of all methods of Java objects
injected. However it is necessary to disable JavaScript if the services could access services out of in-house control as
mentioned in "4.9.2.1.".

4.9.3.2 Issue caused by file scheme

In case of using WebView with default settings, all files that the app has access rights can be accessed to by using
the file scheme in web pages regardless of the page origins. For example, a malicious web page could access the files
stored in the app's private directory by sending a request to the uri of a private file of the app with the file scheme.

A countermeasure is to disable JavaScript as explained in "4.9.2.1. Enable JavaScript Only If Contents Are Managed
In-house (Required)" if the services could access services out of in-house control. Doing that is to protect against
sending the malicious file scheme request.

Also in case of Android 4.1 (API Level 16) or later, setAllowFileAccessFromFileURLs() and setAllowUniversalAc-
cessFromFileURLs() can be used to limit access via the file scheme.

Disabling the file scheme
webView = (WebView) findViewById(R.id.webview); webView.setWebViewClient(new WebViewUn-
limitedClient()); WebSettings settings = webView.getSettings(); settings.setAllowUniversalAccessFrom-
FileURLs(false); settings.setAllowFileAccessFromFileURLs(false);

4.9.3.3 Specifying a Sender Origin When Using Web Messaging

Android 6.0 (API Level 23) adds an API for realizing HTML5 Web Messaging. Web Messaging is a framework
defined in HTML5 for sending and receiving data between different browsing contexts33.

The postWebMessage() method added to the WebView class is a method for processing data transmissions via the
Cross-domain messaging protocol defined by Web Messaging.

33 https://www.w3.org/TR/webmessaging/

327

https://www.w3.org/TR/webmessaging/


Secure Coding Guide Documentation Release 2025-01-29

This method sends a message object—specified by its first parameter—from the browsing context that has been read
into WebView; however, in this case it is necessary to specify the origin of the sender as the second parameter. If
the specified origin34 does not agree with the origin in the sender context, the message will not be sent. By placing
restrictions on the sender origin in this way, this mechanism aims to prevent the passing of messages to unintended
senders.

However, it is important to note that wildcards may be specified as the origin in the postWebMessage() method35.
If wildcards are specified, the sender origin of the message is not checked, and the message may be sent from any
arbitrary origin. In a situation in which malicious content has been read into WebView, various types of harm or
damage may result if important messages are sent without origin restrictions. Thus, when using WebView for Web
messaging, it is best to specify explicitly a specific origin in the postWebMessage() method.

4.9.3.4 Safe Browsing in WebView

Safe Browsing is a service provided by Google that displays a warning page when the user tries to access a malware
page, phishing site, or other unsafe web page.

Fig. 4.9.3: Warning page displayed when attempting to access an unsafe web page in Chrome for Android

Currently, the Safe Browsing function can be used not only in Chrome for Android and other browser applications,
but also in the WebView used in applications. However, careful attention is needed because the components that can
be used for WebView vary depending on the Android OS version of the system, as a result, the degree of support for
Safe Browsing also varies. Support for standard WebView and Safe Browsing by Android OS versions are shown in
the following table.

34 An “origin” is a URL scheme together with a host name and port number. For the detailed definition see http://tools.ietf.org/html/rfc6454.
35 Note that Uri.EMPTY and Uri.parse(“”) function as wildcards (at the time of writing the September 1, 2016 version).

328

http://tools.ietf.org/html/rfc6454


Secure Coding Guide Documentation Release 2025-01-29

Table 4.9.1: Android OS version and standard WebView support

Android OS version Android standard WebView Relation
with OS

Adapting to
Safe

Browsing
Android 7.0 or later Chrome for Android (Chromium base) Independent OK
Android 5.0 - 6.0 Android System WebView (Chromium

base)
Independent OK

Android 4.4 OS embedded WebView (Chromium base) Embedded No
Android 4.3 or earlier OS embedded WebView Embedded No

Before Android 4.3 (API level 18), a WebView that did not include the Safe Browsing function was incorporated into
the OS, and this was changed in Android 4.4 (API level 19) so that WebView included the Safe Browsing function.
Even so, care is needed because the version is old, and it does not support use of the Safe Browsing function in the
WebView of applications.

The capability to use the Safe Browsing function in applications started from Android 5.0 (API level 21) when
WebView was separated from the OS and became updated as an application.

Starting fromWebView 66, Safe Browsing is enabled by default, and no special settings are required at the application
side. However, it is possible that Safe Browsing may not be enabled by default for someWebView versions if the user
did not update WebView or if the standard WebView in the "Set WebView implementation" option for developers
was changed from the default. And so, if Safe Browsing is used, it must be explicitly enabled as shown below.

Settings for enabling Safe Browsing in AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest package="...">

<application>

...

<meta-data

android:name="android.webkit.WebView.EnableSafeBrowsing"

android:value="true" />

</application>

</manifest>

Also, in Android 8.0 (API level 26), several APIs for Safe Browsing were added.

The setSafeBrowsingEnabled(boolean enabled) added in the WebSettings class is a setting method for dynamically
enabling or disabling each WebView instance. Before Android 8.0 (API level 26), the Safe Browsing function was
enabled or disabled by settings in AndroidManifest, but this could only make settings for all WebViews in an applica-
tion. The setSafeBrowsingEnabled(boolean enabled) can be used to allow dynamic enable/disable switching for each
WebView instance.

if (url == IN_HOUSE_MANAGEMENT_CONTENT_URL) {

// (ex.) because in-house contents are detectable by Safe Browsing,

// diable it temporarily

webView.getSettings().setSafeBrowsingEnabled(false);

} else {

// normally, it should be enabled

webView.getSettings().setSafeBrowsingEnabled(true);

}

Also, in Android 8.1 (API level 27), classes and APIs for Safe Browsing were added. These enable specifying of
the Safe Browsing initialization process, settings for responses taken when accessing an unsafe web page, setting of a
whitelist for excluding specific sites from Safe Browsing, and more.

The startSafeBrowsing() added in the WebView class is a method that calls the Safe Browsing initialization process
for WebView components used for the WebView in applications. The initialization result is passed to the callback

329



Secure Coding Guide Documentation Release 2025-01-29

object that is passed by the 2nd argument, and so if initialization fails, and false is passed to the callback object,
responses such as disabling WebView or not loading the URL are recommended.

// because the Safe Browsing is not supported before Android 8.1,

// real implementations need to check Android OS version of the device

WebView.startSafeBrowsing(this, new ValueCallback<Boolean>() {

@Override

public void onReceiveValue(Boolean result) {

mSafeBrowsingIsInitialized = true;

if (result) {

Log.i("WebView SafeBrowsing", "Initialized SafeBrowsing!");

} else {

Log.w("WebView SafeBrowsing", "SafeBrowsing initialization failed...");

// when the initialization failed, Safe Browsing might not work

// properly in this case, it is advisable to disable WebView

}

}

});

Similarly, the setSafeBrowsingWhitelist() added in the WebView class is a method that sets host names and IP ad-
dresses that are excluded from Safe Browsing in a whitelist format. When a list of the host names and IP addresses
to be excluded from Safe Browsing is passed as an argument, no verification is conducted using Safe Browsing when
they are accessed.

// setting the white list of the pair of host name and Ip address which is

// excluded from Safe Browsing

// (ex.) because in-house contents are detectable by Safe Browsing, register

// them to white list

WebView.setSafeBrowsingWhitelist(new ArrayList<>(Arrays.asList( IN_HOUSE_

→˓MANAGEMENT_CONTENT_HOSTNAME )),

new ValueCallback<Boolean>() {

@Override

public void onReceiveValue(Boolean aBoolean) {

Log.i("WebView SafeBrowsing", "Whitelisted " + aBoolean.toString());

}

});

The onSafeBrowsingHit() added in theWebClient class is a callback function that is called back when it is determined
that a URL accessed in aWebViewwhere Safe Browsing is enabled is an unsafe web page. The object of theWebView
that accessed the unsafe web page is passed to the 1st argument, WebResourceRequest is passed to the 2nd argument,
the type of threat is passed to the 3rd argument, and the SafeBrowsingResponse object for setting the response when
determining that a page is unsafe is passed to the 4th argument.

The response when using the SafeBrowsingResponse object can be selected from the three options below.

• backToSafety(boolean report): Returns to the previous page without displaying a warning (If no previous page
is available, a blank page is displayed.)

• proceed(boolean report): Ignores the warning and displays the web page.

• showInterstitial(boolean allowReporting): Displays the warning page (default response)

For backToSafety() and proceed(), an argument can be used to set whether a report is sent to Google, and an argument
can be set for showInterstitial() to display "a checkbox for selecting whether a report is sent to Google".

public class MyWebViewClient extends WebViewClient {

// When Safe Browsing function is enabled, accessing unsafe web page will

// cause this callback to be ivoked

@Override

(continues on next page)

330



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void onSafeBrowsingHit(WebView view, WebResourceRequest request,

int threatType, SafeBrowsingResponse callback) {

// Display warning page with a check box which selects

// "Send report to Google" or not (Recommended)

callback.showInterstitial(true);

// Without displaying warning page, return back to the safe page,

// and send a report to Google (Recommended)

callback.backToSafety(true);

// Ignoring the warning, access to the page, and send a report to

// Google (Not recommended)

callback.proceed(false);

}

}

No Android Support Library is available that supports these classes and APIs. For this reason, to operate applications
using these classes and APIs in systems that are below API level 26 or 27, the processes must be separated based on
the version or similar measures are required.

Sample code is shown below for handling of access to unsafe web pages when Safe Browsing is used in WebView.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<uses-permission android:name="android.permission.INTERNET" />

<application

android:allowBackup="false"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme"

android:networkSecurityConfig="@xml/network_security_config">

<activity

android:name=".MainActivity"

android:exported="true"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Explicitly enable the Safe Browsing function of WebView in the␣

→˓application process -->

<meta-data

android:name="android.webkit.WebView.EnableSafeBrowsing"

android:value="true" />

</application>

</manifest>

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.
(continues on next page)

331



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.webview.safebrowsing;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.webkit.ValueCallback;

import android.webkit.WebView;

import java.util.ArrayList;

import java.util.Arrays;

public class MainActivity extends AppCompatActivity {

private boolean mSafeBrowsingIsInitialized;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

findViewById(R.id.button1).setOnClickListener(setWhiteList);

findViewById(R.id.button2).setOnClickListener(reload);

final WebView webView = findViewById(R.id.webView);

webView.setWebViewClient(new MyWebViewClient());

mSafeBrowsingIsInitialized = false;

// Because Safe Browsing is not supported on a device below Android 8.1,

// real implementation needs to check Android OS version of the device

WebView.startSafeBrowsing(this, new ValueCallback<Boolean>() {

@Override

public void onReceiveValue(Boolean result) {

mSafeBrowsingIsInitialized = true;

if (result) {

Log.i("WebView SafeBrowsing", "Initialized SafeBrowsing!");

webView.loadUrl("http://testsafebrowsing.appspot.com/s/malware.

→˓html");

} else {

Log.w("WebView SafeBrowsing", "SafeBrowsing initialization␣

→˓failed...");

// When the initilization failed, Safe Browsing might not work

// properly. In this case, it is advaisable not to load URL.

}

}

(continues on next page)

332



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

});

}

View.OnClickListener setWhiteList = new View.OnClickListener() {

@Override

public void onClick(View view) {

// Set the white list of the pair of host name and Ip address which

// is excluded from Safe Browsing

WebView.setSafeBrowsingWhitelist(new ArrayList<>(Arrays.asList(

→˓"testsafebrowsing.appspot.com")), new ValueCallback<Boolean>() {

@Override

public void onReceiveValue(Boolean aBoolean) {

Log.i("WebView SafeBrowsing", "Whitelisted " + aBoolean.

→˓toString());

}

});

}

};

View.OnClickListener reload = new View.OnClickListener() {

@Override

public void onClick(View view) {

final WebView webView = findViewById(R.id.webView);

webView.reload();

}

};

}

MyWebViewClient.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.webview.safebrowsing;

import android.webkit.SafeBrowsingResponse;

import android.webkit.WebResourceRequest;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import android.widget.Toast;

public class MyWebViewClient extends WebViewClient {

// When Safe Browsing is enabled, accessing unsafe Web page will cause this

// callback to be invoked

(continues on next page)

333



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public void onSafeBrowsingHit(WebView view, WebResourceRequest request,

int threatType, SafeBrowsingResponse callback) {

// Do not display warningpage, and return back to safe page

callback.backToSafety(true);

Toast.makeText(view.getContext(), "Because the visiting web page is␣

→˓suspicious to be a malware site, we are returning back to the safe page.", Toast.

→˓LENGTH_LONG).show();

}

}

4.10 Using Notifications

Android offers the Notification feature for sending messages to end users. Using a Notification causes a region known
as a status bar to appear on the screen, inside which you may display icons and messages.

Fig. 4.10.1: An example of a Notification

The communication functionality of Notifications is enhanced in Android 5.0 (API Level 21) to allow messages to
be displayed via Notifications even when the screen is locked, depending on user and application settings. However,
incorrect use of Notifications runs the risk that private information—which should only be shown to the terminal user
herself—may be seen by third parties. For this reason, this functionality must be implemented with careful attention
paid to privacy and security.

The possible values for the Visibility option and the corresponding behavior of Notifications is summarized in the
following table.

334



Secure Coding Guide Documentation Release 2025-01-29

Table 4.10.1: Possible visibility values and behavior of Notifications

Visibility value Behavior of Notivications
Public Notifications are displayed on all locked screens.
Private Notifications are displayed on all locked screens; however, on locked screens that have been

password-protected (secure locks), fields such as the title and text of the Notification are
hidden (replaced by publicly-releasable messages in which private information is hidden).

Secret Notifications are not displayed on locked screens that are protected by passwords or other
security measures (secure locks). (Notifications are displayed on locked screens that do not
involve secure locks.)

4.10.1 Sample Code

When a Notification contains private information regarding the terminal user, a message from which the private
information has been excluded must be prepared and added to be displayed in the event of a locked screen.

Fig. 4.10.2: A notification on a locked screen

Sample code illustrating the proper use of Notifications for messages containing private data is shown below.

Points:

1. When using Notifications for messages containing private data, prepare a version of the Notification that is
suitable for public display (to be displayed when the screen is locked).

2. Do not include private information in Notifications prepared for public display (displayed when the screen is
locked).

3. Explicitly set Visibility to Private when creating Notifications.

4. When Visibility is set to Private, Notifications may contain private information.

VisibilityPrivateNotificationActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

(continues on next page)

335



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.notification.visibilityPrivate;

import static android.app.PendingIntent.FLAG_MUTABLE;

import android.app.Activity;

import android.app.Notification;

import android.app.NotificationChannel;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.app.Person;

import android.app.RemoteInput;

import android.content.Context;

import android.content.Intent;

import android.graphics.drawable.Icon;

import android.net.Uri;

import android.os.Build;

import android.os.Bundle;

import android.view.View;

public class VisibilityPrivateNotificationActivity extends Activity {

/**

* Display a private Notification

*/

private final int mNotificationId = 0;

public static final String DEFAULT_CHANNEL = "default_channel";

public static final String SENDER_NAME = "Sender Name";

public static final String REMOTE_REPLY = "remote_reply";

public static final String reply_choices[] = {"choice1", "choice2", "choice3"};

public static final String REPLY_LABEL = "input reply";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

if (Build.VERSION.SDK_INT >= 26) {

// Channel is required for Notification from api level 26

NotificationChannel default_channel =

new NotificationChannel(DEFAULT_CHANNEL,

getString(R.string.notification_channel_default),

(continues on next page)

336



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

NotificationManager.IMPORTANCE_DEFAULT);

NotificationManager notificationManager = (NotificationManager) this.

→˓getSystemService(Context.NOTIFICATION_SERVICE);

notificationManager.createNotificationChannel(default_channel);

}

}

public void onSendNotificationClick(View view) {

// *** POINT 1 *** When preparing a Notification that includes private

// information, prepare an additional Noficiation for public display

// (displayed when the screen is locked).

Notification.Builder publicNotificationBuilder;

if (Build.VERSION.SDK_INT >= 26) {

publicNotificationBuilder =

new Notification.Builder(this, DEFAULT_CHANNEL)

.setContentTitle("Notification : Public");

} else {

publicNotificationBuilder =

new Notification.Builder(this)

.setContentTitle("Notification : Public");

}

if (Build.VERSION.SDK_INT >= 21)

publicNotificationBuilder

.setVisibility(Notification.VISIBILITY_PUBLIC);

// *** POINT 2 *** Do not include private information in Notifications

// prepared for public display (displayed when the screen is locked).

publicNotificationBuilder.setContentText("Visibility Public : Omitting␣

→˓sensitive data.");

publicNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

Notification publicNotification = publicNotificationBuilder.build();

// Construct a Notification that includes private information.

Notification.Builder privateNotificationBuilder;

if (Build.VERSION.SDK_INT >= 26) {

privateNotificationBuilder =

new Notification.Builder(this, DEFAULT_CHANNEL)

.setContentTitle("Notification : Private");

} else {

privateNotificationBuilder =

new Notification.Builder(this)

.setContentTitle("Notification : Private");

}

// *** POINT 3 *** Explicitly set Visibility to Private when creating

// Notifications.

if (Build.VERSION.SDK_INT >= 21)

privateNotificationBuilder

.setVisibility(Notification.VISIBILITY_PRIVATE);

// *** POINT 4 *** When Visibility is set to Private, Notifications may

// contain private information.

privateNotificationBuilder

.setContentText("Visibility Private : Including user info.");

privateNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

(continues on next page)

337



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// When creating a Notification with Visibility=Private, we also create

// and register a separate Notification with Visibility=Public for public

// display.

if (Build.VERSION.SDK_INT >= 21)

privateNotificationBuilder

.setPublicVersion(publicNotification);

if (Build.VERSION.SDK_INT >= 28) {

// Display resource sample_picture.png in Notification by

// Notification.MessagingStyle.Message.setData()

int resourceId = R.drawable.sample_picture_small;

Uri imageUri = Uri.parse("android.resource://" +

getApplicationContext().getPackageName() +

"/" + resourceId);

Person sender = new Person.Builder()

.setName(SENDER_NAME)

.setIcon(null)

.build();

// Prepare Notification.MessagingStyle.Message and set the image with

// setData()

Notification.MessagingStyle.Message message =

new Notification.MessagingStyle

.Message("Sample Picture", 0, sender)

.setData("image/png", imageUri);

// Prepare Notification.MessagingStyle and set

// Notification.MessagingStyle.Message that sets the image

Notification.MessagingStyle message_style =

new Notification.MessagingStyle(sender)

.addMessage(message);

// Set Notification.MessagingStyle to Notification

privateNotificationBuilder.setStyle(message_style);

}

if (Build.VERSION.SDK_INT >= 28) {

// Display reply options in Notification by

// RemoteInput.Builder.setChoices()

Intent intent =

new Intent( getApplicationContext(), NotificationReceiver.class);

PendingIntent pendingIntent =

PendingIntent.getBroadcast(this, 0, intent, 0);

RemoteInput remoteInput = new RemoteInput.Builder(REMOTE_REPLY)

.setLabel(REPLY_LABEL)

.setChoices(reply_choices)

.build();

Icon icon = Icon.createWithResource(this, R.drawable.ic_launcher);

Notification.Action actionReply =

new Notification.Action.Builder(icon, REPLY_LABEL, pendingIntent)

.addRemoteInput(remoteInput)

(continues on next page)

338



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

.setSemanticAction(Notification.Action.SEMANTIC_ACTION_REPLY)

.build();

privateNotificationBuilder.addAction(actionReply);

}

Notification privateNotification = privateNotificationBuilder.build();

//Although not implemented in this sample code, in many cases

//Notifications will use setContentIntent(PendingIntent intent)

//to ensure that an Intent is transmission when Notification

//is clicked. In this case, it is necessary to take steps--depending

//on the type of component being called--to ensure that the Intent

//in question is called by safe methods (for example, by explicitly

//using Intent). For information on safe methods for calling various

//types of component, see the following sections.

//4.1. Creating and using Activities

//4.2. Sending and receiving Broadcasts

//4.4. Creating and using Services

NotificationManager notificationManager =

(NotificationManager) this

.getSystemService(Context.NOTIFICATION_SERVICE);

notificationManager.notify(mNotificationId, privateNotification);

}

}

4.10.2 Rule Book

When creating Notification, the following rules must be observed.

1. Regardless of the Visibility setting, Notifications must not contain sensitive information (although private infor-
mation is an exception) (Required)

2. Notifications with Visibility=Public must not contain private information (Required)

3. For Notifications that contain private information, Visibility must be explicitly set to Private or Secret (Required)

4. When using Notifications with Visibility=Private, create an additional Notification with Visibility=Public for
public display (Recommended)

4.10.2.1 Regardless of the Visibility setting, Notificationsmust not contain sensitive information
(although private information is an exception) (Required)

On terminals using Android4.3 (API Level 18) or later, users can use the Settings window to grant apps permission
to read Notifications. Apps granted this permission will be able to read all information in Notifications; for this
reason, sensitive information must not be included in Notifications. (However, private information may be included
in Notifications depending on the Visibility setting).

Information contained in Notifications may generally not be read by apps other than the app that sent the Notification.
However, users may explicitly grant permission to certain user-selected apps to read all information in Notifications.
Because only apps that have been granted user permission may read information in Notifications, there is nothing
problematic about including private information on the user within the Notification. On the other hand, if sensitive
information other than the user's private information (for example, secret information known only to the app devel-
opers) is include in a Notification, the user herself may attempt to read the information contained in the Notification
and may grant applications permission to view this information as well; thus the inclusion of sensitive information
other than private user information is problematic.

For specific methods and conditions, see Section "4.10.3.1. On User-granted Permission to View Notifications"

339



Secure Coding Guide Documentation Release 2025-01-29

4.10.2.2 Notifications with Visibility=Public must not contain private information (Required)

When sending Notifications with Visibility=Public, private user information must not be included in the Notification.
When a Notifications has the setting Visibility=Public, the information in the Notification is displayed even when the
screen is locked. This is because such Notifications carry the risk that private information might be seen and stolen
by a third party in physical proximity to the terminal.

VisibilityPrivateNotificationActivity.java

// Prepare a Notification for public display (to be displayed on locked

// screens) that does not contain sensitive information.

Notification.Builder publicNotificationBuilder =

new Notification.Builder(this).setContentTitle("Notification : Public");

publicNotificationBuilder.setVisibility(Notification.VISIBILITY_PUBLIC);

// Do not include private information in Notifications for public display

// (to be displayed on locked screens).

publicNotificationBuilder.setContentText("Visibility Public: sending␣

→˓notification without sensitive information.");

publicNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

Typical examples of private information include emails sent to the user, the user's location data, and other items listed
in Section “5.5. Handling privacy data".

4.10.2.3 For Notifications that contain private information, Visibility must be explicitly set to
Private or Secret (Required)

Terminals using Android 5.0 (API Level 21) or later will display Notifications even when the screen is locked. Thus,
when the Notification contains private information, its Visibility flag should be set explicitly to "Private" or "Secret".
This is to protect against the risk of private information contained in a Notification being displayed on a locked screen.

At present, the default value of Visibility is set to Private for Notifications, so the aforementioned risk will only arise
if this flag is explicitly changed to Public. However, the default value of Visibility may change in the future; for this
reason, and also for the purpose of clearly communicating one's intentions at all times when handling information, it
is mandatory to set Visibility=Private explicitly for Notifications that contain private information.

VisibilityPrivateNotificationActivity.java

// Create a Notification that includes private information.

Notification.Builder priavteNotificationBuilder =

new Notification.Builder(this).setContentTitle("Notification : Private");

// *** POINT *** Explicitly set Visibility=Private when creating the

// Notification.

priavteNotificationBuilder.setVisibility(Notification.VISIBILITY_PRIVATE);

4.10.2.4 When using Notifications with Visibility=Private, create an additional Notification with
Visibility=Public for public display (Recommended)

When communicating information via a Notification with Visibility=Private, it is desirable to create simultaneously
an additional Notification, for public display, with Visibility=Public; this is to restrict the information displayed on
locked screens.

If a public-display Notification is not registered together with a Visibility=Private notification, a default message
prepared by the operating system will be displayed when the screen is locked. Thus there is no security problem in
this case. However, for the purpose of clearly communicating one's intentions at all times when handling information,
it is recommended that a public-display Notification be explicitly created and registered.

340



Secure Coding Guide Documentation Release 2025-01-29

VisibilityPrivateNotificationActivity.java

// Create a Notification that contains private information.

Notification.Builder privateNotificationBuilder =

new Notification.Builder(this).setContentTitle("Notification : Private");

// *** POINT *** Explicitly set Visibility=Private when creating the

// Notification.

if (Build.VERSION.SDK_INT >= 21)

privateNotificationBuilder.setVisibility(Notification.VISIBILITY_PRIVATE);

// *** POINT *** Notifications with Visibility=Private may include private

// information.

privateNotificationBuilder

.setContentText("Visibility Private : Including user info.");

privateNotificationBuilder.setSmallIcon(R.drawable.ic_launcher);

// When creating a Notification with Visibility=Private,

// simultaneously create and register a public-display Notification with

// Visibility=Public.

if (Build.VERSION.SDK_INT >= 21)

privateNotificationBuilder.setPublicVersion(publicNotification);

4.10.3 Advanced Topics

4.10.3.1 On User-granted Permission to View Notifications

As noted above in Section "4.10.2.1. Regardless of the Visibility setting, Notifications must not contain sensitive infor-
mation (although private information is an exception) (Required)", on terminals using Android 4.3 (API Level 18) or
later, certain user-selected apps that have been granted user permission may read information in all Notifications.

Fig. 4.10.3: "The Access to Notifications" window, from which Notification read controls may be configured

The following sample code illustrates the use of NotificationListenerService36.
36 In the testing environment at the time of the 12th edition, it was found that the sample does not work with the emulator Pixel 3 API 30

341



Secure Coding Guide Documentation Release 2025-01-29

AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<service android:name=".MyNotificationListenerService"

android:exported="false"

android:label="@string/app_name"

android:permission="android.permission.BIND_NOTIFICATION_LISTENER_

→˓SERVICE">

<intent-filter>

<action android:name=

"android.service.notification.NotificationListenerService" />

</intent-filter>

</service>

</application>

</manifest>

MyNotificationListenerService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.notification.notificationListenerService;

import android.app.Notification;

import android.service.notification.NotificationListenerService;

import android.service.notification.StatusBarNotification;

import android.util.Log;

public class MyNotificationListenerService extends NotificationListenerService {

@Override

public void onNotificationPosted(StatusBarNotification sbn) {

// Notification is posted.

outputNotificationData(sbn, "Notification Posted : ");

}

(continues on next page)

attached to Android Studio 4.0.1. Since it has been confirmed that it works without problems on the Google Pixel 3 device, please be careful when
executing the sample code.

342



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public void onNotificationRemoved(StatusBarNotification sbn) {

// Notification is deleted.

outputNotificationData(sbn, "Notification Deleted : ");

}

private void outputNotificationData(StatusBarNotification sbn, String prefix) {

Notification notification = sbn.getNotification();

int notificationID = sbn.getId();

String packageName = sbn.getPackageName();

long PostTime = sbn.getPostTime();

String message = prefix + "Visibility :" + notification.visibility +

" ID : " + notificationID;

message += " Package : " + packageName + " PostTime : " + PostTime;

Log.d("NotificationListen", message);

}

}

As discussed above, by using NotificationListenerService to obtain user permission it is possible to read Notifications.
However, because the information contained in Notifications frequently includes private information on the terminal,
care is required in handling such information.

4.10.3.2 Touch to Be Passed Through Specific Window

On Android 12 models and later, if the application is displaying an unsafe overlay, touches that pass through spe-
cific windows are blocked. This change of operation affects all applications running in Android 12 regardless of
targetSdkVersion.

Examples of unsafe overlay displays are as follows.

• Overlay displays that require the SYSTEM_ALERT_WINDOW permission, such as windows that use the
TYPE_APPLICATION_OVERLAY layer and the FLAG_NOT_TOUCHABLE flag

• Activity windows which use the FLAG_NOT_TOUCHABLE flag

However, in the following cases, touches that pass through are still available.

• If displaying overlays only within the application

• For trusted windows with TYPE_ACCESSIBILITY_OVERLAY, TYPE_INPUT_METHOD, etc. specified
to the layers

• For invisible windows with route view set to GONE or INVISIBLE

• For windows with 0 set as the alpha value

• For windows with TYPE_APPLICATION_OVERLAY specified to the layer that has an alpha value lower
than the specified value37.

If an unsafe overlay is displayed on the application, it is recommended to use one of the following APIs based on the
use case.

• Bubble

Bubble is a function that was added from Android 11 to make Notification use easier. The message notification
appears as a Bubble on other applications when you have received messages, enabling you to display and reply to the
message without having to switch to the application that received the message.

37 Specified value indicates a value that can be acquired by InputManager.getMaximumObscuringOpacityForTouch(). If numerous windows
are overlapping, the total alpha value must be lower than the specified value.

343



Secure Coding Guide Documentation Release 2025-01-29

• Picture-in-Picture (PIP)

PIP is a function that displays content on a small window that is fixed to the corner of the screen even while you are
moving around various applications or browsing through content on the main screen. Available on Android 8.0 and
later.

• Notification

Notification is a standard method to provide reminders to users, messages from other people, and timely informa-
tion from applications while reducing device usage to the minimum. Users can open the application by tapping the
notification or run direct action from the notification.

• Snackbar

Snackbar is a notification function that displays messages for a short period of time while the application is running.

• Toast

A notification function that displays messages for a short period of time as on Snackbar. Use Toast if message display
is required while the application is in the background. To grant permission to untrusted touches, run the following
adb command on the terminal window.

# A specific app

adb shell am compat disable BLOCK_UNTRUSTED_TOUCHES com.example.app

# All apps

# If you'd still like to see a Logcat message warning when a touch would be

# blocked, use 1 instead of 0.

adb shell settings put global block_untrusted_touches 0

To return the operation to the default operation that blocks untrusted touches, run the following adb command on the
terminal window.

# A specific app

adb shell am compat reset BLOCK_UNTRUSTED_TOUCHES com.example.app

# All apps

adb shell settings put global block_untrusted_touches 2

4.10.3.3 Mutability of the PendingIntent Object

The application that targets Android 12 requires specification for the mutability of the PendingIntent object. Mu-
tability is specified using the PendingIntent.FLAG_MUTABLE flag for mutable and PendingIntent.FLAG_IM-
MUTABLE flag for immutable.

If attempting to create a PendingIntent object without specifying any flag, an IllegalArgumentException occurs, and
the following message is displayed on LogCat.

Targeting S+ (version 31 and above) requires that one of FLAG_IMMUTABLE or FLAG_MUTABLE be specified
when creating a PendingIntent.

It is recommended to specify the FLAG_IMMUTABLE flag in terms of security enhancement. The specification is
performed as follows.

PendingIntent pendingIntent = PendingIntent.getActivity(getApplicationContext(), REQUEST_CODE, intent,
PendingIntent.FLAG_IMMUTABLE);

However, as with 4.10.1.Sample Code, if the direct reply action in the notification requires a change to the clip data
in the PendingIntent object that is associated with the reply, FLAG_MUTABLE must be specified.

344



Secure Coding Guide Documentation Release 2025-01-29

4.10.3.4 Runtime Permissions for Notifications

Starting from Android 13, the notification feature requires prior permission from the user. This change of operation
affects all apps running on the Android 13 platform regardless of targetSdkVersion. The implementation method
differs depending on the targetSdkVersion, and the implementation method for each case is described below.

For devices running targetSdkVersion 32 and below:

To use the notification feature, use createNotificationChannel to request permission from the user. A permission
dialog appears when createNotificationChannel is executed, allowing the user to perform the following actions.

• Select “Allow”

• Select “Don’t allow”

• Close the dialog by swiping without pressing either button.

The following is an implementation example of an app running as a foreground service.

NotificationManager notificationManager = (NotificationManager)context.

→˓getSystemService(Context.NOTIFICATION_SERVICE);

NotificationChannel channel = new NotificationChannel(defaultId, name ,␣

→˓importance);

if(notificationManager != null){

notificationManager.createNotificationChannel(channel);

Notification notification = new Notification.Builder(context, defaultId)

.setContentTitle(name)

.setSmallIcon(android.R.drawable.ic_media_play)

.setContentText(name)

.setAutoCancel(true)

.setContentIntent(pendingIntent)

.setWhen(System.currentTimeMillis())

.build();

startForeground(1, notification);

The permission dialog when the above code is executed on the Android 13 platform and the notification drawers when
the user selects “Allow” or “Don’t allow” are shown below.

345



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.10.4: Permissions Dialog

346



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.10.5: Notification Drawer “Allow”

347



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.10.6: Notification Drawer “Don’t Allow”

For devices running targetSdkVersion 33 and above:

If the above code is changed to targetSdkVersion 33 or higher and executed on the Android 13 platform in the same
way, the permission dialog will not appear and notification will not appear in the notification drawer. The ON/OFF
setting of the notification feature itself is disabled when checked from the app-specific settings.

348



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.10.7: ON/OFF Setting of Notification Feature Itself Is Disabled

This is because Android 13 (API level 33) introduced POST_NOTIFICATIONS, a new runtime permission to send
notifications. When building with targetSdkVersion 33 or higher, it is necessary to declare POST_NOTIFICATIONS
in the manifest file and implement displaying of a separate permission dialog.

The following is an example of declaration in the manifest file.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

package="xxx.xxxx.myapplication">

<uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

Also, the following is an example of implementation displaying the permission dialog.

private ActivityResultLauncher<String> requestPermissionLauncher =

registerForActivityResult(new ActivityResultContracts.RequestPermission(),␣

→˓isGranted -> {

if (isGranted) {

// Permission is granted. Continue the action or workflow in your

(continues on next page)

349



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// app.

} else {

// Explain to the user that the feature is unavailable because the

// features requires a permission that the user has denied. At the

// same time, respect the user's decision. Don't link to system

// settings in an effort to convince the user to change their

// decision.

}

});

@Override

protected void onCreate(Bundle savedInstanceState) {

// ...

buttonStart.setOnClickListener( v -> {

// ...

requestPermissionLauncher.launch(Manifest.permission.POST_NOTIFICATIONS);

startForegroundService(intent);

});

The following shows the permission dialog when the above code is executed on the Android 13 platform.

Fig. 4.10.8: Permission Dialog

350



Secure Coding Guide Documentation Release 2025-01-29

It is recommended that these changes be addressed “as soon as possible” when targetSdkVersion 33 or higher is used.

Here is a quote from the official text38.

“We highly recommend that you target Android 13 or higher as soon as possible to benefit from the additional control
and flexibility of this feature. If you continue to target 12L (API level 32) or lower, you lose some flexibility with
requesting the permission in the context of your app’s functionality.”

4.10.3.5 Change in Operation for Notifications Indicating Progress

Notifications that indicate that a process is in progress, such as music media being played or downloaded, can be
set to remain in the notification drawer by setting Notification.Builder#setOngoing(true) and setting FLAG_ONGO-
ING_EVENT.

NotificationCompat.Builder builder

= new NotificationCompat.Builder(this, "CHANNEL_ID")

.setSmallIcon(android.R.drawable.ic_menu_info_details)

.setContentTitle("Notification Title")

.setContentText("Notification Message")

.setPriority(NotificationCompat.PRIORITY_DEFAULT

);

builder.setOngoing(true);

This way, the user was prevented from accidentally closing the notification. However, this behavior has changed since
Android 14, allowing users to close notifications even if FLAG_ONGOING_EVENT is set.

The differences in behavior when the above code is executed on Android 11 and Android 14 are shown below.

First, this shows the behavior on Android 11.

Fig. 4.10.9: Android 11 Notification
Fig. 4.10.10: Swiping to the right does not remove the
notification

38 https://developer.android.com/about/versions/13/changes/notification-permission

351

https://developer.android.com/about/versions/13/changes/notification-permission


Secure Coding Guide Documentation Release 2025-01-29

Next, this shows the behavior on Android 14.

Fig. 4.10.11: Android 14 Notification Fig. 4.10.12: Swiping to the right removes the notifica-
tion

Nonetheless, in the following situations, the above behavior does not apply, and the notification will continue to remain
in the notification drawer.

• When the smartphone is locked

• When the user selects the “Clear All” notification action (to prevent accidental deletion)

The above behavior also does not apply to the following use cases.

• Notifications created using MediaStyle

• When policy restricts use to security and privacy cases

• Device Policy Controller (DPC) and support packages for enterprises

4.11 Using Shared Memory

Previously, the Android OS included a shared memory mechanism, and it was provided by android.os.MemoryFile.
However, it did not directly provide APIs or access control for sharing over multiple applications, and it was difficult to
use for general applications. In Android 8.1 (API level 27), the android.os.SharedMemory package was introduced,
which enabled the shared memory mechanism to be used relatively easily from general applications. At the time of
Android 8.1, MemoryFile is a wrapper of SharedMemory, and use of SharedMemory is recommended. This section
describes the important security points when using this SharedMemory API.

As described later, this API was built assuming a structure where a provided application and memory are shared when
a service of an application creates a shared memory and provides this shared memory to other applications. And so,
all the information described in "4.4. Creating/Using Services" also applies to applications that provide shared memory
and applications that use this shared memory. If you have not already read this information, it is recommended that
you read "4.4. Creating/Using Services" before proceeding to the explanation below.

352



Secure Coding Guide Documentation Release 2025-01-29

NoAndroid Support Library is available that supports the SharedMemoryAPI. For this reason, to operate applications
using SharedMemory in systems that are below API level 27, measures are required such as by implementing an
equivalent virtual memory mechanism, such as by wrapping C language level APIs using JNI, and the processes must
be separated based on the version.

4.11.1 Overview of Android Shared Memory

Shared memory is a mechanism for sharing the same physical memory area among multiple applications.

Fig. 4.11.1: Overview of Shared Memory

The figure above shows the appearance when using a shared memory for application A and application B. Application
A creates a shared memory object, and it is provided to application B. The role of providing shared memory by
application A is handled as a service of application A. Application B connects to this service, requests and obtains
the shared memory, and after the processes required by the shared memory are completed, application B notifies
application A that use is completed.

For example, if handling data where the maximum size (1 MB39) for allowable communication between normal
processes is exceeded, such as bitmap data of a large image, shared memory can be used to enable sharing among
multiple processes. Also, the amount of memory used for the entire device can be reduced for enabling normal
memory access, and this allows for extremely high-speed communication between processes. However, because
multiple applications are simultaneously accessing in parallel, consideration must also be made for maintaining the
integrity of the data in certain cases. To avoid this, exclusive control can be performed between applications, and
other careful designs are needed to ensure that the memory area is properly divided and the accessed areas do not
interfere with each other.

As mentioned above, the shared memory API of Android SDK was built so that a service creates a shared memory
object and provides it to other processes. Because the shared memory class (android.os.SharedMemory) is defined as
parcelable, the shared memory instance can be easily passed on to other processes through binders. An overview of
the exchanges between the service and client in the sample code appearing later has the structure shown in the figure
below (this can vary significantly depending on the structure of the service).

39 https://developer.android.com/guide/components/activities/parcelables-and-bundles

353

https://developer.android.com/guide/components/activities/parcelables-and-bundles


Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.11.2: Exchanges between shared memory service and client

• S1. A service uses SharedMemory.create() to create a shared memory.

• S2. If the service itself will use the shared memory, SharedMemory#map() is used to map the shared memory
to its own memory space.

• C1. The client uses explicit intent to connect to the service by Context#bindService().

• S3. When a connection request is received from the client, the service’s onBind() call back is called. The
service performs the required pre-processing (if needed) at this stage and returns a IBinder for connection to
the client.

• C2. The return value (IBinder instance) when the service executed onBind() is returned as an argument of
onServiceConnected() callback on the client side. Then, this IBinder is used to perform communication with
the service.

• C3. The client requests the shared memory for the service.

• S4. The service receives a shared memory request from the client and sets the operations permitted (read,
write) when the client accesses the shared memory.

• S5. The service passes on the shared memory object to the client.

• C4. To access the received shared memory, the client maps the shared memory to its own address space for
use.

• C5, C6. When the client has finished use of the shared memory, the shared memory is unmapped (C5) from
its own memory space, and the shared memory is closed (C6).

• C7. Then, the client notifies the server that use of the shared memory is completed.

• C8. The client disconnects from the service.

354



Secure Coding Guide Documentation Release 2025-01-29

• S7. After the message that usage is completed is received from the client, the service itself also unmaps and
closes the shared memory.

The onServiceConnected() in item C2 above is defined as a class where the android.content.ServiceConnection class
is implemented. For specific examples, refer to the sample code appearing later. Several communication methods
using IBinder are available, but Messenger is used in the sample code.

4.11.2 Sample Code

As described before, the side that creates the shared memory and provides it to other applications is implemented
as a service. For this reason, from the standpoint of security for functions and information sharing, there are no
fundamental differences from the information contained in "4.4. Creating/Using Services" Based on the classifications
in 4.4., the figure below shows the process for determining who the memory will be shared with.

Fig. 4.11.3: Flow Figure to select SharedMemory Service Type

Table 4.4.2 in "4.4.1. Sample Code" describes how a service is implemented, but for shared memory, sharing with
other applications must be implemented using a binder. And so, shared memory cannot be implemented as a start-
Service or IntentService service. For this reason, it is implemented as shown in the table below.

Table 4.11.1: Service Category and Types(Shared Memory)

Category Private Service Public Service Partner Service In-house Service
startService type - - - -
IntentService type - - - -
local bind type OK - - -
Messenger bind
type

OK OK - OK*

AIDL bind type OK OK OK OK

The overall structure is virtually identical to that in "4.4.1. Sample Code" Also, because the items specific to shared
memory are the same in all cases, in the specific sample code, the items marked with an asterisk in the above table
indicate those that apply to in-house services only. For this reason, to use shared memory in other cases, refer to the
information from "4.4.1.1. Creating/Using Private Services" to "4.4.1.3. Creating/Using Partner Services".

355



Secure Coding Guide Documentation Release 2025-01-29

4.11.2.1 Creating/Using Private Services

In this case, a structure is used that shares shared memory created by a private service between multiple processes
contained in the application. Also, this private service is started as a process independent from the main process of
the application.

Points:

1. The service that creates the shared memory is explicitly set to private by exported=”false”.

2. If a process in an application references data that was written by another process, the safety is verified even if
it is a process within the same application.

3. Sensitive information can be shared because the sharing of memory is a process within the same application.

The sample code in "4.4.1.1.Creating/Using Private Services" used services by Intent, but for sharedmemory, memory
resources cannot be shared through Intent, and so a method based on local bind, Message bind, or AIDL bind must
be used.

4.11.2.2 Creating/Using Public Services

As described in "4.4.1.2. Creating/Using Public Services," a public service is a service which is assumed to be used by
an unspecified large number of applications. As a result, use by malware must also be assumed. Generally, attention
must be paid to the points mentioned in 4.4.1.2., but those points are rephrased below from the standpoint of shared
memory.

Points (Creating a Service):

1. Explicitly set to public using exported=”true”.

2. Verify the safety of parameters and data contained in requests and other operations for starting services and
sharing memory.

3. Sensitive information must not be shared using shared memory.

Points (Using a Service): 1. Sensitive information must not be written to shared memory. 2. Safety is verified when
referencing data that was written by another application.

4.11.2.3 Creating/Using Partner Services

This information is virtually identical to the information shown in "4.4.1.3. Creating/Using Partner Services", but
this is rephrased from the standpoint of shared memory for showing the following points (Like the sample code in
4.4.1.3., this assumes use of the AIDL bind service)

Points (Creating a Service):

1. Do not define the Intent Filter, and explicitly declare exported=”true”.

2. Verify the requesting application’s certificate through a predefined whitelist.

3. onBind(onStartCommand, onHandleIntent) cannot be used to determine whether the requester is a partner.

4. Verify the safety of received Intent even if the Intent was sent from a partner application.

5. Writing to the shared memory is permissible only for information that is allowed to be disclosed to the partner
application.

Points (Using a Service):

1. Verify that the certificate of the requesting partner service application is registered in the whitelist.

2. Writing to the shared memory is permissible only for information that is allowed to be disclosed to the request-
ing partner application.

3. Use explicit Intent to call a partner service.

4. Verify the safety of the data even if the data was written by a partner application.

356



Secure Coding Guide Documentation Release 2025-01-29

4.11.2.4 Creating/Using In-house Services

This section presents an example where shared memory is provided by a service available as public, but the shared
memory is provided to an in-house application only. Like the example in "4.4.1.4. Creating/Using In-house Services",
a Messenger bind service is used. The principles and settings for the background are described in 4.4.1.4., and so
refer to 4.4.1.4. first if you have not already read this information.

Sample code for application at service side (Messenger bind)

Points are shown below, but items 1 to 5 and 7 are presented in “4.4.1.4. Creating/Using In-house Services,” and item
6 is the only item specific to shared memory.

Points:

1. Define an in-house signature permission.

2. Request declaration of the in-house signature permission.

3. Do not define the Intent Filter, and explicitly declare exported=”true”.

4. Verify that the in-house signature permission is defined by an in-house application.

5. Verify the safety of received Intent even if the Intent was sent from an in-house application.

6. Before passing the shared memory on to a client, use SharedMemory#setProtect() to limit the available oper-
ations by the client.

7. Sign the APK using the same developer key as the requesting application.

For purposes of simplification, this example defines the service that allocates the shared memory and the activity that
uses the service within the same application (service is started as a separate process within the same application). For
this reason, both the signature permission definition and use declaration are contained in the manifest file.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Define an in-house signature permission -->

<permission android:name="org.jssec.android.sharedmemory.inhouseservice.

→˓messenger.MY_PERMISSION"

android:protectionLevel="signature" />

<!-- *** POINT 8 *** Define an in-house signature permission -->

<uses-permission

android:name="org.jssec.android.service.inhouseservice.messenger.MY_

→˓PERMISSION" />

<application

android:allowBackup="false"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<activity android:name="org.jssec.android.sharedmemory.inhouseservice.

→˓messenger.MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

(continues on next page)

357



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

</activity>

<!-- Service which utilizes Messenger -->

<!-- *** POINT 2 *** Request declaration of the in-house signature permission -

→˓->

<!-- *** POINT 3 *** Do not define the Intent Filter, and explicitly declare␣

→˓exported=”true” -->

<!-- For purposes of simplification, make the service which provide shared␣

→˓memory to be a different process in the same application -->

<service android:name="org.jssec.android.sharedmemory.inhouseservice.messenger.

→˓SHMService"

android:exported="true"

android:permission="org.jssec.android.sharedmemory.inhouseservice.

→˓messenger.MY_PERMISSION"

android:process=".shmService" />

</application>

</manifest>

SHMService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.sharedmemory.inhouseservice.messenger;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.content.pm.PackageManager;

import android.os.Handler;

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;

import android.os.RemoteException;

import android.os.SharedMemory;

import android.system.ErrnoException;

import android.util.Log;

import android.widget.Toast;

import java.nio.ByteBuffer;

(continues on next page)

358



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import static android.content.pm.PackageManager.PERMISSION_GRANTED;

import static android.system.OsConstants.PROT_EXEC;

import static android.system.OsConstants.PROT_READ;

import static android.system.OsConstants.PROT_WRITE;

public class SHMService extends Service {

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.sharedmemory.inhouseservice.messenger.MY_PERMISSION";

// Hash value of the certificate of In-house applications

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Hash value of the certificate "androiddebugkey" stored in

// debug.keystore

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Hash value of the certificate "my company key" in keystore

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

private final String TAG = "SHM";

// Strings which will be sent to client

private final String greeting = "Hi! I send you my memory. Let's Share it!";

// Page size is 4K bytes

public static final int PAGE_SIZE = 1024 * 4;

// In this example, we use two SharedMemory objects

// Client side specify the one of these SharedMemory by using following

// identify

public static final int SHMEM1 = 0;

public static final int SHMEM2 = 1;

// Instances of Shared Memory

// mSHMem1: used for sending data to client

private SharedMemory mSHMem1 = null;

// ByteBuffer for mapping mSHMem

private ByteBuffer m1Buffer1;

// mSHMem2: used for receiving data from client side

private SharedMemory mSHMem2 = null;

// ByteBuffer for mapping mSHMem2

private ByteBuffer m2Buffer1;

private ByteBuffer m2Buffer2;

// true iff all ByteBuffers are mapped successfully

private boolean mBufferMapped = false;

// In this example, Messenger is used for communicating with client

// The follwings are message identifier for the communication

(continues on next page)

359



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public static final int MSG_INVALID = Integer.MIN_VALUE;

public static final int MSG_ATTACH =

MSG_INVALID + 1; // client requests SHMEM1

public static final int MSG_ATTACH2 =

MSG_ATTACH + 1; // client requests SHMEM2

public static final int MSG_DETACH =

MSG_ATTACH2 + 1; // client no more need SHMEM1

public static final int MSG_DETACH2 =

MSG_DETACH + 1; // client no more need SHMEM2

public static final int MSG_REPLY1 =

MSG_DETACH2 + 1; // first reply from client

public static final int MSG_REPLY2 =

MSG_REPLY1 + 1; // second reply from client

public static final int MSG_END =

MSG_REPLY2 + 1; // Service declared the end of the session

// Handler manipulating Message received from client

private class CommHandler extends Handler {

@Override

public void handleMessage(Message msg) {

switch (msg.what) {

case MSG_ATTACH:

Log.d(TAG, "got MSG_ATTACH");

shareWith1(msg);

break;

case MSG_ATTACH2:

Log.d(TAG, "got MSG_ATTACH2");

shareWith2(msg);

break;

case MSG_DETACH:

Log.d(TAG, "got MSG_DETACH");

unShare(msg);

break;

case MSG_REPLY1:

Log.d(TAG, "got MSG_REPLY1");

gotReply(msg);

break;

case MSG_REPLY2:

Log.d(TAG, "got MSG_REPLY2");

gotReply2(msg);

break;

default:

invalidMsg(msg);

}

}

}

private final Handler mHandler = new CommHandler();

// Messenger used for receiving data from client

private final Messenger mMessenger = new Messenger(mHandler);

// When bound, extract Binfer from Message, pass it to client

@Override

public IBinder onBind(Intent intent) {

// ** POINT 4 *** Verify that the in-house signature permission is defined

(continues on next page)

360



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// by an in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this, "In-house signature permission is not defined by␣

→˓an in-house application.", Toast.LENGTH_LONG).show();

return null;

}

// *** POINT 5 *** Verify the safety of received Intent even if the Intent

// was sent from an in-house application

// Omitted because this is an sample code. Refer to

// "3.2 Handling Input Data Carefully and Securely".

String param = intent.getStringExtra("PARAM");

Log.d(TAG, String.format("Received Parameter [%s]!", param));

return mMessenger.getBinder();

}

// Mapping layout

// Offset must be page boundary

public static final int SHMEM1_BUF1_OFFSET = 0;

public static final int SHMEM1_BUF1_LENGTH = 1024;

public static final int SHMEM2_BUF1_OFFSET = 0;

public static final int SHMEM2_BUF1_LENGTH = 1024;

public static final int SHMEM2_BUF2_OFFSET = PAGE_SIZE;

public static final int SHMEM2_BUF2_LENGTH = 128;

// Allocate 2 SharedMemory objects

private boolean allocateSharedMemory() {

try {

// For sending data to client

mSHMem1 = SharedMemory.create("SHM", PAGE_SIZE);

// For receiving data from client

mSHMem2 = SharedMemory.create("SHM2", PAGE_SIZE * 2);

} catch (ErrnoException e) {

Log.e(TAG, "failed to allocate shared memory" + e.getMessage());

return false;

}

return true;

}

// Map specified SharedMemory

private ByteBuffer mapShared(SharedMemory mem,

int prot, int offset, int size) {

ByteBuffer tBuf ;

try {

tBuf = mem.map(prot, offset, size);

} catch (ErrnoException e) {

Log.e(TAG, "could not map, prot=" + prot + ", offset=" + offset + ",␣

→˓length=" + size + "\n " + e.getMessage() + "err no. = " + e.errno);

return null;

} catch (IllegalArgumentException e){

Log.e(TAG, "map failed: " + e.getMessage());

return null;

}

Log.d(TAG, "mmap success: prot=" + prot);

return tBuf;

}

(continues on next page)

361



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Server side mappings of SharedMemory objects

private void mapMemory() {

// mSHMem1: read/write

m1Buffer1 = mapShared(mSHMem1,

PROT_READ | PROT_WRITE | PROT_EXEC, SHMEM1_BUF1_OFFSET,

SHMEM1_BUF1_LENGTH);

// mSHMem2: separate two regions, read/write for each

m2Buffer1 = mapShared(mSHMem2,

PROT_READ | PROT_WRITE, SHMEM2_BUF1_OFFSET,

SHMEM2_BUF1_LENGTH);

m2Buffer2 = mapShared(mSHMem2,

PROT_READ | PROT_WRITE, SHMEM2_BUF2_OFFSET,

SHMEM2_BUF2_LENGTH);

if (m1Buffer1 != null && m2Buffer1 != null && m2Buffer2 != null) {

mBufferMapped = true;

}

}

// Free SharedMemory

private void deAllocateSharedMemory () {

if (mBufferMapped) {

if (mSHMem1 != null) {

if (m1Buffer1 != null) SharedMemory.unmap(m1Buffer1);

m1Buffer1 = null;

mSHMem1.close();

mSHMem1 = null;

}

if (mSHMem2 != null) {

if (m2Buffer1 != null) SharedMemory.unmap(m2Buffer1);

if (m2Buffer2 != null) SharedMemory.unmap(m2Buffer2);

m2Buffer1 = null;

m2Buffer2 = null;

mSHMem2.close();

mSHMem2 = null;

}

mBufferMapped = false;

}

}

@Override

public void onCreate() {

super.onCreate();

// Allocate SharedMemory objects at the time of instantiation

// If succeded, map SharedMemory objects

if (allocateSharedMemory()) {

mapMemory();

}

}

// Provide SHMEM1 to client

private void shareWith1(Message msg){

// If failed in allocating or mapping, do nothing

if (!mBufferMapped) return;

(continues on next page)

362



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 6 *** Before passing the shared memory on to a client, use

// SharedMemory#setProtect() to limit the available operations by the

// client.

// Client can only read from mSHMem1

mSHMem1.setProtect(PROT_READ);

// Mapping hash been done before the above setProtect(PROT_READ),

// so setver side can write to mShMem1 via m1Buffer1

// Put the size of the messege, then add message string

m1Buffer1.putInt(greeting.length());

m1Buffer1.put(greeting.getBytes());

try {

// Pass the SharedMemory object to the client

Message sMsg = Message.obtain(null, SHMEM1, mSHMem1);

msg.replyTo.send(sMsg);

} catch (RemoteException e) {

Log.e(TAG, "Failed to share" + e.getMessage());

}

}

// Provide SHMEM2

private void shareWith2(Message msg) {

if (!mBufferMapped) return;

// *** POINT 6 *** Before passing the shared memory on to a client, use

// SharedMemory#setProtect() to limit the available operations by the

// client.

// Client can write to mSHMem2

mSHMem2.setProtect(PROT_WRITE);

// Set messages to client in each buffer

final String greeting2 = "You can write here!";

m2Buffer1.putInt(greeting2.length());

m2Buffer1.put(greeting2.getBytes());

final String greeting3 = "From this point, I'll also write.";

m2Buffer2.putInt(greeting3.length());

m2Buffer2.put(greeting3.getBytes());

try {

// Pass the shared memory objects to the client

Message sMsg = Message.obtain(null, SHMEM2, mSHMem2);

msg.replyTo.send(sMsg);

} catch (RemoteException e){

Log.e(TAG, "failed to share mSHMem2" + e.getMessage());

}

}

// Stop sharing memory

private void unShare(Message msg){

deAllocateSharedMemory();

}

// Accepted invalid message

private void invalidMsg(Message msg){

Log.e(TAG, "Got an Invalid message: " + msg.what);

}

(continues on next page)

363



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Retrive data which set by the client from buffer

// The first element is a size of the data followed by byte sequence of a

// string

private String extractReply (ByteBuffer buf){

int len = buf.getInt();

byte [] bytes = new byte[len];

buf.get(bytes);

return new String(bytes);

}

// In this example, server side accepts two types of message from the client

// goReply() assumes that m1Buffer1 holds a data from the client

private void gotReply(Message msg) {

m1Buffer1.rewind();

String message = extractReply(m1Buffer1);

if (!message.equals(greeting)){

Log.e(TAG, "my message was overwritten: " + message);

}

}

// got Reply2() assumes m2Buffer1 holds a data from the client

private void gotReply2(Message msg) {

m2Buffer1.rewind();

String message = extractReply(m2Buffer1);

android.util.Log.d(TAG, "got a message of length " + message.length() +

" from client: " + message);

// Accepting a message in m2Buffer1 is a sign of the end of sharing memory

Message eMsg = Message.obtain();

eMsg.what = MSG_END;

try {

msg.replyTo.send(eMsg);

} catch (RemoteException e){

Log.e(TAG, "error in reply 2: " + e.getMessage());

}

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

(continues on next page)

364



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

(continues on next page)

365



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

(continues on next page)

366



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

* Point 7 *When exporting an APK, sign the APK with the same developer key as the requesting application.

Fig. 4.11.4: Signing the APK with the same developer key as the requesting application

Sample code for client

Points:

8. Declare use of the in-house signature permission.

9. Verify that the in-house-defined signature permission is defined by the in-house application.

10. Verify that the destination application is signed by the in-house certificate.

11. Sensitive information can be sent because the destination application is in-house.

12. Use explicit Intent to call an in-house service.

13. Sign the APK using the same developer key as the destination application.

All the points shown here are the same as the points for the client in "4.4.1.4. Creating/Using In-house Services", and
no points are specific to shared memory. Basic points on using shared memory are shown in the sample code below,
and so refer to it for further information.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Define an in-house signature permission -->

<permission android:name="org.jssec.android.sharedmemory.inhouseservice.

→˓messenger.MY_PERMISSION"

android:protectionLevel="signature" />

<!-- *** POINT 8 *** Define an in-house signature permission -->

<uses-permission

android:name="org.jssec.android.service.inhouseservice.messenger.MY_

→˓PERMISSION" />

<application

android:allowBackup="false"

android:icon="@mipmap/ic_launcher"

(continues on next page)

367



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<activity android:name="org.jssec.android.sharedmemory.inhouseservice.

→˓messenger.MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- Service which utilizes Messenger -->

<!-- *** POINT 2 *** Request declaration of the in-house signature permission -

→˓->

<!-- *** POINT 3 *** Do not define the Intent Filter, and explicitly declare␣

→˓exported=”true” -->

<!-- For purposes of simplification, make the service which provide shared␣

→˓memory to be a different process in the same application -->

<service android:name="org.jssec.android.sharedmemory.inhouseservice.messenger.

→˓SHMService"

android:exported="true"

android:permission="org.jssec.android.sharedmemory.inhouseservice.

→˓messenger.MY_PERMISSION"

android:process=".shmService" />

</application>

</manifest>

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.sharedmemory.inhouseservice.messenger;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.Handler;

(continues on next page)

368



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.os.IBinder;

import android.os.Message;

import android.os.Messenger;

import android.os.RemoteException;

import android.os.SharedMemory;

import android.system.ErrnoException;

import android.widget.Toast;

import android.util.Log;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import java.nio.ByteBuffer;

import java.nio.ReadOnlyBufferException;

import static android.system.OsConstants.PROT_EXEC;

import static android.system.OsConstants.PROT_READ;

import static android.system.OsConstants.PROT_WRITE;

public class MainActivity extends Activity {

private final String TAG = "SHMClient";

// Messenger used for sending data to Service

private Messenger mServiceMessenger = null;

// SharedMemory objects

private SharedMemory myShared1;

private SharedMemory myShared2;

// ByteBuffers for mapping SharedMemories

private ByteBuffer mBuf1;

private ByteBuffer mBuf2;

// Information of using Activity

private static final String SHM_PACKAGE =

"org.jssec.android.sharedmemory.inhouseservice.messenger";

private static final String SHM_CLASS =

"org.jssec.android.sharedmemory.inhouseservice.messenger.SHMService";

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.sharedmemory.inhouseservice.messenger.MY_PERMISSION";

// Hash value of the certification of In-house applications

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Hash value of the certificate "androiddebugkey" stored in

// debug.keystore

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Hash value of the certificate "my company key" in keystore

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

(continues on next page)

369



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

// true iff connecting to Service

private boolean mIsBound = false;

// Handler handling Messages received from Server

private class MyHandler extends Handler {

@Override

public void handleMessage(Message msg) {

switch (msg.what) {

case SHMService.SHMEM1:

// SHMEM 1 is provided from Service

// ShareMemory object is stored in Message.obj

Log.d(TAG, "got SHMEM1");

myShared1 = (SharedMemory) msg.obj;

useSHMEM1();

break;

case SHMService.SHMEM2:

// SHMEM2 is provided from Service

Log.d(TAG, "got SHMEM2");

myShared2 = (SharedMemory) msg.obj;

useSHMEM2();

break;

case SHMService.MSG_END:

Log.d(TAG, "got MSG_END");

alloverNow();

break;

default:

Log.e(TAG, "invalid message: " + msg.what);

}

}

}

private Handler mHandler = new MyHandler();

// Messanger used when receiving data from Service

private Messenger mLocalMessenger = new Messenger(mHandler);

// Connection used for connecting to Service

// This is needed if implementation uses bindService

private class MyServiceConnection implements ServiceConnection {

// called when connected with Service

public void onServiceConnected(ComponentName className, IBinder service){

mServiceMessenger = new Messenger(service);

// When bound to SharedMemory Service, request 1st SharedMemory

sendMessageToService(SHMService.MSG_ATTACH);

}

// This is called when Service unexpectedly terminate and connection is

// broken

public void onServiceDisconnected(ComponentName className){

mIsBound = false;

mServiceMessenger = null;

(continues on next page)

370



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

private MyServiceConnection mServiceConnection;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

doBindService ();

}

// Connect to Shared Memory Service

private void doBindService () {

mServiceConnection = new MyServiceConnection();

if (!mIsBound) {

// *** POINT 9 *** Verify that the in-house-defined signature

// permission is defined by the in-house application.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this, "In-house signature permission is not␣

→˓defined by an in-house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 10 *** Verify that the destination application is signed

// by the in-house certificate.

if (!PkgCert.test(this, SHM_PACKAGE, myCertHash(this))) {

Toast.makeText(this, "Binding Service is not an in-house␣

→˓application.", Toast.LENGTH_LONG).show();

return;

}

}

Intent it = new Intent();

// *** POINT 11 *** Sensitive information can be sent because the

// destination application is in-house.

it.putExtra("PARAM", "Sensitive Information");

// *** POINT 12 *** Use explicit Intent to call an in-house service

it.setClassName(SHM_PACKAGE, SHM_CLASS);

if (!bindService(it, mServiceConnection, Context.BIND_AUTO_CREATE)) {

Toast.makeText(this, "Bind Service Failed", Toast.LENGTH_LONG).show();

return;

}

mIsBound = true;

}

// Unbind connection with Service

private void releaseService () {

unbindService(mServiceConnection);

}

// An example of using SHMEM1

private void useSHMEM1 () {

// Because only read access is permitted for SHMEM1, mapping with

// different protection mode will raise an exception.

// The exception will be handled by mapMemory()

mBuf1 = mapMemory(myShared1, PROT_WRITE, SHMService.SHMEM1_BUF1_OFFSET,

(continues on next page)

371



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

SHMService.SHMEM1_BUF1_LENGTH);

// map with PROT_READ

mBuf1 = mapMemory(myShared1, PROT_READ, SHMService.SHMEM1_BUF1_OFFSET,

SHMService.SHMEM1_BUF1_LENGTH);

// Read data which Service side set

int len = mBuf1.getInt();

byte[] bytes = new byte[len];

mBuf1.get(bytes);

String message = new String(bytes);

Toast.makeText(MainActivity.this,

"Got: " + message, Toast.LENGTH_LONG).show();

// Because the buffer is read only, writing will cause

// ReadOnlyBufferException

try {

mBuf1.putInt(0);

} catch (ReadOnlyBufferException e){

Log.e(TAG, "Write to read only buffer: " + e.getMessage());

}

// Reply to Service

sendMessageToService(SHMService.MSG_REPLY1);

// then, request a SharedMemory with write permission

sendMessageToService(SHMService.MSG_ATTACH2);

}

// An example of using SHMEM2

private void useSHMEM2 () {

// We are allowed to write into SHMEM2, map it with PROT_WRITE

// Service side set SHMEM2 as PROT_WRITE, so mapping with

// PROT_READ | PROT_WRITE will raise an exception

mBuf2 = mapMemory(myShared2, PROT_WRITE, SHMService.SHMEM2_BUF1_OFFSET,

SHMService.SHMEM2_BUF1_LENGTH);

if (mBuf2 != null) {

// Even if the protection mode is PROT_WRITE only, it will also be

// readable on most SoC.

int size = mBuf2.getInt();

byte [] bytes = new byte[size];

mBuf2.get(bytes);

String msg = new String(bytes);

Log.d(TAG, "Got a message from service: " + msg);

// Accessing outside of the mapped region will cause

// IndexOutOfBoundsException

try {

mBuf2.get(SHMService.SHMEM2_BUF1_LENGTH + 1);

} catch (IndexOutOfBoundsException e){

Log.e(TAG, "out of bound: " + e.getMessage());

}

// Override the data which Service side set before

String replyStr = "OK Thanks!";

mBuf2.putInt(replyStr.length());

mBuf2.put(replyStr.getBytes());

// Reply to Service

sendMessageToService(SHMService.MSG_REPLY2);

}

}

(continues on next page)

372



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Map specified SharedMemory

private ByteBuffer mapMemory(SharedMemory mem, int proto, int offset,

int length){

ByteBuffer tempBuf;

try {

tempBuf = mem.map(proto, offset, length);

} catch (ErrnoException e){

Log.e(TAG,"could not map, proto: " + proto + ", offset:" +

offset +", length: " + length + "\n " + e.getMessage() +

"err no. = " + e.errno);

return null;

}

return tempBuf;

}

// Reply message to Server

private void sendMessageToService(int what){

try {

Message msg = Message.obtain();

msg.what = what;

msg.replyTo = mLocalMessenger;

mServiceMessenger.send(msg);

} catch (RemoteException e) {

Log.e(TAG, "Error in sending message: " + e.getMessage());

}

}

// Finalize no more used SharedMemory

private void alloverNow() {

// Notify Service that we are done

sendMessageToService(SHMService.MSG_DETACH);

sendMessageToService(SHMService.MSG_DETACH2);

// unmap ByteBuffers

if (mBuf1 != null) SharedMemory.unmap(mBuf1);

if (mBuf2 != null) SharedMemory.unmap(mBuf2);

// Close SharedMemory

myShared1.close();

myShared2.close();

mBuf1 = null;

mBuf2 = null;

myShared1 = null;

myShared2 = null;

// Disconnect from Service

releaseService();

}

}

* Point 13 *When exporting an APK, sign the APK using the same developer key as the destination application.

373



Secure Coding Guide Documentation Release 2025-01-29

Fig. 4.11.5: Signing the APK with the same developer key as the destination application

4.11.3 Rule Book

When using SharedMemory, the rules contained in the rule book (4.4.2. Rule Book) for the service must be observed.
In addition to the rule book, the following rules must also be observed.

1. Permissions are set properly by the side providing the shared memory for allowing access by the using side
(required)

2. All data in the shared memory is designed assuming that it will be read by sharing applications (required)

4.11.3.1 Permissions are set properly by the side providing the shared memory for allowing
access by the using side (required)

When memory is shared, in the design of operations allowable in the memory, each application must limit operations
to the minimum required for preventing leaking, alteration, and corruption of information. Services that create
SharedMemory objects can use SharedMemory#setProtect() to limit the allowable operations in the entire shared
memory before sharing with other applications. The initial values for the operations allowable in the SharedMemory
object are read, write, and execute. Except for special reasons, use of executable memory areas should be avoided
in order to prevent execution of invalid code40. Also, if other applications need to write to the shared memory, a
special-purpose shared memory is created and provided separately for enabling safe sharing of memory.

The argument of SharedMemory#setProtect() is a logical OR for the bit flags (PROT_READ, PROT_WRITE,
PROT_EXEC) corresponding to read, write, and execute, respectively. An example is shown below for allowing
reading and writing only for the SharedMemory object shMem.

shMem.setProtect(PROT_READ | PROT_WRITE)

SharedMemory#map() must be executed beforehand in order to enable access by the client to areas (all or part) within
the shared memory. During this process, the allowable operations for the memory are specified by an argument, but
operations cannot be specified above those permitted by the service beforehand using SharedMemory#setProtect().
For example, the client cannot specify write operations when the service permits reading only. An example is shown
below where the SharedMemory object ashMem provided by the service performs map().

ByteBuffer mbuf;

// If the Service only allows READ from ashMem,

// the following code raises an exception

mbuf = ashMem.map(offset, length, PROT_WRITE);

At the client side, setProtect() can be called to redo the settings so that operations are allowed for the entire shared
memory, but like map(), the settings cannot be made to allow operations above those that were permitted by the
service.

40 For some devices (based on the CPU architecture that is used), if a certain memory area is readable, it automatically becomes executable.
However, even in these cases, writing can be prohibited for these areas to prevent writing of executable code in these areas by other applications.

374



Secure Coding Guide Documentation Release 2025-01-29

4.11.3.2 All data in the shared memory is designed assuming that it will be read by sharing
applications (required)

As described above, when memory is shared with other applications, the service can set the access permissions
(read, write, execute) for the shared memory beforehand. However, even if the flag is set to PROT_WRITE only
to allow writing only, in certain cases, reading of the memory cannot be prohibited. In other words, if the memory
management unit (MMU) being used by the device does not support memory access that allows writing only, allowing
writing for a certain memory area will also allow reading. It is thought that a large number of devices actually have
this configuration, and as a result, design must be performed under the assumption that the contents of the shared
memory will be known by other applications.

// Assume that Service side only allow writing go ashMem

// by SharedMemory#setProtect(PROT_WRITE).

// It is most of the case that even the client map with

// PROT_WRITE, he mapped buffer can be read.

ByteBuffer buf;

buf = ashMem.map(offset, length, PROT_WRITE);

// On most of SoC, read does not cause errors

int len = buf.getInt();

byte [] bytes = new byte[len];

buf.get(bytes);

Although PROT_NONE can be specified for the flag to prevent all operations, this defeats the purpose of having a
shared memory.

4.11.4 Advanced Topics

4.11.4.1 Actual State of Shared Memory

Up to this point, the memory-sharing mechanism where memory was shared among multiple applications was de-
scribed. However, in actuality, shared memory is a mechanism that shares the same physical memory area among
multiple processes. Each process maps the shared physical memory area to its own address space for accessing (this
is performed by SharedMemory#map()). For Android shared memory, the mapped memory area (for Java language)
is a single ByteBuffer object. (If shared memory that exceeds the page size is allocated, typically, the shared physical
memory area is not divided into consecutive areas, but instead, it is divided into multiple non-consecutive pages.
However, if mapped onto a process address space, the memory area becomes consecutive address spaces.)

Fig. 4.11.6: Physical memory and process address space

In Unix-based OS, including the Android OS, the connected terminal, USB device, or other peripheral device is
abstracted using the concept of device files, and the device is handled as a virtual file. Shared memory in the Android
OS is not an exception to this, and this handling corresponds to the device file /dev/ashmem. When this device file

375



Secure Coding Guide Documentation Release 2025-01-29

is opened, the file descriptor is returned in the same way as when a normal file is opened, and through this process,
the shared memory is accessed. In the same way as normal files, this file descriptor can use mmap() to map to the
process address space. In Unix-based OS, mmap() is the standard system call, and it obtains the file descriptors for
devices files for a wide range of devices and provides a function for mapping the device to the address space of the
calling process. This is also used for the shared memory of the Android OS. The mapped address space is visible as
a byte sequence from the program (ByteBuffer for Java as mentioned above, and char * at the C language level).

Fig. 4.11.7: Mapping of virtual file and address space

The sharing of memory between processes in this framework is equivalent to sharing the file descriptor of /dev/asmem
corresponding to this memory area41. As a result, this enables low costs for sharing, and after mapping to the address
space of the process, this enables access at the same efficiency as normal memory access.

41 The file descriptor is a unique value within the process, and so when it is passed to other processes, proper conversion is required, but this
does not need to be a consideration at the Android SDK API level.

376



Secure Coding Guide Documentation Release 2025-01-29

5
How to use Security Functions

There are various security functions prepared in Android, like encryption, digital signature and permission etc. If
these security functions are not used correctly, security functions don't work efficiently and loophole will be prepared.
This chapter will explain how to use the security functions properly.

5.1 Creating Password Input Screens

5.1.1 Sample Code

When creating password input screen, some points to be considered in terms of security, are described here. Only
what is related to password input is mentioned, here. Regarding how to save password, another articles is planned to
be published is future edition.

377



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.1.1: Password Input Screen

Points:

1. The input password should be mask displayed (Display with *)

2. Provide the option to display the password in a plain text.

3. Alert a user that displaying password in a plain text has a risk.

Points: When handling the last Input password, pay attention the following points along with the above points.

4. In the case there is the last input password in an initial display, display the fixed digit numbers of black dot as
dummy in order not that the digits number of last password is guessed.

5. When the dummy password is displayed and the "Show password" button is pressed, clear the last input pass-
word and provide the state for new password input.

6. When last input password is displayed with dummy, in case user tries to input password, clear the last input
password and treat new user input as a new password.

password_activity.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical"

android:padding="10dp" >

<!-- Label for password item -->

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"
(continues on next page)

378



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:text="@string/password" />

<!-- Label for password item -->

<!-- *** POINT 1 *** The input password must be masked (Display with black␣

→˓dot) -->

<EditText

android:id="@+id/password_edit"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:hint="@string/hint_password"

android:inputType="textPassword" />

<!-- *** POINT 2 *** Provide the option to display the password in a plain␣

→˓text -->

<CheckBox

android:id="@+id/password_display_check"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/display_password" />

<!-- *** POINT 3 *** Alert a user that displaying password in a plain text has␣

→˓a risk. -->

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/alert_password" />

<!-- Cancel/OK button -->

<LinearLayout

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_marginTop="50dp"

android:gravity="center"

android:orientation="horizontal" >

<Button

android:layout_width="0dp"

android:layout_height="wrap_content"

android:layout_weight="1"

android:onClick="onClickCancelButton"

android:text="@android:string/cancel" />

<Button

android:layout_width="0dp"

android:layout_height="wrap_content"

android:layout_weight="1"

android:onClick="onClickOkButton"

android:text="@android:string/ok" />

</LinearLayout>

</LinearLayout>

Implementation for 3 methods which are located at the bottom of PasswordActivity.java, should be adjusted depends
on the purposes.

• private String getPreviousPassword()

• private void onClickCancelButton(View view)

379



Secure Coding Guide Documentation Release 2025-01-29

• private void onClickOkButton(View view)

PasswordActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.password.passwordinputui;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.InputType;

import android.text.TextWatcher;

import android.view.View;

import android.view.WindowManager;

import android.widget.CheckBox;

import android.widget.CompoundButton;

import android.widget.CompoundButton.OnCheckedChangeListener;

import android.widget.EditText;

import android.widget.Toast;

public class PasswordActivity extends Activity {

// Key to save the state

private static final String KEY_DUMMY_PASSWORD = "KEY_DUMMY_PASSWORD";

// View inside Activity

private EditText mPasswordEdit;

private CheckBox mPasswordDisplayCheck;

// Flag to show whether password is dummy display or not

private boolean mIsDummyPassword;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.password_activity);

// Set Disabling Screen Capture

getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE);

// Get View

mPasswordEdit = (EditText) findViewById(R.id.password_edit);

mPasswordDisplayCheck =

(CheckBox) findViewById(R.id.password_display_check);

(continues on next page)

380



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Whether last Input password exist or not.

if (getPreviousPassword() != null) {

// *** POINT 4 *** In the case there is the last input password in

// an initial display, display the fixed digit numbers of black dot

// as dummy in order not that the digits number of last password

// is guessed.

// Display should be dummy password.

mPasswordEdit.setText("**********");

// To clear the dummy password when inputting password, set text

// change listener.

mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());

// Set dummy password flag

mIsDummyPassword = true;

}

// Set a listner to change check state of password display option.

mPasswordDisplayCheck.setOnCheckedChangeListener(new␣

→˓OnPasswordDisplayCheckedChangeListener());

}

@Override

public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

// Unnecessary when specifying not to regenerate Activity by the change in

// screen aspect ratio.

// Save Activity state

outState.putBoolean(KEY_DUMMY_PASSWORD, mIsDummyPassword);

}

@Override

public void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);

// Unnecessary when specifying not to regenerate Activity by the change in

// screen aspect ratio.

// Restore Activity state

mIsDummyPassword = savedInstanceState.getBoolean(KEY_DUMMY_PASSWORD);

}

/**

* Process in case password is input

*/

private class PasswordEditTextWatcher implements TextWatcher {

public void beforeTextChanged(CharSequence s, int start, int count,

int after) {

// Not used

}

public void onTextChanged(CharSequence s, int start, int before,

int count) {

// *** POINT 6 *** When last Input password is displayed as dummy,

// in the case an user tries to input password, Clear the last

// input password, and treat new user input as new password.

(continues on next page)

381



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (mIsDummyPassword) {

// Set dummy password flag

mIsDummyPassword = false;

// Trim space

CharSequence work = s.subSequence(start, start + count);

mPasswordEdit.setText(work);

// Cursor position goes back the beginning, so bring it at the end.

mPasswordEdit.setSelection(work.length());

}

}

public void afterTextChanged(Editable s) {

// Not used

}

}

/**

* Process when check of password display option is changed.

*/

private class OnPasswordDisplayCheckedChangeListener

implements OnCheckedChangeListener {

public void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {

// *** POINT 5 *** When the dummy password is displayed and the

// "Show password" button is pressed, clear the last input

// password and provide the state for new password input.

if (mIsDummyPassword && isChecked) {

// Set dummy password flag

mIsDummyPassword = false;

// Set password empty

mPasswordEdit.setText(null);

}

// Cursor position goes back the beginning, so memorize the current

// cursor position.

int pos = mPasswordEdit.getSelectionStart();

// *** POINT 2 *** Provide the option to display the password in a

// plain text

// Create InputType

int type = InputType.TYPE_CLASS_TEXT;

if (isChecked) {

// Plain display when check is ON.

type |= InputType.TYPE_TEXT_VARIATION_VISIBLE_PASSWORD;

} else {

// Masked display when check is OFF.

type |= InputType.TYPE_TEXT_VARIATION_PASSWORD;

}

// Set InputType to password EditText

mPasswordEdit.setInputType(type);

// Set cursor position

mPasswordEdit.setSelection(pos);

(continues on next page)

382



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

// Implement the following method depends on application

/**

* Get the last Input password

*

* @return Last Input password

*/

private String getPreviousPassword() {

// When need to restore the saved password, return password character

// string

// For the case password is not saved, return null

return "hirake5ma";

}

/**

* Process when cancel button is clicked

*

* @param view

*/

public void onClickCancelButton(View view) {

// Close Activity

finish();

}

/**

* Process when OK button is clicked

*

* @param view

*/

public void onClickOkButton(View view) {

// Execute necessary processes like saving password or using for

// authentication

String password = null;

if (mIsDummyPassword) {

// When dummy password is displayed till the final moment, grant last

// input password as fixed password.

password = getPreviousPassword();

} else {

// In case of not dummy password display, grant the user input

// password as fixed password.

password = mPasswordEdit.getText().toString();

}

// Display password by Toast

Toast.makeText(this, "password is \"" + password + "\"",

Toast.LENGTH_SHORT).show();

// Close Activity

finish();

}

(continues on next page)

383



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

5.1.2 Rule Book

Follow the below rules when creating password input screen.

1. Provide the Mask Display Feature, If the Password Is Entered (Required)

2. Provide the Option to Display Password in a Plain Text (Required)

3. Mask the Password when Activity Is Launched (Required)

4. When Displaying the Last Input Password, Dummy Password Must Be Displayed (Required)

5.1.2.1 Provide the Mask Display Feature, If the Password Is Entered (Required)

Smartphone is often used in crowded places like in a train or in a bus, and the risk that password is peeked by someone.
So the function to mask display password is necessary as an application spec.

There are two ways to display the EditText as password: specifying this statically in the layout XML, or specifying this
dynamically by switching the display from a program. The former is achieved by specifying “textPassword” for the
android:inputType attribute or by using android:password attribute. The latter is achieved by using the setInputType()
method of the EditText class to add InputType.TYPE_TEXT_VARIATION_PASSWORD to its input type.

Sample code of each of them is shown below.

Masking password in layout XML.

password_activity.xml

<!-- Password input item -->

<!-- Set true for the android:password attribute -->

<EditText

android:id="@+id/password_edit"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:hint="@string/hint_password"

android:inputType="textPassword" />

Masking password in Activity.

PasswordActivity.java

// Set password display type

// Set TYPE_TEXT_VARIATION_PASSWORD for InputType.

EditText passwordEdit = (EditText) findViewById(R.id.password_edit);

int type = InputType.TYPE_CLASS_TEXT

| InputType.TYPE_TEXT_VARIATION_PASSWORD;

passwordEdit.setInputType(type);

5.1.2.2 Provide the Option to Display Password in a Plain Text (Required)

Password input in Smartphone is done by touch panel input, so compared with keyboard input in PC, miss input may
be easily happened. Because of the inconvenience of inputting, user may use the simple password, and it makes more
dangerous. In addition, when there's a policy like account is locked due the several times of password input failure,
it's necessary to avoid from miss input as much as possible. As a solution of these problems, by preparing an option
to display password in a plain text, user can use the safe password.

However, when displaying password in a plain text, it may be sniffed, so when using this option. It's necessary to
call user cautions for sniffing from behind. In addition, in case option to display in a plain text is implemented, it's

384



Secure Coding Guide Documentation Release 2025-01-29

also necessary to prepare the system to auto cancel the plain text display like setting the time of plain display. The
restrictions for password plain text display are published in another article in future edition. So, the restrictions for
password plain text display are not included in sample code.

Fig. 5.1.2: Display Password in a Plain Text

By specifying InputType of EditText, mask display and plain text display can be switched.

PasswordActivity.java

/**

* Process when check of password display option is changed.

*/

private class OnPasswordDisplayCheckedChangeListener implements

OnCheckedChangeListener {

public void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {

// *** POINT 5 *** When the dummy password is displayed and the

// "Show password" button is pressed,

// Clear the last input password and provide the state for new

// password input.

if (mIsDummyPassword && isChecked) {

// Set dummy password flag

mIsDummyPassword = false;

// Set password empty

mPasswordEdit.setText(null);

}

// Cursor position goes back the beginning, so memorize the current

// cursor position.

int pos = mPasswordEdit.getSelectionStart();

// *** POINT 2 *** Provide the option to display the password in a

// plain text

// Create InputType

int type = InputType.TYPE_CLASS_TEXT;

if (isChecked) {

// Plain display when check is ON.

type |= InputType.TYPE_TEXT_VARIATION_VISIBLE_PASSWORD;

} else {
(continues on next page)

385



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Masked display when check is OFF.

type |= InputType.TYPE_TEXT_VARIATION_PASSWORD;

}

// Set InputType to password EditText

mPasswordEdit.setInputType(type);

// Set cursor position

mPasswordEdit.setSelection(pos);

}

}

5.1.2.3 Mask the Password when Activity Is Launched (Required)

To prevent it from a password peeping out, the default value of password display option, should be set OFF, when
Activity is launched. The default value should be always defined as safer side, basically.

5.1.2.4 When Displaying the Last Input Password, Dummy Password Must Be Displayed (Re-
quired)

When specifying the last input password, not to give the third party any hints for password, it should be displayed as
dummy with the fixed digits number of mask characters (* etc.). In addition, in the case pressing "Show password"
when dummy display, clear password and switch to plain text display mode. It can help to suppress the risk that the
last input password is sniffed low, even if the device is passed to a third person like when it's stolen. FYI, In case of
dummy display and when a user tries to input password, dummy display should be cancelled, it necessary to turn the
normal input state.

When displaying the last Input password, display dummy password.

PasswordActivity.java

@Override

public void onCreate(Bundle savedInstanceState) {

[...]

// Whether last Input password exist or not.

if (getPreviousPassword() != null) {

// *** POINT 4 *** In the case there is the last input password in

// an initial display, display the fixed digit numbers of black dot

// as dummy in order not that the digits number of last password is

// guessed.

// Display should be dummy password.

mPasswordEdit.setText("**********");

// To clear the dummy password when inputting password, set text

// change listener.

mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());

// Set dummy password flag

mIsDummyPassword = true;

}

[...]

}

(continues on next page)

386



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

/**

* Get the last input password.

*

* @return the last input password

*/

private String getPreviousPassword() {

// To restore the saved password, return the password character string.

// For the case password is not saved, return null.

return "hirake5ma";

}

In the case of dummy display, when password display option is turned ON, clear the displayed contents.

PasswordActivity.java

/**

* Process when check of password display option is changed.

*/

private class OnPasswordDisplayCheckedChangeListener implements

OnCheckedChangeListener {

public void onCheckedChanged(CompoundButton buttonView,

boolean isChecked) {

// *** POINT 5 *** When the dummy password is displayed and the

// "Show password" button is pressed,

// Clear the last input password and provide the state for new

// password input.

if (mIsDummyPassword && isChecked) {

// Set dummy password flag

mIsDummyPassword = false;

// Set password empty

mPasswordEdit.setText(null);

}

[...]

}

}

In case of dummy display, when user tries to input password, clear dummy display.

PasswordActivity.java

// Key to save the state

private static final String KEY_DUMMY_PASSWORD = "KEY_DUMMY_PASSWORD";

[...]

// Flag to show whether password is dummy display or not.

private boolean mIsDummyPassword;

@Override

public void onCreate(Bundle savedInstanceState) {

[...]

// Whether last Input password exist or not.

if (getPreviousPassword() != null) {
(continues on next page)

387



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 4 *** In the case there is the last input password in

// an initial display, display the fixed digit numbers of black dot

// as dummy in order not that the digits number of last password is

// guessed.

// Display should be dummy password.

mPasswordEdit.setText("**********");

// To clear the dummy password when inputting password, set text

// change listener.

mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());

// Set dummy password flag

mIsDummyPassword = true;

}

[...]

}

@Override

public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

// Unnecessary when specifying not to regenerate Activity by the change in

// screen aspect ratio.

// Save Activity state

outState.putBoolean(KEY_DUMMY_PASSWORD, mIsDummyPassword);

}

@Override

public void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);

// Unnecessary when specifying not to regenerate Activity by the change in

// screen aspect ratio.

// Restore Activity state

mIsDummyPassword = savedInstanceState.getBoolean(KEY_DUMMY_PASSWORD);

}

/**

* Process when inputting password.

*/

private class PasswordEditTextWatcher implements TextWatcher {

public void beforeTextChanged(CharSequence s, int start, int count,

int after) {

// Not used

}

public void onTextChanged(CharSequence s, int start, int before,

int count) {

// *** POINT 6 *** When last Input password is displayed as dummy,

// in the case an user tries to input password, Clear the last

// input password, and treat new user input as new password.

if (mIsDummyPassword) {

// Set dummy password flag

mIsDummyPassword = false;

(continues on next page)

388



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Trim space

CharSequence work = s.subSequence(start, start + count);

mPasswordEdit.setText(work);

// Cursor position goes back the beginning, so bring it at the end.

mPasswordEdit.setSelection(work.length());

}

}

public void afterTextChanged(Editable s) {

// Not used

}

}

5.1.3 Advanced Topics

5.1.3.1 Login Process

The representative example of where password input is required is login process. Here are some Points that need
cautions in Login process.

Error message when login fail

In login process, need to input 2 information which is ID(account) and password. When login failure, there are 2
cases. One is ID doesn't exist. Another is ID exists but password is incorrect. If either of these 2 cases is distinguished
and displayed in a login failure message, attackers can guess "whether the specified ID exists or not". To stop this
kind of guess, these 2 cases should not be specified in login failure message, and this message should be displayed as
per below.

Message example: Login ID or password is incorrect.

Auto Login function

There is a function to perform auto login by omitting login ID/password input in the next time and later, after successful
login process has been completed once. Auto login function can omit the complicated input. So the convenience will
increase, but on the other hand, when a Smartphone is stolen, the risk which is maliciously being used by the third
party, will follow.

Only the use when damages caused by the malicious third party is somehow acceptable, or only in the case enough se-
curity measures can be taken, auto login function can be used. For example, in the case of online banking application,
when the device is operated by the third party, financial damage may be caused. So in this case, security measures
are necessary along with auto login function. There are some possible counter-measures, like "Require re-inputting
password just before financial process like payment process occurs", "When setting auto login, call a user for enough
attentions and prompt user to secure device lock", etc. When using auto login, it's necessary to investigate carefully
considering the convenience and risks along with the assumed counter measures.

5.1.3.2 Changing Password

When changing the password which was once set, following input items should be prepared on the screen.

• Current password

• New password

• New password (confirmation)

When auto login function is introduced, there are possibilities that third party can use an application. In that case,
to avoid from changing password unexpectedly, it's necessary to require the current password input. In addition, to
decrease the risk of getting into unserviceable state due to miss inputting new password, it's necessary to require new
password input 2 times.

389



Secure Coding Guide Documentation Release 2025-01-29

5.1.3.3 Regarding "Make passwords visible" Setting

There is a setting in Android's setting menu, called "Make passwords visible." In case of Android 5.0, it's shown as
below. Setting > Security > Make passwords visible

There is a setting in Android's setting menu, called "Make passwords visible." In case of Android 5.0, it's shown as
below.

Fig. 5.1.3: Security - Make Passwords visible

When turning ON "Make passwords visible" setting, the last input character is displayed in a plain text. After the
certain time (about 2 seconds) passed, or after inputting the next character, the characters which was displayed in a
plain text is masked. When turning OFF, it's masked right after inputting. This setting affects overall system, and it's
applied to all applications which use password display function of EditText.

Fig. 5.1.4: Display password

390



Secure Coding Guide Documentation Release 2025-01-29

5.1.3.4 Disabling Screen Shot

In password input screens, passwords could be displayed in the clear on the screens. In such screens as handle personal
information, they could be leaked from screenshot files stored on external storage if the screenshot function is stayed
enable as default. Thus it is recommended to disable the screenshot function for such screens as password input
screens. Screen capture can be disabled by using addFlag to set FLAG_SECURE in WindowManager1.

5.1.3.5 Integrate Credential Manager with Autofill

Android 15 Beta 2 or later, androidx.credentials:1.5.0-alpha01 or later allows developers to link specific Views (e.g.,
username and password fields) to Credential Manager requests. When the user focuses on these Views, the corre-
sponding requests are sent to the Credential Manager, and the generated authentication information is unified across
credential providers and displayed in the autofill UI (e.g., keyboard inline and pull-down suggestions). This fea-
ture also serves as a fallback when users accidentally accidentally closes the account selection tool in the Credential
Manager

The Jetpack androidx.credentials library is recommended as a recommended endpoint for the following reasons

• Integration: androidx.credentials is part of Android Jetpack and integrates seamlessly with other Jetpack li-
braries.

• Maintainability: Officially supported by Google, with regular updates and bug fixes, making it highly reliable.

• Security: The latest security best practices for managing credentials are implemented to ensure secure creden-
tial management.

• Simplicity: Designed for easy implementation by developers, reducing code complexity

Implementation procedure

1. Create a GetCredentialRequest

val getPasswordOption = GetPasswordOption()

val getPublicKeyCredentialOption = GetPublicKeyCredentialOption(

requestJson = requestJson

)

val getCredRequest = GetCredentialRequest(

listOf(getPasswordOption, getPublicKeyCredentialOption)

)

2. Call the getCredential API

coroutineScope.launch {

try {

val result = credentialManager.getCredential(

context = activityContext, // Use an activity-based context

request = getCredRequest

)

handleSignIn(result)

} catch (GetCredentialException e) {

handleFailure(e)

}

}

3. Set up auto-fill functionality in the view

import androidx.credentials.PendingGetCredentialRequest

usernameEditText.pendingGetCredentialRequest = PendingGetCredentialRequest(

(continues on next page)

1 https://support.google.com/googleplay/android-developer/answer/12253906#flag_secure_preview

391

https://support.google.com/googleplay/android-developer/answer/12253906#flag_secure_preview


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

getCredRequest) { response -> handleSignIn(response)

}

passwordEditText.pendingGetCredentialRequest = PendingGetCredentialRequest(

getCredRequest) { response -> handleSignIn(response)

}

Precautions

• setPendingGetCredentialRequest is an extension API to the androidx.credentials library, and is called differ-
ently in Kotlin and Java

• Currently, this functionality is only available on View objects

• Operation was confirmed with the official version of Android 15 and androidx.credentials:1.5.0-beta01. Be-
cause androidx.credentials is a beta version, operation and specifications may change in the official version.

5.2 Permission and Protection Level

There are four types of Protection Level within permission and they consist of normal, dangerous, signature, and
signatureOrSystem. In addition, "development", "system", and "appop" exist, but since they are not used in general
applications, explanation in this chapter is omitted. Depending on the Protection Level, permission is referred to as
normal permission, dangerous permission, signature permission, or signatureOrSystem permission. In the following
sections, such names are used.

5.2.1 Sample Code

5.2.1.1 How to Use System Permissions of Android OS

Android OS has a security mechanism called "permission" that protects its user's assets such as contacts and a GPS
feature from a malware. When an application seeks access to such information and/or features, which are protected
under Android OS, the application needs to explicitly declare a permission in order to access them. When an appli-
cation, which has declared a permission that needs user's consent to be used, is installed, the following confirmation
screen appears2.

2 In Android 6.0 (API Level 23) and later, the granting or refusal of user permissions does not occur when an app is installed, but instead at
runtime when then app requests permissions. For more details, see Section "5.2.1.4.Methods for using Dangerous Permissions in Android 6.0 and
later" and Section "5.2.3.6. Modifications to the Permission model specifications in Android versions 6.0 and later".

392



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.2.1: Declare uses permission

From this confirmation screen, a user is able to know which types of features and/or information an application is
trying to access. If the behavior of an application is trying to access features and/or information that are clearly
unnecessary, then there is a high possibility that the application is a malware. Hence, as your application is not
suspected to be a malware, declarations of permission to use needs to be minimized.

Points:

1. Declare a permission used in an application with uses-permission.

2. Do not declare any unnecessary permissions with uses-permission.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Declare a permission used in an application with uses-

→˓permission -->

<!-- Permission to access Internet -->

<uses-permission android:name="android.permission.INTERNET"/>

<!-- *** POINT 2 *** Do not declare any unnecessary permissions with uses-

→˓permission -->

<!-- If declaring to use Permission that is unnecessary for application␣

→˓behaviors, it gives users a sense of distrust. -->

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name=".MainActivity"

android:label="@string/app_name"

(continues on next page)

393



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

5.2.1.2 How to Communicate Between In-house Applications with In-house-defined Signature
Permission

Besides system permissions defined by Android OS, an application can define its own permissions as well. If using
an in-house-defined permission (it is an in-house-defined signature permission to be more precise), you can build
a mechanism where only communications between in-house applications is permitted. By providing the composite
function based on inter-application communication between multiple in-house applications, the applications get more
attractive and your business could get more profitable by selling them as series. It is a case of using in-house-defined
signature permission.

The sample application "In-house-defined Signature Permission (UserApp)" launches the sample application
"In-house-defined Signature Permission (ProtectedApp)" with Context.startActivity() method. Both applications
need to be signed with the same developer key. If keys for signing them are different, the UserApp sends no In-
tent to the ProtectedApp, and the ProtectedApp processes no Intent received from the UserApp. Furthermore, it
prevents malwares from circumventing your own signature permission using the matter related to the installation
order as explained in the Advanced Topic section.

Fig. 5.2.2: Communication Between In-house Applications with In-house-defined Signature Permission

Points: Application Providing Component

1. Define a permission with protectionLevel="signature".

2. For a component, enforce the permission with its permission attribute.

3. If the component is an activity, you must define no intent-filter.

4. At run time, verify if the signature permission is defined by itself on the program code.

5. When exporting an APK, sign the APK with the same developer key that applications using the component
use.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

(continues on next page)

394



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

>

<!-- *** POINT 1 *** Define a permission with protectionLevel="signature" -->

<permission

android:name="org.jssec.android.permission.protectedapp.MY_PERMISSION"

android:protectionLevel="signature" />

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- *** POINT 2 *** For a component, enforce the permission with its␣

→˓permission attribute -->

<activity

android:name=".ProtectedActivity"

android:exported="true"

android:label="@string/app_name"

android:permission="org.jssec.android.permission.protectedapp.MY_PERMISSION

→˓" >

<!-- *** POINT 3 *** If the component is an activity, you must define no␣

→˓intent-filter -->

</activity>

</application>

</manifest>

ProtectedActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.permission.protectedapp;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.widget.TextView;

public class ProtectedActivity extends Activity {

(continues on next page)

395



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.permission.protectedapp.MY_PERMISSION";

// Hash value of in-house certificate

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" of debug.keystore

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" of keystore

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

private TextView mMessageView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mMessageView = (TextView) findViewById(R.id.messageView);

// *** POINT 4 *** At run time, verify if the signature permission is

// defined by itself on the program code

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

mMessageView.setText("In-house defined signature permission is not␣

→˓defined by in-house application.");

return;

}

// *** POINT 4 *** Continue processing only when the certificate matches

mMessageView.setText("In-house-defined signature permission is defined by␣

→˓in-house application, was confirmed.");

}

}

SigPerm.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

(continues on next page)

396



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.Context;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.PermissionInfo;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class SigPerm {

public static boolean test(Context ctx, String sigPermName,

String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

try {

// Get the package name of the application which declares a permission

// named sigPermName.

PackageManager pm = ctx.getPackageManager();

PermissionInfo pi =

pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);

String pkgname = pi.packageName;

// Fail if the permission named sigPermName is not a Signature

// Permission

if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE)

return false;

// Compare the actual hash value of pkgname with the correct hash

// value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct check is possible

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else(API Level < 28) use the facility of PkgCert

return correctHash.equals(PkgCert.hash(ctx, pkgname));

}

} catch (NameNotFoundException e) {

return false;

}

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

(continues on next page)

397



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

398



Secure Coding Guide Documentation Release 2025-01-29

* Point 5 *When exporting an APK, sign the APKwith the same developer key that applications using the component
have used.

Fig. 5.2.3: Sign the APK with the same developer key that applications using the component have used

Points: Application Using Component

6. The same signature permission that the application uses must not be defined.

7. Declare the in-house permission with uses-permission tag.

8. Verify if the in-house signature permission is defined by the application that provides the component on the
program code.

9. Verify if the destination application is an in-house application.

10. Use an explicit intent when the destination component is an activity.

11. When exporting an APK by [Build] -> [Generate Signed APK], sign the APK with the same developer key
that the destination application uses.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<queries>

<package android:name="org.jssec.android.permission.protectedapp" />

</queries>

<!-- *** POINT 6 *** The same signature permission that the application uses␣

→˓must not be defined -->

<!-- *** POINT 7 *** Declare the in-house permission with uses-permission tag -->

<uses-permission

android:name="org.jssec.android.permission.protectedapp.MY_PERMISSION" />

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<activity

android:name=".UserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

(continues on next page)

399



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

UserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.permission.userapp;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.SigPerm;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Toast;

public class UserActivity extends Activity {

// Requested (Destination) application's Activity information

private static final String TARGET_PACKAGE =

"org.jssec.android.permission.protectedapp";

private static final String TARGET_ACTIVITY =

"org.jssec.android.permission.protectedapp.ProtectedActivity";

// In-house Signature Permission

private static final String MY_PERMISSION =

"org.jssec.android.permission.protectedapp.MY_PERMISSION";

// Hash value of in-house certificate

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" of debug.keystore.

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

(continues on next page)

400



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" of keystore.

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public void onSendButtonClicked(View view) {

// *** POINT 8 *** Verify if the in-house signature permission is defined

// by the application that provides the component on the program code.

if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {

Toast.makeText(this, "In-house-defined signature permission is not␣

→˓defined by In house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 9 *** Verify if the destination application is an in-house

// application.

if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {

Toast.makeText(this, "Requested (Destination) application is not in-

→˓house application.", Toast.LENGTH_LONG).show();

return;

}

// *** POINT 10 *** Use an explicit intent when the destination component

// is an activity.

try {

Intent intent = new Intent();

intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

startActivity(intent);

} catch(Exception e) {

Toast.makeText(this,

String.format("Exception occurs:%s", e.getMessage()),

Toast.LENGTH_LONG).show();

}

}

}

PkgCertWhitelists.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

(continues on next page)

401



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import android.content.pm.PackageManager;

import java.util.HashMap;

import java.util.Map;

import android.content.Context;

import android.os.Build;

import static android.content.pm.PackageManager.CERT_INPUT_SHA256;

public class PkgCertWhitelists {

private Map<String, String> mWhitelists = new HashMap<String, String>();

public boolean add(String pkgname, String sha256) {

if (pkgname == null) return false;

if (sha256 == null) return false;

sha256 = sha256.replaceAll(" ", "");

if (sha256.length() != 64)

return false; // SHA-256 -> 32 bytes -> 64 chars

sha256 = sha256.toUpperCase();

if (sha256.replaceAll("[0-9A-F]+", "").length() != 0)

return false; // found non hex char

mWhitelists.put(pkgname, sha256);

return true;

}

public boolean test(Context ctx, String pkgname) {

// Get the correct hash value which corresponds to pkgname.

String correctHash = mWhitelists.get(pkgname);

// Compare the actual hash value of pkgname with the correct hash value.

if (Build.VERSION.SDK_INT >= 28) {

// ** if API Level >= 28, direct checking is possible

PackageManager pm = ctx.getPackageManager();

return pm.hasSigningCertificate(pkgname,

Utils.hex2Bytes(correctHash),

CERT_INPUT_SHA256);

} else {

// else use the facility of PkgCert

return PkgCert.test(ctx, pkgname, correctHash);

}

}

}

402



Secure Coding Guide Documentation Release 2025-01-29

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {
(continues on next page)

403



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

* Point 11 *When generating an APK by [Build] -> [Generate Signed APK], sign the APK with the same developer
key that the destination application uses.

Fig. 5.2.4: Sign the APK with the same developer key that the destination application uses

Signature verification in Android 9.0 (API level 28) and later

APK signature scheme V3 was introduced in Android 9.0 (API level 28) for enabling signature key rotation. At the
same time, the package signature-related APIs were also updated3. When examining the changes from the standpoint
of application signature verification, the hasSigningCertificate() method, which is a new method in thePackageMan-
ager class, can now be used for verification. Specifically, this can be substituted for processes such as those where the
certificate used for the signature is obtained from the verification target package where the sample code PkgCert class
of the Guide was performed and the hash value is calculated. This is applied in the SigPerm and PkgCertWhiteLists
in the sample code shown above, and for API level 28 and higher, this new method hasSigningCertificate() is used.
Differences in signature schemes and differences in verification as a result of multiple signatures are incorporated into
hasSigningCertificate(), and so if targeting API level 28 and higher, use of this is recommended4.

5.2.1.3 How to Verify the Hash Value of an Application's Certificate

We will provide an explanation on how to verify the hash value of an application's certificate that appears at different
points in this Guidebook. Strictly speaking, the hash value means "the SHA256 hash value of the public key certificate
for the developer key used to sign the APK."

How to verify it with Keytool
3 For the specific changes, refer to the Android Developers website (https://developer.android.com/reference/android/content/pm/

PackageManager).
4 As of the time of this writing, there is currently no available Android Support Library compatible with the android.content.pm.PackageM-

anager of Android 9.0 (API level 28).

404

https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager


Secure Coding Guide Documentation Release 2025-01-29

Using a program called keytool that is bundled with JDK, you can get the hash value (also known as certificate
fingerprint) of a public key certificate for the developer key. There are various hash methods such as MD5, SHA1,
and SHA256 due to the differences in hash algorithm. However, considering the security strength of the encryption
bit length, this Guidebook recommends the use of SHA256. Unfortunately, the keytool bundled to JDK6 that is used
in Android SDK does not support SHA256 for calculating hash values. Therefore, it is necessary to use the keytool
that is bundled to JDK7 or later.

Example of outputting the content of a debugging certicate of an Android through a keytool

> keytool -list -v -keystore <KeystoreFile> -storepass <Password>

Type of keystore: jks

Keystore provider: SUN

One entry is included in a keystore

Other name: androiddebugkey

Date of creation: 2012/05/18

Entry type: PrivateKeyEntry

Length of certificate chain: 1

Certificate[1]:

Owner: CN=Android Debug, O=Android, C=US

Issuer: CN=Android Debug, O=Android, C=US

Serial number: 4fb5d390

Start date of validity period: Fri May 18 13:44:00 JST 2012 End date: Tue Oct 04␣

→˓13:44:00 JST 2039

Certificate fingerprint:

MD5: 8A:1A:E5:15:9A:2A:9A:45:C1:7F:30:EF:17:70:37:D1

SHA1: 25:BC:25:91:02:A4:DD:04:7D:17:70:EC:41:35:21:00:0C:0A:C7:F1

SHA256: 0E:FB:72:36:32:83:48:A9:89:71:8B:AD:DF:57:F5:44:D5:CC:B4:AE:B9:DB:

34:BC:1E:29:DD:26:F7:7C:82:55

Signatrue algorithm name: SHA1withRSA

Subject public key algorithm: 1024-bit RSA key

Version: 3

*******************************************

*******************************************

How to Verify it with JSSEC Certificate Hash Value Checker

Without installing JDK7 or later, you can easily verify the certificate hash value by using JSSEC Certificate Hash
Value Checker.

405



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.2.5: JSSEC Certificate Hash Value Checker

This is an Android application that displays a list of certificate hash values of applications which are installed in the
device. In the Figure above, the 64-character hexadecimal notation string that is shown on the right of "sha-256" is
the certificate hash value. The sample code folder, "JSSEC CertHash Checker" that comes with this Guidebook is
the set of source codes. If you would like, you can compile the codes and use it.

5.2.1.4 Methods for using Dangerous Permissions in Android 6.0 and later

Android 6.0 (API Level 23) incorporates modified specifications that are relevant to the implementation of apps-
--specifically, to the times at which apps are granted permission.

Under the Permission model of Android 5.1 (API Level 22) and earlier versions (See section "5.2.3.6.Modifications to
the Permission model specifications in Android versions 6.0 and later", all Permissions declared by an app are granted
to that app at the time of installation. However, in Android 6.0 and later versions, app developers must explicitly
implement apps in such a way that, for Dangerous Permissions, the app requests Permission at appropriate times.
When an app requests a Permission, a confirmation window like that shown below is displayed to the Android OS
user, requesting a decision from the user as to whether or not to grant the Permission in question. If the user allows
the use of the Permission, the app may execute whatever operations require that Permission.

406



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.2.6: Dangerous Permission Confirmation Window

The specifications are also modified regarding the units in which Permissions are granted. Previously, all Permissions
were granted simultaneously; in Android 6.0 (API Level 23) and later versions, Permissions are granted by Permission
Group. In Android 8.0 (API Level 26) and later versions, Permissions are granted individually. In conjunction with
this modification, users are now shown individual confirmation windows for each Permission, allowing users to make
more flexible decisions regarding the granting or refusal of Permissions. App developers must revisit the specifications
and design of their apps with full consideration paid to the possibility that Permissions may be refused.

For details on the Permission model in Android 6.0 and later, see Section "5.2.3.6. Modifications to the Permission
model specifications in Android versions 6.0 and later".

Points:

1. Apps declare the Permissions they will use

2. Do not declare the use of unnecessary Permissions

3. Check whether or not Permissions have been granted to the app

4. Request Permissions (open a dialog to request permission from users)

5. Implement appropriate behavior for cases in which the use of a Permission is refused

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Apps declare the Permissions they will use -->

<!-- Permission to read information on contacts (Protection Level: dangerous) -->

<uses-permission android:name="android.permission.READ_CONTACTS" />

<!-- *** POINT 2 *** Do not declare the use of unnecessary Permissions -->

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

(continues on next page)

407



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:supportsRtl="true"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity

android:name=".ContactListActivity"

android:exported="false">

</activity>

</application>

</manifest>

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.permission.permissionrequestingpermissionatruntime;

import android.Manifest;

import android.content.Intent;

import android.content.pm.PackageManager;

import android.os.Bundle;

import androidx.core.app.ActivityCompat;

import androidx.core.content.ContextCompat;

import androidx.appcompat.app.AppCompatActivity;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity

implements View.OnClickListener {

private static final int REQUEST_CODE_READ_CONTACTS = 0;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

(continues on next page)

408



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

setContentView(R.layout.activity_main);

Button button = (Button)findViewById(R.id.button);

button.setOnClickListener(this);

}

@Override

public void onClick(View v) {

readContacts();

}

private void readContacts() {

// *** POINT 3 *** Check whether or not Permissions have been granted to

// the app

if (ContextCompat.checkSelfPermission(getApplicationContext(), Manifest.

→˓permission.READ_CONTACTS) != PackageManager.PERMISSION_GRANTED) {

// Permission was not granted

// *** POINT 4 *** Request Permissions (open a dialog to request

// permission from users)

ActivityCompat.requestPermissions(this, new String[]{Manifest.

→˓permission.READ_CONTACTS}, REQUEST_CODE_READ_CONTACTS);

} else {

// Permission was previously granted

showContactList();

}

}

// A callback method that receives the result of the user's selection

@Override

public void onRequestPermissionsResult(int requestCode, String[] permissions,

int[] grantResults) {

switch (requestCode) {

case REQUEST_CODE_READ_CONTACTS:

if (grantResults.length > 0 &&

grantResults[0] == PackageManager.PERMISSION_GRANTED) {

// Permissions were granted; we may execute operations that use

// contact information

showContactList();

} else {

// Because the Permission was denied, we may not execute

// operations that use contact information

// *** POINT 5 *** Implement appropriate behavior for cases in

// which the use of a Permission is refused

Toast.makeText(this,

String.format("Use of contact is not allowed."),

Toast.LENGTH_LONG).show();

}

return;

}

}

// Show contact list

private void showContactList() {

// Launch ContactListActivity

Intent intent = new Intent();

intent.setClass(getApplicationContext(), ContactListActivity.class);

(continues on next page)

409



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

startActivity(intent);

}

}

5.2.2 Rule Book

Be sure to follow the rules below when using in-house permission.

1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets (Required)

2. Your Own Dangerous Permission Must Not Be Used (Required)

3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application (Required)

4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application (Required)

5. Your Own Normal Permission Should Not Be Used (Recommended)

6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of Application (Rec-
ommended)

5.2.2.1 System Dangerous Permissions of Android OS Must Only Be Used for Protecting User
Assets (Required)

Since the use of your own dangerous permission is not recommended (please refer to "5.2.2.2. Your Own Dangerous
Permission Must Not Be Used (Required)", we will proceed on the premise of using system dangerous permission of
Android OS.

Unlike the other three types of permissions, dangerous permission has a feature that requires the user's consent
to the grant of the permission to the application. When installing an application on a device that has declared a
dangerous permission to use, the following screen will be displayed. Subsequently, the user is able to know what level
of permission (dangerous permission and normal permission) the application is trying to use. When the user taps
"install", the application will be granted the permission and then it will be installed.

Fig. 5.2.7: System Dangerous Permissions of Android OS Confirmation Window

410



Secure Coding Guide Documentation Release 2025-01-29

An application can handle user assets and assets that the developer wants to protect. Wemust be aware that dangerous
permission can protect only user assets because the user is just who the granting of permission is entrusted to. On
the other hand, assets that the developer wants to protect cannot be protected by the method above.

For example, suppose that an application has a Component that communicates only with an In-house application, it
doesn't permit the access to the Component from any applications of the other companies, and it is implemented that
it's protected by dangerous permission. When a user grants permission to an application of another company based
on the user's judgment, in-house assets that need to be protected may be exploited by the application granted. In
order to provide protection for in-house assets in such cases, we recommend the usage of in-house-defined signature
permission.

5.2.2.2 Your Own Dangerous Permission Must Not Be Used (Required)

Even when in-house-defined Dangerous Permission is used, the screen prompt "Asking for the Allowance of Permis-
sion from User" is not displayed in some cases. This means that at times the feature that asks for permission based
on the judgment of a user, which is the characteristic of Dangerous Permission, does not function. Accordingly, the
Guidebook will make the rule "In-house -defined dangerous permission must not be used".

In order to explain it, we assume two types of applications. The first type of application defines an in-house dangerous
permission, and it is an application that makes a Component, which is protected by this permission, public. We call
this ProtectedApp. The other is another application which we call AttackerApp and it tries to exploit the Component
of ProtectedApp. Also we assume that the AttackerApp not only declares the permission to use it, but also defines
the same permission.

AttackerApp can use the Component of a ProtectedApp without the consent of a user in the following cases:

1. When the user installs the AttackerApp, the installation will be completed without the screen prompt that asks
for the user to grant the application the dangerous permission.

2. Similarly, when the user installs the ProtectedApp, the installation will be completed without any special warn-
ings.

3. When the user launches the AttackerApp afterwards, the AttackerApp can access the Component of the Pro-
tectedApp without being detected by the user, which can potentially lead to damage.

The cause of this case is explained in the following. When the user tries to install the AttackerApp first, the permission
that has been declared for usage with uses-permission is not defined on the particular device yet. Finding no error,
Android OS will continue the installation. Since the user consent for dangerous permission is required only at the
time of installation, an application that has already been installed will be handled as if it has been granted permission.
Accordingly, if the Component of an application which is installed later is protected with the dangerous permission
of the same name, the application which was installed beforehand without the user permission will be able to exploit
the Component.

Furthermore, since the existence of system dangerous permissions defined by Android OS is guaranteed when an
application is installed, the user verification prompt will be displayed every time an application with uses-permission
is installed. This problem arises only in the case of self-defined dangerous permission.

At the time of this writing, no viable method to protect the access to the Component in such cases has been developed
yet. Therefore, your own dangerous permission must not be used.

5.2.2.3 Your Own Signature Permission Must Only Be Defined on the Provider-side Application
(Required)

As demonstrated in, "5.2.1.2. How to Communicate Between In-house Applications with In-house-defined Signa-
ture Permission", the security can be assured by checking the signature permission at the time of executing inter-
communications between In-house applications. When using this mechanism, the definition of the permission whose
Protection Level is signature must be written in AndroidManifest.xml of the provider-side application that has the
Component, but the user-side application must not define the signature permission.

This rule is applied to signatureOrSystem Permission as well.

The reason for this is as follows.

411



Secure Coding Guide Documentation Release 2025-01-29

We assume that there are multiple user-side applications that have been installed prior to the provider-side application
and every user-side application not only has required the signature permission that the provider-side application has
defined, but also has defined the same permission. Under these circumstances, all user-side applications will be able
to access the provider-side application just after the provider-side application is installed. Subsequently, when the
user-side application that was installed first is uninstalled, the definition of the permission also will be deleted and
then the permission will turn out to be undefined. As a result, the remaining user-side applications will be unable to
access to the provider-side application.

In this manner, when the user-side application defines a self-defined permission, it can unexpectedly turn out the
permission to be undefined. Therefore, only the provider-side application providing the Component that needs to be
protected should define the permission, and defining the permission on the user-side must be avoided.

By doing as mentioned just above, the self-defined permission will be applied by Android OS at the time of the
installation of the provider-side application, and the permission will turn out to be undefined at the time of the
uninstallation of the application. Therefore, since the existence of the permission's definition always corresponds to
that of the provider-side application, it is possible to provide an appropriate Component and protect it. Please be
aware that this argument stands because regarding in-house-defined signature permission the user-side application is
granted the permission regardless of the installation order of applications in inter-communication5.

5.2.2.4 Verify If the In-house-defined Signature Permission Is Defined by an In-house Applica-
tion (Required)

Actuality, you cannot say to be secure enough only by declaring a signature permission through AnroidManifest.xml
and protecting the Component with the permission. For the details of this issue, please refer to, "5.2.3.1. Character-
istics of Android OS that Avoids Self-defined Signature Permission and Its Counter-measures" in the Advanced Topics
section.

The following are the steps for using in-house-defined signature permission securely and correctly.

First, write as the followings in AndroidManifest.xml:

1. Define an in-house signature permission in the AndroidManifest.xml of the provider-side application. (defi-
nition of permission)<br/> Example: <permission android:name="xxx" android:protectionLevel="signature"
/>

2. Enforce the permission with the permission attribute of the Component to be protected in the AndroidMani-
fest.xml of the provider-side application. (enforcement of permission)<br/> Example: <activity android:per-
mission="xxx" ... >...</activity>

3. Declare the in-house-defined signature permission with the uses-permission tag in the AndroidManifest.xml of
every user-side application to access the Component to be protected. (declaration of using permission)<br/>
Example: <uses-permission android:name="xxx" />

Next, implement the followings in the source code.

4. Before processing a request to the Component, first verify that the in-house-defined signature permission has
been defined by an in-house application. If not, ignore the request. (protection in the provider-side component)

5. Before accessing the Component, first verify that the in-house-defined signature permission has been defined
by an in-house application. If not, do not access the Component (protection in the user-side component).

Lastly, execute the following with the Signing function of Android Studio.

6. Sign APKs of all inter-communicating applications with the same developer key.

Here, for specific points on how to implement "Verify that the in-house-defined signature permission has been de-
fined by an In house application", please refer to "5.2.1.2. How to Communicate Between In-house Applications with
In-house-defined Signature Permission".

This rule is applied to signatureOrSystem Permission as well.
5 If using normal/dangerous permission, the permission will not be granted the user-side application if the user-side application is installed

before the provider-side application, the permission remains undefined. Therefore, the Component cannot be accessed even after the provider-side
application has been installed.

412



Secure Coding Guide Documentation Release 2025-01-29

5.2.2.5 Your Own Normal Permission Should Not Be Used (Recommended)

An application can use a normal permission just by declaring it with uses-permission in AndroidManifest.xml. There-
fore, you cannot use a normal permission for the purpose of protecting a Component from a malware installed.

Furthermore, in the case of inter-application communication with self-defined normal permission, whether an appli-
cation can be granted the permission depends on the order of installation. For example, when you install an application
(user-side) that has declared to use a normal permission prior to another application (provider-side) that possesses
a Component which has defined the permission, the user-side application will not be able to access the Component
protected with the permission even if the provider-side application is installed later.

As a way to prevent the loss of inter-application communication due to the order of installation, you may think of
defining the permission in every application in the communication. By this way, even if a user-side application has
been installed prior to the provider-side application, all user-side applications will be able to access the provider-side
application. However, it will create a situation that the permission is undefined when the user-side application installed
first is uninstalled. As a result, even if there are other user-side applications, they will not be able to gain access to
the provider-side application.

As stated above, there is a concern of damaging the availability of an application, thus your own normal permission
should not be used.

5.2.2.6 The String for Your Own Permission Name Should Be of an Extent of the Package Name
of Application (Recommended)

When multiple applications define permissions under the same name, the Protection Level that has been defined by an
application installed first will be applied. Protection by signature permission will not be available in the case that the
application installed first defines a normal permission and the application installed later defines a signature permission
under the same name. Even in the absence of malicious intent, a conflict of permission names among multiple
applications could cause behavior s of any applications as an unintended Protection Level. To prevent such accidents,
it is recommended that a permission name extends (starts with) the package name of the application defining the
permission as below.

(package name).permission.(identifying string)

For example, the following name would be preferred when defining a permission of READ access for the package of
org.jssec.android.sample.

org.jssec.android.sample.permission.READ

5.2.3 Advanced Topics

5.2.3.1 Characteristics of Android OS that Avoids Self-defined Signature Permission and Its
Counter-measures

Self-defined signature permission is a permission that actualizes inter-application communication between the appli-
cations signed with the same developer key. Since a developer key is a private key and must not be public, there is
a tendency to use signature permission for protection only in cases where in-house applications communicate with
each other.

First, we will describe the basic usage of self-defined signature permission that is explained in the Devel-
oper Guide ([https://developer.android.com/guide/topics/security/security.html{]}(https://developer.android.com/
guide/topics/security/security.html)) of Android. However, as it will be explained later, there are problems with
regard to the avoidance of permission. Consequently, counter-measures that are described in this Guidebook are
necessary.

The followings are the basic usage of self-defined Signature Permission.

1. Define a self-defined signature permission in the AndroidManifest.xml of the provider-side application. (def-
inition of permission)<br/> Example: <permission android:name="xxx" android:protectionLevel="signature"
/>

413

https://developer.android.com/guide/topics/security/security.html{]}(https://developer.android.com/guide/topics/security/security.html
https://developer.android.com/guide/topics/security/security.html{]}(https://developer.android.com/guide/topics/security/security.html


Secure Coding Guide Documentation Release 2025-01-29

2. Enforce the permission with the permission attribute of the Component to be protected in the AndroidMani-
fest.xml of the provider-side application. (enforcement of permission)<br/> Example: <activity android:per-
mission="xxx" ... >...</activity>

3. Declare the self-defined signature permission with the uses-permission tag in the AndroidManifest.xml of
every user-side application to access the Component to be protected. (declaration of using permission)<br/>
Example: <uses-permission android:name="xxx" />

4. Sign APKs of all inter-communicating applications with the same developer key.

Actually, if the following conditions are fulfilled, this approach will create a loophole to avoid signature permission
from being performed.

For the sake of explanation, we call an application that is protected by self-defined signature permission as Pro-
tectedApp, and AttackerApp for an application that has been signed by a different developer key from the Pro-
tectedApp. What a loophole to avoid signature permission from being performed means is, despite the mismatch of
the signature for AttackerApp, it is possible to gain access to the Component of ProtectedApp.

1. An AttackerApp also defines a normal permission (strictly speaking, signature permission is also acceptable)
under the same name as the signature permission which has been defined by the ProtectedApp.<br/> Example:
<permission android:name=" xxx" android:protectionLevel="normal" />

2. The AttackerApp declares the self-defined normal permission with uses-permission.<br/> Example: <uses-
permission android:name="xxx" />

3. The AttackerApp has installed on the device prior to the ProtectedApp.

Fig. 5.2.8: A loophole to avoid Signature Permission

The permission name that is necessary to meet Condition 1 and Condition 2 can easily be known by an attacker taking
AndroidManifest.xml out from an APK file. The attacker also could satisfy Condition 3 with a certain amount of
effort (e.g. deceiving a user).

There is a risk of self-defined signature permission to evade protection if only the basic usage is adopted, and a
counter-measure to prevent such loopholes is needed. Specifically, you could find how to solve the above-mentioned

414



Secure Coding Guide Documentation Release 2025-01-29

issues by using the method described in "5.2.2.4. Verify If the In-house-defined Signature Permission Is Defined by an
In-house Application (Required)".

5.2.3.2 Falsification of AndroidManifest.xml by a User

We have already touched on the case that a Protection Level of self-defined permission could be changed as not
intended. To prevent malfunctioning due to such cases, it has been needed to implement some sort of counter-
measures on the source-code side of Java. From the viewpoint of AndroidManifest.xml falsification, we will talk
about the counter-measures to be taken on the source-code side. We will demonstrate a simple case of installation
that can detect falsifications. However, please note that these counter-measures are little effective against professional
hackers who falsify with criminal intent.

This section is about the falsification of an application and users with malicious intent. Although this is originally
outside of the scope of a Guidebook, from the fact that this is related to Permission and the tools for such falsification
are provided in public as Android applications, we decided to mention it as "Simple counter-measures against amateur
hackers".

It must be remembered that applications that can be installed frommarket are applications that can be falsified without
root privilege. The reason is that applications that can rebuild and sign APK files with altered AndroidManifest.xml
are distributed. By using these applications, anyone can delete any permission from applications they have installed.

As an example, there seems to be cases of rebuilding APKs with different signatures altering AndroidManifest.xml
with INTERNET permission removed to render advertising modules attached in applications as useless. There are
some users who praise these types of tools due to the fact that no personal information is leaked anywhere. As these
ads which are attached in applications stop functioning, such actions cause monetary damage for developers who are
counting on ad revenue. And it is believed that most of the users don't have any compunction.

In the following code, we show an instance of implementation that an application that has declared INTERNET
permission with uses-permission verifies if INTERNET permission is described in the AndroidManifest.xml of itself
at run time.

public class CheckPermissionActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// Acquire Permission defined in AndroidManifest.xml

List<String> list = getDefinedPermissionList();

// Detect falsification

if( checkPermissions(list) ){

// OK

Log.d("dbg", "OK.");

}else{

Log.d("dbg", "manifest file is stale.");

finish();

}

}

/**

* Acquire Permission through list that was defined in AndroidManifest.xml

* @return

*/

private List<String> getDefinedPermissionList(){

List<String> list = new ArrayList<String>();

list.add("android.permission.INTERNET");

return list;

(continues on next page)

415



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

/**

* Verify that Permission has not been changed Permission

* @param permissionList

* @return

*/

private boolean checkPermissions(List<String> permissionList){

try {

PackageInfo packageInfo = getPackageManager().getPackageInfo(

getPackageName(), PackageManager.GET_PERMISSIONS);

String[] permissionArray = packageInfo.requestedPermissions;

if (permissionArray != null) {

for (String permission : permissionArray) {

if(! permissionList.remove(permission)){

// Unintended Permission has been added

return false;

}

}

}

if(permissionList.size() == 0){

// OK

return true;

}

} catch (NameNotFoundException e) {

}

return false;

}

}

5.2.3.3 Detection of APK Falsification

We explained about detecting the falsification of permissions by a user in "5.2.3.2. Falsification of AndroidMani-
fest.xml by a User". However, the falsification of applications is not limited to permission only, and there are many
other cases where applications are appropriated without any changes in the source code. For example, it is a case
where they distribute other developers' applications (falsified) in the market as if they were their own applications just
by replacing resources to their own. Here, we will show a more generic method to detect the falsification of an APK
file.

In order to falsify an APK, it is needed to decode the APK file into folders and files, modify their contents, and then
rebuild them into a new APK file. Since the falsifier does not have the key of the original developer, he would have to
sign the new APK file with his own key. As the falsification of an APK inevitably brings with a change in signature
(certificate), it is possible to detect whether an APK has been falsified at run time by comparing the certificate in the
APK and the developer's certificate embedded in the source code as below.

The following is a sample code. Also, a professional hacker will be able to easily circumvent the detection of falsi-
fication if this implementation example is used as it is. Please apply this sample code to your application by being
aware that this is a simple implementation example.

Points:

1. Verify that an application's certificate belongs to the developer before major processing is started.

416



Secure Coding Guide Documentation Release 2025-01-29

SignatureCheckActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.permission.signcheckactivity;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.Utils;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.widget.Toast;

public class SignatureCheckActivity extends Activity {

// Self signed certificate hash value

private static String sMyCertHash = null;

private static String myCertHash(Context context) {

if (sMyCertHash == null) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of "androiddebugkey" of

// debug.keystore

sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE␣

→˓B9DB34BC 1E29DD26 F77C8255";

} else {

// Certificate hash value of "my company key" of keystore

sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F␣

→˓1FB9E88B D7B3A7C2 42E142CA";

}

}

return sMyCertHash;

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// *** POINT 1 *** Verify that an application's certificate belongs to the

// developer before major processing is started

if (!PkgCert.test(this, this.getPackageName(), myCertHash(this))) {

Toast.makeText(this, "Self-sign match NG", Toast.LENGTH_LONG).show();

finish();

return;
(continues on next page)

417



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

Toast.makeText(this, "Self-sign match OK", Toast.LENGTH_LONG).show();

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

(continues on next page)

418



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

5.2.3.4 Permission Re-delegation Problem

An application must declare to use permission when accessing contacts or GPS with its information and features that
are protected by Android OS. When the permission required is granted, the permission is delegated to the application
and the application would be able to access the information and features protected with the permission.

Depending on how the program is designed, the application to which has been delegated (granted) the permission is
able to acquire data that is protected with the permission. Furthermore, the application can offer another application
the protected data without enforcing the same permission. This is nothing less than permission-less application to
access data that is protected by permission. This is virtually the same thing as re-delegating the permission, and this
is referred to the Permission Re-delegation Problem. Accordingly, the specification of the permission mechanism of
Android only is able to manage permission of direct access from an application to protected data.

A specific example is shown in Fig. 5.2.9. The application in the center shows that an application which has declared
android.permission.READ_CONTACTS to use it reads contacts and then stores them into its own database. The
Permission Re-delegation Problem occurs when information that has been stored is offered to another application
without any restriction via Content Provider.

419



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.2.9: An Application without Permission Acquires Contacts

As a similar example, an application that has declared android.permission.CALL_PHONE to use it receives a phone
number (maybe input by a user) from another application that has not declared the same permission. If that number
is being called without the verification of a user, then also there is the Permission Re-delegation Problem.

There are cases where the secondary provision of another application with nearly-intact information asset or functional
asset acquired with the permission is needed. In those cases, the provider-side application must demand the same
permission for the provision in order to maintain the original level of protection. Also, in the case of only providing a
portion of information asset as well as functional asset in a secondary fashion, an appropriate amount of protection is
necessary in accordance with the degree of damage that is incurred when a portion of that information or functional
asset is exploited. We can use protective measures such as demanding permission as similar to the former, verifying
user consent, and setting up restrictions for target applications by using "4.1.1.1. Creating/Using Private Activities", or
"4.1.1.4. Creating/Using In-house Activities" etc.

Such Permission Re-delegation Problem is not only limited to the issue of the Android permission. For an Android
application, it is generic that the application acquires necessary information/functions from different applications,
networks, and storage media. And in many cases, some permissions as well as restrictions are needed to access them.
For example, if the provider source is an Android application, it is the permission, if it is a network, then it is the
log-in, and if it is a storage media, there will be access restrictions. Therefore, such measures need to be implemented
for an application after carefully considering as information/functions are not used in the contrary manner of the user's
intention. This is especially important at the time of providing acquired information/functions to another application
in a secondary manner or transferring to networks or storage media. Depending on the necessity, you have to enforce
permission or restrict usage like the Android permission. Asking for the user's consent is part of the solution.

In the following code, we demonstrate a case where an application that acquires a list from the contact database
by using READ_CONTACTS permission enforces the same READ_CONTACTS permission on the information
destination source.

Point

1. Enforce the same permission that the provider does.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.jssec.android.permission.transferpermission" >

(continues on next page)

420



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".TransferPermissionActivity"

android:label="@string/title_activity_transfer_permission" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<!-- *** Point1 *** Enforce the same permission that the rovider does. -->

<provider

android:name=".TransferPermissionContentProvider"

android:authorities="org.jssec.android.permission.transferpermission"

android:enabled="true"

android:exported="true"

android:readPermission="android.permission.READ_CONTACTS" >

</provider>

</application>

</manifest>

When an application enforces multiple permissions, the above method will not solve it. By using Context#checkCall-
ingPermission() or PackageManager#checkPermission() from the source code, verify whether the invoker application
has declared all permissions with uses-permission in the Manifest.

In the case of an Activity

public void onCreate(Bundle savedInstanceState) {

[...]

if (checkCallingPermission("android.permission.READ_CONTACTS") ==

PackageManager.PERMISSION_GRANTED

&& checkCallingPermission("android.permission.WRITE_CONTACTS") ==

PackageManager.PERMISSION_GRANTED) {

// Processing during the time when an invoker is correctly

// declaring to use

return;

}

finish();

}

5.2.3.5 Signature check mechanism for custom permissions (Android 5.0 and later)

In versions of Android 5.0 (API Level 21) and later, the application which defines its own custom permissions cannot
be installed if the following conditions are met.

1. Another application which defines its own permission with the same name has already installed on the device.

2. The applications are signed with different keys

421



Secure Coding Guide Documentation Release 2025-01-29

When both an application with the protected function (Component) and an application using the function define their
own permission with the same name and are signed with the same key, the above mechanism will protect against
installation of other company's applications which define their own custom permission with the same name. However,
as mentioned in "5.2.2.3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application
(Required)", that mechanism won't work well for checking if a custom permission is defined by your own company
because the permission could be undefined without your intent by uninstalling applications when plural applications
define the same permission.

To sum it up, also in versions of Android 5.0 (API Level 21) and later, you are required to comply with the two
rules, "5.2.2.3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application (Required)"
and "5.2.2.4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application (Required)"
when your application defines your own Signature Permission.

5.2.3.6 Modifications to the Permission model specifications in Android versions 6.0 and later

Android 6.0 (API Level 23) introduces modified specifications for the Permission model that affect both the design
and specifications of apps. In this section we offer an overview of the Permission model in Android 6.0 and later.
We also describe modifications made in Android 8.0 and later as well as “one-time permission” of Android 11.0 and
later.

The timing of permission grants and refusals

In cases where an app declares use of permissions requiring user confirmation (Dangerous Permissions) [see Section
“5.2.2.1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets (Required)”], the
specifications for Android 5.1 (API level 22) and earlier versions called for a list of such permissions to be displayed
when the app is installed, and the user must grant all permissions for the installation to proceed. At this point,
all permissions declared by the app (including permissions other than Dangerous Permissions) were granted to the
app; once these permissions were granted to the app, they remained in effect until the app was uninstalled from the
terminal.

However, in the specifications for Android 6.0 and later versions, the granting of permissions takes place when an app
is executed. The granting of permissions, and user confirmation of permissions, does not take place when the app is
installed. When an app executes a procedure that requires Dangerous Permissions, it is necessary to check whether
or not those permissions have been granted to the app in advance; if not, a confirmation window must be displayed
in Android OS to request permission from the user6. If the user grants permission from the confirmation window,
the permissions are granted to the app. However, permissions granted to an app by a user (Dangerous Permissions)
may be revoked at any time via the Settings menu (Fig. 5.2.10). For this reason, appropriate procedures must be
implemented to ensure that apps cause no irregular behavior even in situations in which they cannot access needed
information or functionality because permission has not been granted.

6 Because Normal Permissions and Signature Permissions are automatically granted by Android OS, there is no need to obtain user confirmation
for these permissions.

422



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.2.10: App Permissions Window

Also, from Android 11.0, an option “only this time” is available for selection (one-time permission) if granting per-
mission when executing some permissions related to location information, microphone, and camera. This permission
is used to enable permissions only while apps are executed and the permission will be invalid when the app is closed
or when a certain time7 passes after moving to the background. Special granting measures are not required if granting
of permissions has been implemented on Android 6.0 or later.

• android.permission.ACCESS_FINE_LOCATION

• android.permission.ACCESS_BACKGROUND_LOCATION

• android.permission.RECORD_AUDIO

• android.permission.CAMERA

Units of permission grants and refusals

Multiple Permissions may be grouped together into what is known as a Permission Group based on their functions
and type of information relevant to them. For example, the Permission android.permission.READ_CALENDAR,
which is required to read calendar information, and the Permission android.permission.WRITE_CALENDAR, which

7 Was 1 minute on emulators and the actual device (Pixel 3) when confirmed on Android 11. However, this may differ depending on the
terminal.

423



Secure Coding Guide Documentation Release 2025-01-29

is required to write calendar information, are both affiliated with the Permission Group named android.permission-
group.CALENDAR.

In the Permission model for Android 6.0 (API Level 23) and later, privileges are granted or denied at the block-unit
level of the Permission Group, as shown here. However, developers must be careful to note that the block unit may
vary depending on the combination of OS and SDK (see below).

• For terminals running Android 6.0 (API Level 23) or later and app targetSdkVersion: 23~25

If android.permission.READ_CALENDAR and android.permission.WRITE_CALENDAR are listed in the Man-
ifest, then when the app is launched a request for android.permission.READ_CALENDAR is issued; if the user
grants this permission, Android OS determines that both android.permission.READ_CALENDAR and android.per-
mission.WRITE_CALENDAR are permitted for use and thus grants the permission.

• For terminals running Android 8.0 (API Level 26 or later and app targetSdkVersion 26 and above:

Only requested Permissions are granted. Thus, even if android.permission.READ_CALENDAR and android.per-
mission.WRITE_CALENDAR are both listed, if only android.permission.READ_CALENDAR has been requested
and granted by the user, then only android.permission.READ_CALENDAR will be granted. Thereafter, if an-
droid.permission.WRITE_CALENDAR is requested, the permission will be granted immediately with no dialog
box shown to the user8.

Also, in contrast to the granting of permissions, cancelling of permissions from the settings menu is carried out at
the block-unit level of the Permission Group on Android 8.0 or later.

For more information on the classification of Permission Groups, see the Developer Reference ([https:
//developer.android.com/guide/topics/permissions/overview#perm-groups{]}(https://developer.android.com/
guide/topics/permissions/overview#perm-groups)).

The affected range of the revised specifications

Cases in which apps require Permission requests at runtime are restricted to situations in which the terminal is running
Android 6.0 or later and the app's targetSDKVersion is 23 or higher. If the terminal is running Android 5.1 or earlier,
or if the app's targetSDKVersion was 23 or lower, permissions are requested and granted altogether at the time of
installation, as was traditionally the case. However, if the terminal is running Android 6.0 or later, then—even if the
app's targetSDKVersion is below 23—permissions that were granted by the user at installation may be revoked by the
user at any time. This creates the possibility of unintended irregular app termination. Developers must either comply
immediately with the modified specifications or set the maxSDKVersion of their app to 22 or earlier to ensure that
the app cannot be installed on terminals running Android 6.0 (API Level 23) or later.

Furthermore, in devices running Android 10 or later, when an app targeting devices running Android 5.1 (API Level
22) or earlier is executed for the first time, a warning is displayed indicating that it may not run properly. Also, for
apps that request granting of storage access and other permissions by the user, a permission (Allow/Deny) selection
screen appears before this warning9.

Table 5.2.1: Timing at which app is granted permissions

Terminal Android
OS Version

App
targetSDKVersion

Timing at which app is granted permissions | User has control
over permissions

>=8.0 >=26 App execution (granted individ-
ually)

Yes

<26 App execution (granted by Per-
mission Group)

Yes

<23 App installation Yes (rapid response required)
>=6.0 >=23 App execution (granted by Per-

mission Group)
Yes

<23 App installation Yes (rapid response required)
<=5.1 >=23 App installation No

<23 App installation No

8 In this case as well, the app must declare usage of both android.permission.READ_CALENDAR and android.permission.WRITE_CAL-
ENDAR.

9 https://developer.android.com/about/versions/10/behavior-changes-all#low-target-sdk-warnings

424

https://developer.android.com/guide/topics/permissions/overview#perm-groups{]}(https://developer.android.com/guide/topics/permissions
https://developer.android.com/guide/topics/permissions/overview#perm-groups{]}(https://developer.android.com/guide/topics/permissions
https://developer.android.com/guide/topics/permissions/overview#perm-groups{]}(https://developer.android.com/guide/topics/permissions
https://developer.android.com/about/versions/10/behavior-changes-all#low-target-sdk-warnings


Secure Coding Guide Documentation Release 2025-01-29

However, it should be noted that the effect of maxSdkVersion is limited. When the value of maxSdkVersion is set
22 or earlier, Android 6.0 (API Level 23) and later of the devices are no longer listed as an installable device of the
target application in Google Play. On the other hand, because the value of maxSdkVersion is not checked in the
marketplace other than Google Play, it may be possible to install the target application in the Android 6.0 (API Level
23) or later.

Because the effect of maxSdkVersion is limited, and further Google does not recommend the use of maxSdkVersion,
it is recommended that developers comply immediately with the modified specifications.

In Android 6.0 and later versions, permissions for the following network communications have their Protection Level
changed from Dangerous to Normal. Thus, even if apps declare the use of these Permissions, there is no need to
acquire explicit permission from the user, and hence the modified specification has no impact in this case.

• android.permission.BLUETOOTH

• android.permission.BLUETOOTH_ADMIN

• android.permission.CHANGE_WIFI_MULTICAST_STATE

• android.permission.CHANGE_WIFI_STATE

• android.permission.CHANGE_WIMAX_STATE

• android.permission.DISABLE_KEYGUARD

• android.permission.INTERNET

• android.permission.NFC

5.2.3.7 Function That Automatically Resets Unused App Permissions in Android 11.0 and Later

A function that resets permissions of apps that have not been used for a certain period of time in Android 11.0 (API
Level 30) has been added. The default reset setting varies depending on targetSDKVersion. This function is set by
turning on the “Remove permissions if app isn’t used” option on the app permission setting screen.

• targetSDKVersion=30: Enabled in the default state

• targetSDKVersion<30: Disabled in the default state

The target permissions are those with Protection Levels at Dangerous Permission10. However, permissions that enable
access once will be set so that confirmations will be required each time if once is selected.

When using functions that require permission, errors do not occur if confirming permissions each time. However,
there may be cases where apps that are always running in the background may stop while unnoticed. For this reason,
on these apps, it is necessary to request users to disable auto-reset.

1. Confirm that the auto-reset function is disabled using PackageManager#isAutoRevokeWhitelisted() (returns
true if disabled).

2. If the auto-reset function is enabled, call out the app setting screen, and guide users to the permissions setting
screen.

However, isAutoRevokeWhitelisted() is an API added at API Level 30 and cannot be determined by the app with
targetSDKVersion lower than 30. For this reason, apps that have targetSDKVersion lower than 30 and that are
required to have auto-reset disabled need to have a flow to review the auto-reset setting in the case where the auto-
reset setting was changed by users, in addition to demand for application of permission again if the permission is
canceled.

10 Permission remained granted even though auto-reset was performed for ACTIVITY_RECOGNITION (physical activity) when confirmed
with Android 11.

425



Secure Coding Guide Documentation Release 2025-01-29

5.2.3.8 Auto-hibernation Function for Unused Applications on Android 12

If Android 12 (API Level 31) is the target, the auto-hibernation function is applied to applications that have not been
used for a certain period, in addition to the permission auto-reset function introduced inAndroid 11. Auto-hibernation
function has the following characteristics.

• All files within the application cache are deleted and optimization is performed not based on the performance,
but based on the storage capacity

• The application will not be able to run jobs and alerts in the background

• The application will not be able to receive push notifications (e.g. high priority messages sent through Firebase
Cloud Messaging)

The hibernation state will end when the user performs operations on the application. However, jobs, alerts, and
notifications that had been scheduled before the application enters the hibernation state must have their schedules set
again.

For applications where inconveniences may occur due to auto-reset of permissions and the auto-hibernation function,
such as applications that periodically synchronize data between devices and servers, users can exclude them by turning
the “Remove permissions and free up space” option off.

To experimentally switch the application to the hibernation state, perform the following commands. Doing so will
simulate the hibernation state.

• Enable the hibernation state behavior

$ adb shell device_config put app_hibernation app_hibernation_enabled true

• Forcibly set the application to the hibernation state

$ adb shell cmd app_hibernation set-state org.jssec.android.activity.

→˓privateactivity true

5.2.3.9 API Return Value Change Following Specification Changes to the Package Access

If Android 12 is installed to the device and if Android 11.0 (API Level 30) or later is specified, the return values of
the following methods become filtered values based on the specification changes of the package access. This complies
with the minimum permission principle introduced on the package access of Android 11.

• getAllPermissionGroups()

• getPermissionGroupInfo()

• getPermissionInfo()

• queryPermissionsByGroup()

To verify the operation capability, a custom permission group is created as shown below, and a comparison was made
on how the getAllPermissionGroups() values change.

<permission-group android:name="android.permission-group.JSSEC"

android:label="@string/perm_label"

android:icon="@drawable/ic_launcher_foreground"

android:description="@string/perm_description"

android:permissionGroupFlags="personalInfo"

android:priority="360"/>

• If Android 11 is installed to the device and if Android 11.0 (API Level 30) is specified

com.google.android.gms.permission.CAR_INFORMATION

android.permission-group.CONTACTS

android.permission-group.PHONE

(continues on next page)

426



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android.permission-group.CALENDAR

android.permission-group.CALL_LOG

android.permission-group.CAMERA

android.permission-group.UNDEFINED

android.permission-group.ACTIVITY_RECOGNITION

android.permission-group.SENSORS

android.permission-group.LOCATION

android.permission-group.STORAGE

android.permission-group.MICROPHONE

android.permission-group.SMS

android.permission-group.JSSEC

• If Android 12 is installed to the device and if Android 11.0 (API Level 30) is specified

com.google.android.gms.permission.CAR_INFORMATION

android.permission-group.CONTACTS

android.permission-group.PHONE

android.permission-group.CALENDAR

android.permission-group.CALL_LOG

android.permission-group.CAMERA

android.permission-group.UNDEFINED

android.permission-group.ACTIVITY_RECOGNITION

android.permission-group.SENSORS

android.permission-group.LOCATION

android.permission-group.STORAGE

android.permission-group.MICROPHONE

android.permission-group.SMS

You can see that the custom permission group could not be acquired if Android 12 is installed to the device and if
Android 11.0 (API Level 30) is specified. The list of the packages installed to the device is based on the concept of
privacy. If the application needs to access other applications, it is necessary to clearly specify other applications in
<queries>. <queries> is also used on various sample codes of this guide.

5.2.3.10 Revoking Runtime Permissions

Starting from Android 13, apps can revoke access to runtime permissions granted by the user by using the following
APIs.

• revokeSelfPermissionOnKill()

• revokeSelfPermissionsOnKill()

To revoke a specific runtime permission, specify the name of that permission using revokeSelfPermissionOnKill().
To specify multiple runtime permissions at once, specify the names of the permissions together in revokeSelfPermis-
sionsOnKill(). If no permission was granted, the APIs will do nothing.

The introduction of these APIs follows the principle of minimal permissions, and it is recommended that runtime
permissions be reviewed periodically by the app and unused permissions be revoked.

The sample code is as follows. This shows an example of an app that uses android.permission.CAMERA and an-
droid.permission.CALL_PHONE permissions.

First, this is an example of the declaration.

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE">

<uses-permission android:name="android.permission.CALL_PHONE" />

Next, the following is an example of code for requesting or revoking two permissions when a button is pressed.

427



Secure Coding Guide Documentation Release 2025-01-29

private final String[] PERMISSIONS = {

Manifest.permission.CAMERA,

Manifest.permission.CALL_PHONE

};

private ActivityResultContracts.RequestMultiplePermissions␣

→˓multiplePermissionsContract;

private ActivityResultLauncher<String[]> multiplePermissionLauncher;

@RequiresApi(api = 33)

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

multiplePermissionsContract = new ActivityResultContracts.

→˓RequestMultiplePermissions();

multiplePermissionLauncher =␣

→˓registerForActivityResult(multiplePermissionsContract, isGranted -> {

updateDesign();

});

buttonRequest.setOnClickListener(v -> {

multiplePermissionLauncher.launch(PERMISSIONS);

});

buttonRevoke.setOnClickListener(v -> {

revokeSelfPermissionsOnKill(Arrays.asList(PERMISSIONS));

});

In the above example, two permissions are revoked at the same time, but to revoke them individually, use revoke-
SelfPermissionOnKill as follows.

revokeSelfPermissionOnKill(Manifest.permission.CAMERA);

The sample program contains “@RequiresApi(api = 33)” because apps that use revokeSelfPermissionOnKill or re-
vokeSelfPermissionsOnKill are not buildable with Compile SDK 32 or lower.

The timing of actual revocation of the permission is asynchronous, and revocation occurs when the system determines
that it is safe to do so. If revoking immediately, safety can be ensured by prompting the user to restart the app and
executing System.exit().

5.2.3.11 Disabling sharedUserId in Newly Installed Apps

In Android, it is possible to share the permission status of declared permissions and file access permissions among
multiple apps by using an element called sharedUserId, which is defined in the manifest file. This is because the same
user ID is assigned to multiple apps in an Android device if the same values are defined for the parameters and the
apps are signed with the same developer certificate.

This parameter was deprecated at API level 29, but no transition method was provided. If the parameter was deleted
from the manifest file, an error would occur when updating the app, and once set, it could not be changed. As a result,
despite the deprecation, sharedUserId was still set even in new installations.

On devices with Android 13 installed, newly installed apps are no longer affected by sharedUserId by defining the
following element in the manifest file. However, this applies only to newly installed apps, and the user ID set in
sharedUserId will continue to be used when updating existing apps.

android:sharedUserMaxSdkVersion

428



Secure Coding Guide Documentation Release 2025-01-29

As the name suggests, this element specifies the maximum device version (API level) where sharedUserId is applied.
This parameter is valid from Android 13, and so at the time of writing (July 2022), 32 should be specified if enabled
for use.

5.2.3.12 Installable Minimum Target API Levels

Android 14 and Android 15 have minimum requirements for targetSdkVersion of installable apps. Since malware
often targets older API levels to bypass newer security protections, the goal is to uniformly eliminate such malware.

Android Version Installable targetSdkVersion
Android 7.0~13 No restrictions
Android 14 targetSdkVersion 23 or higher
Android 15 targetSdkVersion 24 or higher

When attempting to install apps targeting unsupported targetSdkVersion, the following message will be displayed and
the app will not install.

INSTALL_FAILED_DEPRECATED_SDK_VERSION: App package must target at least SDK␣

→˓version 23, but found 7

To install such an app for testing purposes, use the following ADB command:

adb install --bypass-low-target-sdk-block FILENAME.apk

In addition, when upgrading Android versions, this restriction does not apply to apps that are already installed, and
they can be used as is.

5.3 Add In-house Accounts to Account Manager

AccountManager is the Android OS's systemwhich centrally manages account information (account name, password)
which is necessary for applications to access to online service and authentication token11. A user needs to register
the account information to Account Manager in advance, and when an application tries to access to online service,
Account Manager will automatically provide application authentication token after getting user's permission. The
advantage of Account Manager is that an application doesn't need to handle the extremely sensitive information,
password.

The structure of account management function which uses Account Manager is as per below Fig. 5.3.1. "Requesting
application" is the application which accesses the online service, by getting authentication token, and this is above
mentioned application. On the other hand, "Authenticator application" is function extension of AccountManager, and
by providing Account Manager of an object called Authenticator, as a result Account Manager can manage centrally
the account information and authentication token of the online service. Requesting application and Authenticator
application don't need to be the separate ones, so these can be implemented as a single application.

11 Account Manager provides mechanism of synchronizing with online services, however, this section doesn’t deal with it.

429



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.3.1: Configuration of account management function which uses Account Manager

Originally, the developer's signature key of user application (requesting application) and Authenticator application
can be the different ones. However, only in Android 4.0.x devices, there's an Android Framework bug, and when the
signature key of user application and Authenticator application are different, exception occurs in user application, and
in-house account cannot be used. The following sample code does not implement any workarounds against this defect.
Please refer to "5.3.3.2. Exception Occurs When Signature Keys of User Application and Authenticator Application Are
Different, in Android 4.0.x" for details.

5.3.1 Sample Code

"5.3.1.1. Creating In-house accounts" is prepared as a sample of Authenticator application, and "5.3.1.2. Using
In-house Accounts" is prepared as a sample of requesting application. In sample code set which is distributed in
JSSEC's Web site, each of them is corresponded to AccountManager Authenticator and AccountManager User.

5.3.1.1 Creating In-house accounts

Here is the sample code of Authenticator application which enables Account Manager to use the in-house account.
There is no Activity which can be launched from home screen in this application. Please pay attention that it's called
indirectly via Account Manager from another sample code "5.3.1.2. Using In-house Accounts"

Points:

1. The service that provides an authenticator must be private.

2. The login screen activity must be implemented in an authenticator application.

3. The login screen activity must be made as a public activity.

4. The explicit intent which the class name of the login screen activity is specified must be set to KEY_INTENT.

5. Sensitive information (like account information or authentication token) must not be output to the log.

6. Password should not be saved in Account Manager.

7. HTTPS should be used for communication between an authenticator and the online services.

Service which gives Account Manager IBinder of Authenticator is defined in AndroidManifest.xml. Specify resource
XML file which Authenticator is written, by meta-data.

AccountManager Authenticator/AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<!-- Necessary Permission to implement Authenticator -->

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

<uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />

(continues on next page)

430



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name" >

<!-- Service which gives IBinder of Authenticator to AccountManager -->

<!-- *** POINT 1 *** The service that provides an authenticator must be␣

→˓private. -->

<service

android:name=".AuthenticationService"

android:exported="false" >

<!-- intent-filter and meta-data are usual pattern. -->

<intent-filter>

<action android:name="android.accounts.AccountAuthenticator" />

</intent-filter>

<meta-data

android:name="android.accounts.AccountAuthenticator"

android:resource="@xml/authenticator" />

</service>

<!-- Activity for for login screen which is displayed when adding an account --

→˓>

<!-- *** POINT 2 *** The login screen activity must be implemented in an␣

→˓authenticator application. -->

<!-- *** POINT 3 *** The login screen activity must be made as a public␣

→˓activity. -->

<activity

android:name=".LoginActivity"

android:exported="true"

android:label="@string/login_activity_title"

android:theme="@android:style/Theme.Dialog"

tools:ignore="ExportedActivity" />

</application>

</manifest>

Define Authenticator by XML file. Specify account type etc. of in-house account.

res/xml/authenticator.xml

<account-authenticator xmlns:android="http://schemas.android.com/apk/res/android"

android:accountType="org.jssec.android.accountmanager"

android:icon="@drawable/ic_launcher"

android:label="@string/label"

android:smallIcon="@drawable/ic_launcher"

android:customTokens="true" />

Service which gives Authenticator's Instance to AccountManager. Easy implementation which returns Instance of
JssecAuthenticator class that is Authenticator implemented in this sample by onBind(), is enough.

AuthenticationService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at
(continues on next page)

431



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.accountmanager.authenticator;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

public class AuthenticationService extends Service {

private JssecAuthenticator mAuthenticator;

@Override

public void onCreate() {

mAuthenticator = new JssecAuthenticator(this);

}

@Override

public IBinder onBind(Intent intent) {

return mAuthenticator.getIBinder();

}

}

JssecAuthenticator is the Authenticator which is implemented in this sample. It inherits AbstractAccountAuthenti-
cator, and all abstract methods are implemented. These methods are called by Account Manager. At addAccount()
and at getAuthToken(), the intent for launching LoginActivity to get authentication token from online service are
returned to Account Manager.

JssecAuthenticator.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.accountmanager.authenticator;

import android.accounts.AbstractAccountAuthenticator;

(continues on next page)

432



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.accounts.Account;

import android.accounts.AccountAuthenticatorResponse;

import android.accounts.AccountManager;

import android.accounts.NetworkErrorException;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

public class JssecAuthenticator extends AbstractAccountAuthenticator {

public static final String JSSEC_ACCOUNT_TYPE =

"org.jssec.android.accountmanager";

public static final String JSSEC_AUTHTOKEN_TYPE = "webservice";

public static final String JSSEC_AUTHTOKEN_LABEL = "JSSEC Web Service";

public static final String RE_AUTH_NAME = "reauth_name";

protected final Context mContext;

public JssecAuthenticator(Context context) {

super(context);

mContext = context;

}

@Override

public Bundle addAccount(AccountAuthenticatorResponse response,

String accountType, String authTokenType,

String[] requiredFeatures, Bundle options)

throws NetworkErrorException {

AccountManager am = AccountManager.get(mContext);

Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);

Bundle bundle = new Bundle();

if (accounts.length > 0) {

// In this sample code, when an account already exists, consider it

// as an error.

bundle.putString(AccountManager.KEY_ERROR_CODE, String.valueOf(-1));

bundle.putString(AccountManager.KEY_ERROR_MESSAGE,

mContext.getString(R.string.error_account_exists));

} else {

// *** POINT 2 *** The login screen activity must be implemented in an

// authenticator application.

// *** POINT 4 *** The explicit intent which the class name of the

// login screen activity is specified must be set to KEY_INTENT.

Intent intent = new Intent(mContext, LoginActivity.class);

intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,␣

→˓response);

bundle.putParcelable(AccountManager.KEY_INTENT, intent);

}

return bundle;

}

@Override

public Bundle getAuthToken(AccountAuthenticatorResponse response,

Account account, String authTokenType,

Bundle options)

(continues on next page)

433



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

throws NetworkErrorException {

Bundle bundle = new Bundle();

if (accountExist(account)) {

// *** POINT 4 *** The explicit intent which the class name of the

// login screen activity is specified must be set to KEY_INTENT.

Intent intent = new Intent(mContext, LoginActivity.class);

intent.putExtra(RE_AUTH_NAME, account.name);

intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,

response);

bundle.putParcelable(AccountManager.KEY_INTENT, intent);

} else {

// When the specified account doesn't exist, consider it as an error.

bundle.putString(AccountManager.KEY_ERROR_CODE, String.valueOf(-2));

bundle.putString(AccountManager.KEY_ERROR_MESSAGE,

mContext.getString(R.string.error_account_not_exists));

}

return bundle;

}

@Override

public String getAuthTokenLabel(String authTokenType) {

return JSSEC_AUTHTOKEN_LABEL;

}

@Override

public Bundle confirmCredentials(AccountAuthenticatorResponse response,

Account account, Bundle options)

throws NetworkErrorException {

return null;

}

@Override

public Bundle editProperties(AccountAuthenticatorResponse response,

String accountType) {

return null;

}

@Override

public Bundle updateCredentials(AccountAuthenticatorResponse response,

Account account,

String authTokenType, Bundle options)

throws NetworkErrorException {

return null;

}

@Override

public Bundle hasFeatures(AccountAuthenticatorResponse response,

Account account, String[] features)

throws NetworkErrorException {

Bundle result = new Bundle();

result.putBoolean(AccountManager.KEY_BOOLEAN_RESULT, false);

return result;

}

private boolean accountExist(Account account) {

(continues on next page)

434



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

AccountManager am = AccountManager.get(mContext);

Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);

for (Account ac : accounts) {

if (ac.equals(account)) {

return true;

}

}

return false;

}

}

This is Login activity which sends an account name and password to online service, and perform login authentication,
and as a result, get an authentication token. It's displayed when adding a new account or when getting authentication
token again. It's supposed that the actual access to online service is implemented in WebService class.

LoginActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.accountmanager.authenticator;

import org.jssec.android.accountmanager.webservice.WebService;

import android.accounts.Account;

import android.accounts.AccountAuthenticatorActivity;

import android.accounts.AccountManager;

import android.content.Intent;

import android.os.Bundle;

import android.text.InputType;

import android.text.TextUtils;

import android.util.Log;

import android.view.View;

import android.view.Window;

import android.widget.EditText;

public class LoginActivity extends AccountAuthenticatorActivity {

private static final String TAG =

AccountAuthenticatorActivity.class.getSimpleName();

private String mReAuthName = null;

private EditText mNameEdit = null;

private EditText mPassEdit = null;

@Override

(continues on next page)

435



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public void onCreate(Bundle icicle) {

super.onCreate(icicle);

// Display alert icon

requestWindowFeature(Window.FEATURE_LEFT_ICON);

setContentView(R.layout.login_activity);

getWindow().setFeatureDrawableResource(Window.FEATURE_LEFT_ICON,

android.R.drawable.ic_dialog_alert);

// Find a widget in advance

mNameEdit = (EditText) findViewById(R.id.username_edit);

mPassEdit = (EditText) findViewById(R.id.password_edit);

// *** POINT 3 *** The login screen activity must be made as a public

// activity, and suppose the attack access from other application.

// Regarding external input, only RE_AUTH_NAME which is String type of

// Intent#extras, are handled.

// This external input String is passed toextEdit#setText(),

// WebService#login(),new Account(), as a parameter,it's verified that

// there's no problem if any character string is passed.

mReAuthName = getIntent().getStringExtra(JssecAuthenticator.RE_AUTH_NAME);

if (mReAuthName != null) {

// Since LoginActivity is called with the specified user name,

// user name should not be editable.

mNameEdit.setText(mReAuthName);

mNameEdit.setInputType(InputType.TYPE_NULL);

mNameEdit.setFocusable(false);

mNameEdit.setEnabled(false);

}

}

// It's executed when login button is pressed.

public void handleLogin(View view) {

String name = mNameEdit.getText().toString();

String pass = mPassEdit.getText().toString();

if (TextUtils.isEmpty(name) || TextUtils.isEmpty(pass)) {

// Process when the inputed value is incorrect

setResult(RESULT_CANCELED);

finish();

}

// Login to online service based on the inpputted account information.

WebService web = new WebService();

String authToken = web.login(name, pass);

if (TextUtils.isEmpty(authToken)) {

// Process when authentication failed

setResult(RESULT_CANCELED);

finish();

}

// Process when login was successful, is as per below.

// *** POINT 5 *** Sensitive information (like account information or

// authentication token) must not be output to the log.

Log.i(TAG, "WebService login succeeded");

(continues on next page)

436



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (mReAuthName == null) {

// Register accounts which logged in successfully, to aAccountManager

// *** POINT 6 *** Password should not be saved in Account Manager.

AccountManager am = AccountManager.get(this);

Account account =

new Account(name, JssecAuthenticator.JSSEC_ACCOUNT_TYPE);

am.addAccountExplicitly(account, null, null);

am.setAuthToken(account, JssecAuthenticator.JSSEC_AUTHTOKEN_TYPE,

authToken);

Intent intent = new Intent();

intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, name);

intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE,

JssecAuthenticator.JSSEC_ACCOUNT_TYPE);

setAccountAuthenticatorResult(intent.getExtras());

setResult(RESULT_OK, intent);

} else {

// Return authentication token

Bundle bundle = new Bundle();

bundle.putString(AccountManager.KEY_ACCOUNT_NAME, name);

bundle.putString(AccountManager.KEY_ACCOUNT_TYPE,

JssecAuthenticator.JSSEC_ACCOUNT_TYPE);

bundle.putString(AccountManager.KEY_AUTHTOKEN, authToken);

setAccountAuthenticatorResult(bundle);

setResult(RESULT_OK);

}

finish();

}

}

Actually, WebService class is dummy implementation here, and this is the sample implementation which supposes
authentication is always successful, and fixed character string is returned as an authentication token.

WebService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.accountmanager.webservice;

public class WebService {

/**

(continues on next page)

437



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* Suppose to access to account managemnet function of online service.

*

* @param username Account name character string

* @param password password character string

* @return Return authentication token

*/

public String login(String username, String password) {

// *** POINT 7 *** HTTPS should be used for communication between an

// authenticator and the online services.

// Actually, communication process with servers is implemented here,

// but Omit here, since this is a sample.

return getAuthToken(username, password);

}

private String getAuthToken(String username, String password) {

// In fact, get the value which uniqueness and impossibility of

// speculation are guaranteed by the server, but the fixed value

// is returned without communication here, since this is sample.

return "c2f981bda5f34f90c0419e171f60f45c";

}

}

5.3.1.2 Using In-house Accounts

Here is the sample code of an application which adds an in-house account and gets an authentication token. When
another sample application "5.3.1.1. Creating In-house accounts" is installed in a device, in-house account can be
added or authentication token can be got. "Access request" screen is displayed only when the signature keys of both
applications are different.

Fig. 5.3.2: Behavior screen of sample application AccountManager User

Point:

1. Execute the account process after verifying if the authenticator is regular one.

AndroidManifest.xml of AccountManager user application. Declare to use necessary Permission. Refer to "5.3.3.1.
Usage of Account Manager and Permission" for the necessary Permission.

AccountManager User/AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

(continues on next page)

438



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

<uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />

<uses-permission android:name="android.permission.USE_CREDENTIALS" />

<queries>

<package android:name="org.jssec.android.accountmanager.authenticator" />

</queries>

<application

android:allowBackup="false"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".UserActivity"

android:label="@string/app_name"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Activity of user application. When tapping the button on the screen, either addAccount() or getAuthToken() is to be
executed. Authenticator which corresponds to the specific account type may be fake in some cases, so pay attention
that the account process is started after verifying that the Authenticator is regular one.

UserActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.accountmanager.user;

import java.io.IOException;

import org.jssec.android.shared.PkgCert;

import org.jssec.android.shared.Utils;

import android.accounts.Account;

import android.accounts.AccountManager;

(continues on next page)

439



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.accounts.AccountManagerCallback;

import android.accounts.AccountManagerFuture;

import android.accounts.AuthenticatorDescription;

import android.accounts.AuthenticatorException;

import android.accounts.OperationCanceledException;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.view.View;

import android.widget.TextView;

public class UserActivity extends Activity {

// Information of the Authenticator to be used

private static final String JSSEC_ACCOUNT_TYPE =

"org.jssec.android.accountmanager";

private static final String JSSEC_TOKEN_TYPE = "webservice";

private TextView mLogView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user_activity);

mLogView = (TextView)findViewById(R.id.logview);

}

public void addAccount(View view) {

logLine();

logLine("Add a new account");

// *** POINT 1 *** Execute the account process after verifying if the

// authenticator is regular one.

if (!checkAuthenticator()) return;

AccountManager am = AccountManager.get(this);

am.addAccount(JSSEC_ACCOUNT_TYPE, JSSEC_TOKEN_TYPE, null, null, this,

new AccountManagerCallback<Bundle>() {

@Override

public void run(AccountManagerFuture<Bundle> future) {

try {

Bundle result = future.getResult();

String type =

result.getString(AccountManager.KEY_ACCOUNT_TYPE);

String name =

result.getString(AccountManager.KEY_ACCOUNT_NAME);

if (type != null && name != null) {

logLine("Add the following accounts:");

logLine(" Account type: %s", type);

logLine(" Account name: %s", name);

} else {

String code =

result.getString(AccountManager.KEY_ERROR_CODE);

String msg =

result.getString(AccountManager.KEY_ERROR_MESSAGE);

logLine("The account cannot be added");

(continues on next page)

440



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

logLine(" Error code %s: %s", code, msg);

}

} catch (OperationCanceledException e) {

} catch (AuthenticatorException e) {

} catch (IOException e) {

}

}

},

null);

}

public void getAuthToken(View view) {

logLine();

logLine("Get token");

// *** POINT 1 *** After checking that the Authenticator is the regular

// one, execute account process.

if (!checkAuthenticator()) return;

AccountManager am = AccountManager.get(this);

Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);

if (accounts.length > 0) {

Account account = accounts[0];

am.getAuthToken(account, JSSEC_TOKEN_TYPE, null, this,

new AccountManagerCallback<Bundle>() {

@Override

public void run(AccountManagerFuture<Bundle> future) {

try {

Bundle result = future.getResult();

String name =

result.getString(AccountManager.KEY_ACCOUNT_NAME);

String authtoken =

result.getString(AccountManager.KEY_AUTHTOKEN);

logLine("%s-san's token:", name);

if (authtoken != null) {

logLine(" %s", authtoken);

} else {

logLine(" Couldn't get");

}

} catch (OperationCanceledException e) {

logLine(" Exception: %s",e.getClass().getName());

} catch (AuthenticatorException e) {

logLine(" Exception: %s",e.getClass().getName());

} catch (IOException e) {

logLine(" Exception: %s",e.getClass().getName());

}

}

},

null);

} else {

logLine("Account is not registered.");

}

}

// *** POINT 1 *** Verify that Authenticator is regular one.

private boolean checkAuthenticator() {

(continues on next page)

441



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

AccountManager am = AccountManager.get(this);

String pkgname = null;

for (AuthenticatorDescription ad : am.getAuthenticatorTypes()) {

if (JSSEC_ACCOUNT_TYPE.equals(ad.type)) {

pkgname = ad.packageName;

break;

}

}

if (pkgname == null) {

logLine("Authenticator cannot be found.");

return false;

}

logLine(" Account type: %s", JSSEC_ACCOUNT_TYPE);

logLine(" Package name of Authenticator: ");

logLine(" %s", pkgname);

if (!PkgCert.test(this, pkgname, getTrustedCertificateHash(this))) {

logLine(" It's not regular Authenticator(certificate is not matched.)

→˓");

return false;

}

logLine(" This is regular Authenticator.");

return true;

}

// Certificate hash value of regular Authenticator application

// Certificate hash value can be checked in sample applciation

// JSSEC CertHash Checker

private String getTrustedCertificateHash(Context context) {

if (Utils.isDebuggable(context)) {

// Certificate hash value of debug.keystore "androiddebugkey"

return "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26␣

→˓F77C8255";

} else {

// Certificate hash value of keystore "my company key"

return "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2␣

→˓42E142CA";

}

}

private void log(String str) {

mLogView.append(str);

}

private void logLine(String line) {

log(line + "\n");

}

private void logLine(String fmt, Object... args) {

logLine(String.format(fmt, args));

}

private void logLine() {

(continues on next page)

442



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

log("\n");

}

}

PkgCert.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.shared;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import android.content.Context;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.content.pm.Signature;

public class PkgCert {

public static boolean test(Context ctx, String pkgname, String correctHash) {

if (correctHash == null) return false;

correctHash = correctHash.replaceAll(" ", "");

return correctHash.equals(hash(ctx, pkgname));

}

public static String hash(Context ctx, String pkgname) {

if (pkgname == null) return null;

try {

PackageManager pm = ctx.getPackageManager();

PackageInfo pkginfo =

pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);

// Will not handle multiple signatures.

if (pkginfo.signatures.length != 1) return null;

Signature sig = pkginfo.signatures[0];

byte[] cert = sig.toByteArray();

byte[] sha256 = computeSha256(cert);

return byte2hex(sha256);

} catch (NameNotFoundException e) {

return null;

}

}

(continues on next page)

443



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static byte[] computeSha256(byte[] data) {

try {

return MessageDigest.getInstance("SHA-256").digest(data);

} catch (NoSuchAlgorithmException e) {

return null;

}

}

private static String byte2hex(byte[] data) {

if (data == null) return null;

final StringBuilder hexadecimal = new StringBuilder();

for (final byte b : data) {

hexadecimal.append(String.format("%02X", b));

}

return hexadecimal.toString();

}

}

5.3.2 Rule Book

Follow the rules below when implementing Authenticator application.

1. Service that Provides Authenticator Must Be Private (Required)

2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)

3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by Other Applications
(Required)

4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity (Required)

5. Sensitive Information (like Account Information and Authentication Token) Must Not Be Output to the Log (Re-
quired)

6. Password Should Not Be Saved in Account Manager (Recommended)

7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service (Required)

Follow the rules below when implementing user application.

8. Account Process Should Be Executed after verifying if the Authenticator is the regular one (Required)

5.3.2.1 Service that Provides Authenticator Must Be Private (Required)

It's presupposed that the Service which provides with Authenticator is used by Account Manager, and it should not
be accessed by other applications. So, by making it Private Service, it can exclude accesses by other applications. In
addition, Account Manager runs with system privilege, so Account Manager can access even if it's private Service.

5.3.2.2 Login Screen Activity Must Be Implemented by Authenticator Application (Required)

Login screen for adding a new account and getting the authentication token should be implemented by Authenticator
application. Own Login screen should not be prepared in user application side. As mentioned at the beginning of this
article, "The advantage of AccountManager is that the extremely sensitive information/password is not necessarily
to be handled by application.", If login screen is prepared in user application side, password is handled by user
application, and its design becomes what is beyond the policy of Account Manager.

444



Secure Coding Guide Documentation Release 2025-01-29

By preparing login screen by Authenticator application, who can operate login screen is limited only the device's user.
It means that there's no way to attack the account for malicious applications by attempting to login directly, or by
creating an account.

5.3.2.3 The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Ac-
cesses by Other Applications (Required)

Login screen Activity is the system launched by the user application's p. In order that the login screen Activity is
displayed even when the signature keys of user application and Authenticator application are different, login screen
Activity should be implemented as Public Activity.

What login screen Activity is public Activity means, that there's a chance that it may be launched by malicious
applications. Never trust on any input data. Hence, it's necessary to take the counter-measures mentioned in "3.2.
Handling Input Data Carefully and Securely"

5.3.2.4 Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen
Activity (Required)

When Authenticator needs to open login screen Activity, Intent which launches login screen Activity is to be given
in the Bundle that is returned to Account Manager, by KEY_INTENT. The Intent to be given, should be the explicit
Intent which specifies class name of login screen Activity. If an implicit Intent is given, the framework may attempt
to launch an Activity other than the Activity prepared by the Authenticator app for the login window. On Android
4.4 (API Level 19) and later versions, this may cause the app to crash; on earlier versions it may cause unintended
Activities prepared by other apps to be launched.

On Android 4.4(API Level 19) and later versions, if the signature of an app launched by an intent given by the frame-
work via KEY_INTENT does not match the signature of the Authenticator app, a SecurityException is generated; in
this case, there is no risk that a false login screen will be launched; however, there is a possibility that the ordinary
screen will be able to launch and the user’s normal use of the app will be obstructed. On versions prior to Android
4.4(API Level 19), there is a risk that a false login screen prepared by a malicious app will be launched, and thus that
the user may input passwords and other authentication information to the malicious app.

5.3.2.5 Sensitive Information (like Account Information and Authentication Token) Must Not Be
Output to the Log (Required)

Applications which access to online service sometimes face a trouble like it cannot access to online service success-
fully. The causes of unsuccessful access are various, like lack in network environment arrangement, mistakes in
implementing communication protocol, lack of Permission, authentication error, etc. A common implementation is
that a program outputs the detailed information to log, so that developer can analyze the cause of a problem later.

Sensitive information like password or authentication token should not be output to log. Log information can be read
from other applications, so it may become the cause of information leakage. Also, account names should not be
output to log, if it could be lead the damage of leakage.

5.3.2.6 Password Should Not Be Saved in Account Manager (Recommended)

Two of authentication information, password and authentication token, can be saved in an account to be register to
AccountManager. This information is to be stored in accounts.db under the following directories, in a plain text (i.e.
without encryption).

• Android 4.1 or earlier<br/> /data/system/accounts.db

• Android 4.2 to Android 6.0<br/> /data/system/0/accounts.db or /data/system/<UserId>/accounts.db

• Android 7.0 or later<br/> /data/system_ce/0/accounts_ce.db

Note: Because multiuser functionality is supported on Android 4.2 and later versions, this has been changed to
save the content to a user-specific directory. Also, because Android 7.0 and later versions support Direct Boot, the

445



Secure Coding Guide Documentation Release 2025-01-29

database file is divided into two parts: one file that handles data while locked (/data/system_de/0/accounts_de_db) and
a separate file that handles data while unlocked (/data/system_ce/0/accounts_ce.db) Under ordinary circumstances,
authentication information is stored in the latter database file.

Root privileges or system privileges are required to read the content of these database files, so they cannot be read
on commercial Android terminals. If Android OS contains any vulnerabilities that allow attackers to acquire root
privileges or system privileges, this would leave the authentication information stored in accounts.db exposed to risk.

To read in the contents of accounts.db, either root privilege or system privilege is required, and it cannot be read
from the marketed Android devices. In the case there is any vulnerability in Android OS, which root privilege or
system privilege may be taken over by attackers, authentication information which is saved in accounts.db will be on
the edge of the risk.

The Authentication application, which is introduced in this article, is designed to save authentication token in Ac-
countManager without saving user password. When accessing to online service continuously in a certain period,
generally the expiration period of authentication token is extended, so the design that password is not saved is enough
in most cases.

In general, valid date of authentication token is shorter than password, and it's characteristic that it can be disabled
anytime. In case, authentication token is leaked, it can be disabled, so authentication token is comparatively safer,
compared with password. In the case authentication token is disabled, user can input the password again to get a new
authentication token.

If disabling password when it's leaked, user cannot use online service any more. In this case, it requires call center
support etc., and it will take huge cost. Hence, it's better to avoid from the design to save password inAccountManager.
In case, the design to save password cannot be avoided, high level of reverse engineering counter-measures like
encrypting password and obfuscating the key of that encryption, should be taken.

5.3.2.7 HTTPS Should Be Used for Communication Between an Authenticator and the Online
Service (Required)

Password or authentication token is so called authentication information, and if it's taken over by the third party,
the third party can masquerade as the valid user. Since Authenticator sends/receives these types of authentication
information with online service, reliable encrypted communication method like an HTTPS should be used.

5.3.2.8 Account Process Should Be Executed after verifying if the Authenticator is the regular
one (Required)

In the case there are several Authenticators which the same account type is defined in a device, Authenticator which
was installed earlier becomes valid. So, when the own Authenticator was installed later, it's not to be used.

If the Authenticator which was installed earlier, is the malware's masquerade, account information inputted by user
may be taken over by malware. User application should verify the account type which performs account operation,
whether the regular Authenticator is allocated to it or not, before executing account operation.

Whether the Authenticator which is allocated to one account type is regular one or not, can be verified by checking
whether the certificate hash value of the package of Authenticator matches with pre-confirmed valid certificate hash
value. If the certificate hash values are found to be not matched, a measure to prompt user to uninstall the package
which includes the unexpected Authenticator allocated to that account type, is preferable.

5.3.3 Advanced Topics

5.3.3.1 Usage of Account Manager and Permission

To use each method of AccountManager class, it's necessary to declare to use the appropriate Permission respec-
tively, in application's AndroidManifest.xml. In Android 5.1 (API Level 22) and earlier versions, privileges such
as AUTHENTICATE_ACCOUNTS, GET_ACCOUNTS, or MANAGE_ACCOUNTS are required; the privileges
corresponding to various methods are shown in Table 5.3.1.

446



Secure Coding Guide Documentation Release 2025-01-29

Table 5.3.1: Function of Account Manager and Permission

Functions that Account Manager provides
Permission Method Explanation
AUTHENTICATE_AC-
COUNTS (Only Pack-
ages which are Authenti-
cator, can use.)

getPassword() To get password
getUserData() To get user information
addAccountExplicitly() To add accounts to DB
peekAuthToken() To get cached token
setAuthToken() To register authentication token
setPassword() To change password
setUserData() To set user information
renameAccount() To rename account

GET_ACCOUNTS getAccounts() To get a list of all accounts
getAccountsByType() To get a list of all accounts which account types are

same
getAccountsByTypeAnd-
Features()

To get a list of all accounts which have the specified
function

addOnAccountsUpdat-
edListener()

To register event listener

hasFeatures() Whether it has the specified function or not
MANAGE_AC-
COUNTS

getAuthTokenByFea-
tures()

To get authentication token of the accounts which have
the specified function

addAccount() To request a user to add accounts
removeAccount() To remove an account
clearPassword() Initialize password
updateCredentials() Request a user to change password
editProperties() Change Authenticator setting
confirmCredentials() Request a user to input password again

USE_CREDENTIALS getAuthToken() To get authentication token
blockingGetAuthToken() To get authentication token

MANAGE_AC-
COUNTS or USE_CRE-
DENTIALS

invalidateAuthToken() To delete cached token

In case using methods group which AUTHENTICATE_ACCOUNTS Permission is necessary, there is a restriction
related to package signature key along with Permission. Specifically, the key for signature of package that provides
Authenticator and the key for signature of package in the application that uses methods, should be the same. So,
when distributing an application which uses method group which AUTHENTICATE_ACCOUNTS Permission is
necessary other than Authenticator, signature should be signed by the key which is the same as Authenticator.

In Android 6.0 (API Level 23) and later versions, Permissions other than GET_ACCOUNTS are not used, and there
is no difference between what may be done whether or not it is declared. For methods that request AUTHENTI-
CATE_ACCOUNTS on Android 5.1 (API Level 22) and earlier versions, note that—even if you wish to request a
Permission—the call can only be made if signatures match (if the signatures do not match then a SecurityException
is generated).

In addition, access controls for API routines that require GET_ACCOUNTS changed in Android 8.0 (API Level
26). In this and later versions, if the targetSdkVersion of the app on the side using the account information is 26 or
higher, account information can generally not be obtained if the signature does not match that of the Authenticator
app, even if GET_ACCOUNTS has been granted. However, if the Authenticator app calls the setAccountVisibility
method to specify a package name, account information can be provided even to apps with non-matching signatures.

In a development phase by Android Studio, since a fixed debug keystore might be shared by some Android Studio
projects, developers might implement and test Account Manager by considering only permissions and no signature.
It's necessary for especially developers who use the different signature keys per applications, to be very careful when
selecting which key to use for applications, considering this restriction. In addition, since the data which is obtained
by AccountManager includes the sensitive information, so need to handle with care in order to decrease the risk like
leakage or unauthorized use.

447



Secure Coding Guide Documentation Release 2025-01-29

5.3.3.2 Exception Occurs When Signature Keys of User Application and Authenticator Applica-
tion Are Different, in Android 4.0.x

When authentication token acquisition function, is required by the user application which is signed by the developer
key which is different from the signature key of Authenticator application that includes Authenticator, AccountMan-
ager verifies users whether to grant the usage of authentication token or not, by displaying the authentication token
license screen (GrantCredentialsPermissionActivity.) However, there's a bug in Android Framework of Android
4.0.x, as soon as this screen in opened by AccountManager, exception occurs, and application is force closed. (Fig.
5.3.3). See https://code.google.com/p/android/issues/detail?id=23421 for the details of the bug. This bug cannot be
found in Android 4.1.x. and later.

Fig. 5.3.3: When displaying Android standard authentication token license screen

5.3.3.3 Cases in which Authenticator accounts with non-matching signatures may be read in
Android 8.0 (API Level 26) or later

In Android 8.0 (API Level 26) and later versions, account-information-fetching methods that required GET_AC-
COUNTS Permission in Android 7.1 (API Level 25) and earlier versions may now be called without that permission.
Instead, account information may now be obtained only in cases where the signature matches or in which the setAc-
countVisibility method has been used on the Authenticator app side to specify an app to which account information
may be provided However, note carefully that there are a number of exceptions to this rule, implemented by the
framework. In what follows we discuss these exceptions.

First, when the targetSdkVersion of the app using the account information is 25 (Android 7.1) or below, the above
rule does not apply; in this case apps with the GET_ACCOUNTS permission may obtain account information within
the terminal regardless of its signature. However, below we discuss how this behavior may be changed depending
on the Authenticator-side implementation. Next, account information for Authenticators that declare the use of
WRITE_CONTACTS Permission may be read by other apps with READ_CONTACTS Permission, regardless of
signature. This is not a bug, but is rather the way the framework is designed12. Note again that this behavior may
differ depending on the Authenticator-side implementation.

Thus we see that there are some exceptional cases in which account information may be read even for apps with
non-matching signatures and for which the setAccountVisibility method has not been called to specify a destination

12 It is assumed that Authenticators that declare the use ofWRITE_CONTACTSPermission will write account information to ContactsProvider,
and that apps with READ_CONTACTS Permission will be granted permission to obtain account information.

448

https://code.google.com/p/android/issues/detail?id=23421


Secure Coding Guide Documentation Release 2025-01-29

to which account information is to be provided. However, these behaviors may be modified by calling the setAc-
countVisibility method on the Authenticator side, as in the following snippet.

Do not provide account information to third-party apps

// account for which to change visibility

accountManager.setAccountVisibility(account,

AccountManager.PACKAGE_NAME_KEY_LEGACY_VISIBLE,

AccountManager.VISIBILITY_USER_MANAGED_NOT_VISIBLE);

By proceeding this way, we can avoid the framework’s default behavior regarding account information for Authenti-
cators that have called the setAccountVisibility method; the above modification ensures that account information is
not provided even in cases where targetSdkVersion <= 25 or READ_CONTACTS permission is present.

5.4 Communicating via HTTPS

Most of smartphone applications communicate with Web servers on the Internet. As methods of communications,
here we focus on the 2 methods of HTTP and HTTPS. From the security point of view, HTTPS communication is
preferable. Lately, major Web services like Google or Facebook have been coming to use HTTPS as default. How-
ever, among HTTPS connection methods, those that use SSL3.0 / early Transport Layer Security (TLS) protocols
are known to be susceptible to a vulnerability (commonly known as POODLE and BEAST), and we strongly recom-
mend against the use of such methods, please refer to "5.4.3.8. (Column): Transitioning to TLS1.2/TLS1.3 for secure
connections".

Since 2012, many defects in implementation of HTTPS communication have been pointed out in Android applica-
tions. These defects might have been implemented for accessing testing Web servers operated by server certificates
that are not issued by trusted third party certificate authorities, but issued privately (hereinafter, called private certifi-
cates).

In this section, communication methods of HTTP and HTTPS are explained and the method to access safely with
HTTPS to a Web server operated by a private certificate is also described.

5.4.1 Sample Code

You can find out which type of HTTP/HTTPS communication you are supposed to implement through the following
chart (Fig. 5.4.1) shown below.

449



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.4.1: Flow Figure to select sample code of HTTP/HTTPS

When sensitive information is sent or received, HTTPS communication is to be used because its communication
channel is encrypted with SSL/TLS. HTTPS communication is required for the following sensitive information.

• Login ID/Password for Web services.

• Information for keeping authentication state (session ID, token, Cookie etc.)

• Important/confidential information depending on Web services (personal information, credit card information
etc.)

A smartphone application with network communication is a part of "system" as well as aWeb server. And you have to
select HTTP or HTTPS for each communication based on secure design and coding considering the whole "system".
Table 5.4.1 is for a comparison between HTTP and HTTPS. And Table 5.4.2 is for the differences in sample codes.

Table 5.4.1: Comparison between HTTP communication method and
HTTPS communication method

HTTP HTTPS
Character-
istics

URL Starting with http:// Starting with https://
Encrypting contents Not available Available
Tampering detection of contents Impossible Possible
Authenticating a server Impossible Possible

Damage
Risk

Reading contents by attackers High Low
Modifying contents by attackers High Low
Application’s access to a fake server High Low

450

http://
https://


Secure Coding Guide Documentation Release 2025-01-29

Table 5.4.2: Explanation of HTTP/HTTPS communication Sample code

Sample code Com-
muni-
cation

Sending/Receiv-
ing sensitive
information

Server certificate

Communicating via
HTTP

HTTP Not applicable -

Communicating via
HTTP

HTTPS OK Server certificates issued by trusted third
party’s certificate authorities like Cybertrust and
VeriSign etc.

Communicating via
HTTPS with private
certificate

HTTPS OK Private certificate
Operation mode which can be often
seen in intra server or in test server.

Android supports java.net.HttpURLConnection/javax.net.ssl.HttpsURLConnection as HTTP/HTTPS communica-
tion APIs. Support for the Apache HttpClient, which is another HTTP client library, is removed at the release of the
Android 6.0(API Level 23).

5.4.1.1 Communicating via HTTP

It is based on two premises that all contents sent/received through HTTP communications may be sniffed and tam-
pered by attackers and your destination server may be replaced with fake servers prepared by attackers. HTTP
communication can be used only if no damage is caused or the damage is within the permissible extent even under
the premises. If an application cannot accept the premises, please refer to "5.4.1.2. Communicating via HTTPS<!–
2b8c337d –>" and "5.4.1.3. Communicating via HTTPS with private certificate".

The following sample code shows an application which gets the specific image on a Web server, and shows it. The
worker thread for communication process using AsyncTask is created to avoid the communications performing on
the UI thread. Contents sent/received in the communications with the server are not considered as sensitive (e.g. the
URL of the image, or the image data) here. So, the received data such as the URL of the image and the image data
may be provided by attackers13. To show the sample code simply, any countermeasures are not taken in the sample
code by considering the received attacking data as tolerable. Also, the handlings for possible exceptions during HTTP
connections or showing image data are omitted. It is necessary to handle the exceptions properly depending on the
application specs.

Because the sample code is HTTP communication, the android:usesCleartextTraffic attribute value in AndroidMan-
ifest.xml is set to “true”, which was the default up to Android 8.1 (API level 27). Because “false” became the default
setting (in other words, HTTPS communication became the default) starting from Android 9 (API level 28), an error
will occur in HTTP communication unless “true” is explicitly set. In this way, when android:usesCleartextTraf-
fic=“true” is set, this permits all HTTP communication14, but instead, to limit the domains where HTTP communica-
tion is allowed, make the setting by referring to “Prevent unencrypted (HTTP) communication” in "5.4.3.7. Network
Security Configuration". Starting from Android 7.0 (API level 24), the Network Security Configuration setting has
priority over the android:usesCleartextTraffic attribute15.

Points:

1. Sensitive information must not be contained in send data.

2. Suppose that received data may be sent from attackers.

AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

(continues on next page)

13 In fact, a vulnerability that executes any selected code when a PNG image is loaded was found in February 2019. (https://source.android.
com/security/bulletin/2019-02-01.html)

14 “This flag is honored on a best effort basis because it’s impossible to prevent all cleartext traffic fromAndroid applications given the level of ac-
cess provided to them.” (https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted())

15 https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic

451

https://source.android.com/security/bulletin/2019-02-01.html
https://source.android.com/security/bulletin/2019-02-01.html
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted()
https://developer.android.com/guide/topics/manifest/application-element#usesCleartextTraffic


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

android:versionCode="1"

android:versionName="1.0">

<uses-permission android:name="android.permission.INTERNET"/>

<application

android:icon="@drawable/ic_launcher"

android:allowBackup="false"

android:label="@string/app_name"

android:usesCleartextTraffic="true">

<activity

android:name=".ImageSearchActivity"

android:label="@string/app_name"

android:theme="@android:style/Theme.Light"

android:exported="true" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

HttpImageSearch.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.https.imagesearch;

import android.os.AsyncTask;

import org.json.JSONException;

import org.json.JSONObject;

import java.io.BufferedInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.ProtocolException;

import java.net.URL;

public abstract class HttpImageSearch extends AsyncTask<String, Void, Object> {

(continues on next page)

452



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

protected Object doInBackground(String... params) {

HttpURLConnection con;

byte[] responseArray = null;

try {

// --------------------------------------------------------

// Communication: Obtain a image

// --------------------------------------------------------

// *** POINT 1 *** Sensitive information must not be contained in send

// data.

// Send image URL (after checking image_url)

String image_url =

"http://www.jssec.org/common/images/main_visual_local.jpg";

con = connectUrl(image_url);

checkResponse(con);

// *** POINT 2 *** Suppose that received data may be sent from

// attackers.

// This is sample, so omit the process in case of the searching result

// is the data from an attacker.

responseArray = getByteArray(con);

if (responseArray == null) {

return null;

}

} catch (IOException e) {

// Exception handling is omitted

}

return responseArray;

}

private HttpURLConnection connectUrl(String strUrl) {

HttpURLConnection con = null;

try {

URL url = new URL(strUrl);

con = (HttpURLConnection) url.openConnection();

con.setRequestMethod("GET");

con.connect();

} catch (ProtocolException e) {

// Handle exception (omitted)

} catch (MalformedURLException e) {

// Handle exception (omitted)

} catch (IOException e) {

// Handle exception (omitted)

}

return con;

}

private byte[] getByteArray(HttpURLConnection con) {

byte[] buff = new byte[1024];

byte[] result = null;

BufferedInputStream inputStream = null;

ByteArrayOutputStream responseArray = null;

int length;

try {

(continues on next page)

453



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

inputStream = new BufferedInputStream(con.getInputStream());

responseArray = new ByteArrayOutputStream();

while ((length = inputStream.read(buff)) != -1) {

if (length > 0) {

responseArray.write(buff, 0, length);

}

}

result = responseArray.toByteArray();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (inputStream != null) {

try {

inputStream.close();

} catch (IOException e) {

// Exception handling is omitted

}

}

if (responseArray != null) {

try {

responseArray.close();

} catch (IOException e) {

// Exception handling is omitted

}

}

}

return result;

}

private void checkResponse(HttpURLConnection response) throws IOException {

int statusCode = response.getResponseCode();

if (HttpURLConnection.HTTP_OK != statusCode) {

throw new IOException("HttpStatus: " + statusCode);

}

}

}

ImageSearchActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.https.imagesearch;

(continues on next page)

454



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

public class ImageSearchActivity extends Activity {

private EditText mQueryBox;

private TextView mMsgBox;

private ImageView mImgBox;

private AsyncTask<String, Void, Object> mAsyncTask ;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mQueryBox = (EditText)findViewById(R.id.querybox);

mMsgBox = (TextView)findViewById(R.id.msgbox);

mImgBox = (ImageView)findViewById(R.id.imageview);

}

@Override

protected void onPause() {

// After this, Activity may be deleted, so cancel the asynchronization

// process in advance.

if (mAsyncTask != null) mAsyncTask.cancel(true);

super.onPause();

}

public void onHttpSearchClick(View view) {

mMsgBox.setText("http://www.jssec.org/common/images/main_visual_local.jpg

→˓");

mImgBox.setImageBitmap(null);

// Cancel, since the last asynchronous process might not have been

// finished yet.

if (mAsyncTask != null) mAsyncTask.cancel(true);

// Since cannot communicate by UI thread, communicate by worker thread by

// AsynchTask.

mAsyncTask = new HttpImageSearch() {

@Override

protected void onPostExecute(Object result) {

// Process the communication result by UI thread.

if (result == null) {

mMsgBox.append("\nException occurs\n");

} else if (result instanceof Exception) {

Exception e = (Exception)result;

mMsgBox.append("\nException occurs\n" + e.toString());

(continues on next page)

455



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

} else {

// Exception process when image display is omitted here,

// since it's sample.

byte[] data = (byte[])result;

Bitmap bmp =

BitmapFactory.decodeByteArray(data, 0, data.length);

mImgBox.setImageBitmap(bmp);

}

}

}.execute(); // pass search character string and start asynchronous

// process

}

public void onHttpsSearchClick(View view) {

String query = mQueryBox.getText().toString();

mMsgBox.setText("HTTPS:" + query);

mImgBox.setImageBitmap(null);

// Cancel, since the last asynchronous process might not have been

// finished yet.

if (mAsyncTask != null) mAsyncTask.cancel(true);

// Since cannot communicate by UI thread, communicate by worker thread by

// AsynchTask.

mAsyncTask = new HttpsImageSearch() {

@Override

protected void onPostExecute(Object result) {

// Process the communication result by UI thread.

if (result instanceof Exception) {

Exception e = (Exception)result;

mMsgBox.append("\nException occurs\n" + e.toString());

} else {

byte[] data = (byte[])result;

Bitmap bmp =

BitmapFactory.decodeByteArray(data, 0, data.length);

mImgBox.setImageBitmap(bmp);

}

}

}.execute(query); // pass search character string and start asynchronous

// process

}

}

5.4.1.2 Communicating via HTTPS<!– 2b8c337d –>

In HTTPS communication, a server is checked whether it is trusted or not as well as data transferred is encrypted.
To authenticate the server, Android HTTPS library verifies "server certificate" which is transmitted from the server
in the handshake phase of HTTPS transaction with following points:

• The server certificate is signed by a trusted third party certificate authority

• The period and other properties of the server certificate are valid

• The server's host name matches the CN (Common Name) or SAN (Subject Alternative Names) in the Subject
field of the server certificate

SSLException (server certificate verification exception) is raised if the above verification is failed. This possibly

456



Secure Coding Guide Documentation Release 2025-01-29

means man-in-the-middle attack16 or just server certificate defects. Your application has to handle the exception
with an appropriate sequence based on the application specifications.

The next a sample code is for HTTPS communication which connects to a Web server with a server certificate issued
by a trusted third party certificate authority. For HTTPS communication with a server certificate issued privately,
please refer to "5.4.1.3. Communicating via HTTPS with private certificate".

The following sample code shows an application which performs an image search on a Web server, gets the result
image and shows it. HTTPS communication with the server is performed twice a search. The first communication
is for searching image data and the second is for getting it. The worker thread for communication process using
AsyncTask is created to avoid the communications performing on the UI thread. All contents sent/received in the
communications with the server are considered as sensitive (e.g. the character string for searching, the URL of
the image, or the image data) here. To show the sample code simply, no special handling for SSLException is
performed. It is necessary to handle the exceptions properly depending on the application specifications. For the
HTTPS communication by javax.net.ssl.HttpsUrlConnection that is used in the sample code, in devices running
Android 7.1.1(API Level 25) or lower, if the server has not disabled connections by SSL 3.0, vulnerable SSL 3.0
communication could be established. As an example of a corrective measure at the app side, in the sample code, a
custom class (NoSSLv3SocketFactory class) was created that inherited the javax.net.ssl.SSLSocketFactory class, and
SSL 3.0 was set as an exception from protocol transferred to setEnabledProtocols()17. As a corrective measure not
on the app side, we recommend configuring settings18 on remote servers to disable SSL 3.0. Besides SSL 3.0, this
also applies in the same way to vulnerable initial versions of TLS, such as TLS 1.0.

Based on the information in RFC281819, the use of CN, which is an existing customary practice in verification of
server certificates, is not recommended, and the use of SAN is strongly recommended for comparing domain names
and certificates. For this reason, Android 9.0 (API level 28) was changed so that SAN only is used for verifications,
and the server must present a certificate including SAN, and if the certificate does not include one, it is no longer
trusted.

Points:

1. URI starts with https://.

2. Sensitive information may be contained in send data.

3. Handle the received data carefully and securely, even though the data was sent from the server connected by
HTTPS.

4. SSLException should be handled with an appropriate sequence in an application.

HttpsImageSearch.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.https.imagesearch;

(continues on next page)

16 Concerning “man-in-the-middle attack”, please refer to https://www.ipa.go.jp/about/press/20140919_1.html .
17 Connections via SSL3.0 will not arise, as these are prohibited at the platform level in Android 8.0 (API Level 26) and later versions; In this

case, no corrective measures by inheriting SSLSocketFactory in the sample code are required.
18 For example, in the Apache 2.4 series, set “SSLProtocol all -SSLv3” in ssl.conf.
19 “HTTP Over TLS”(https://tools.ietf.org/html/rfc2818)

457

https://
https://www.ipa.go.jp/about/press/20140919_1.html
https://tools.ietf.org/html/rfc2818


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import org.json.JSONException;

import org.json.JSONObject;

import android.os.AsyncTask;

import java.io.BufferedInputStream;

import java.io.BufferedReader;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.ProtocolException;

import java.net.URL;

import java.security.KeyManagementException;

import java.security.NoSuchAlgorithmException;

import java.security.cert.Certificate;

import java.util.ArrayList;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLException;

import javax.net.ssl.SSLSocketFactory;

public abstract class HttpsImageSearch extends AsyncTask<String, Void, Object> {

@Override

protected Object doInBackground(String... params) {

HttpsURLConnection con1, con2;

ArrayList<String> imageUrlList = new ArrayList<>();

byte[] responseArray = null;

try{

// --------------------------------------------------------

// Communication 1st time : Execute image search

// --------------------------------------------------------

StringBuilder s = new StringBuilder();

for (String param : params) {

s.append(param);

s.append('+');

}

s.deleteCharAt(s.length() - 1);

// *** POINT 1 *** URI starts with https://.

// *** POINT 2 *** Sensitive information may be contained in send data.

// Code for sending image search string is omitted.

String search_url = "https://www.google.com/search?tbm=isch&q=" +

s.toString();

// *** POINT 3 *** Handle the received data carefully and securely,

// even though the data was sent from the server connected by HTTPS.

// Omitted, since this is a sample. Please refer to

// "3.2 Handling Input Data Carefully and Securely."

con1 = connectUrl(search_url);

BufferedReader in = new BufferedReader(

(continues on next page)

458



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

new InputStreamReader(con1.getInputStream()));

String inputLine;

StringBuffer sb = new StringBuffer();

while ((inputLine = in.readLine()) != null) {

sb.append(inputLine);

}

in.close();

final String regex = "<img.+?src=\"(.+?)\".+?>";

Pattern pattern = Pattern.compile(regex);

Matcher matcher = pattern.matcher(sb.toString());

while (matcher.find()) {

if (matcher.group(1).startsWith("https://"))

imageUrlList.add(matcher.group(1));

}

if (imageUrlList == null || imageUrlList.isEmpty()) {

return null;

}

// --------------------------------------------------------

// Communication 2nd time : Get image

// --------------------------------------------------------

// *** POINT 1 *** URI starts with https://.

// *** POINT 2 *** Sensitive information may be contained in send data.

String image_url = imageUrlList.get(1);

con2 = connectUrl(image_url);

checkResponse(con2);

responseArray = getByteArray(con2);

if (responseArray == null) {

return null;

}

} catch (IOException e) {

e.printStackTrace();

}

return responseArray;

}

private HttpsURLConnection connectUrl(String strUrl) {

HttpsURLConnection con = null;

try {

SSLContext sc = SSLContext.getInstance("TLS");

sc.init(null, null, null);

SSLSocketFactory sf = new NoSSLv3SocketFactory(sc.getSocketFactory());

HttpsURLConnection.setDefaultSSLSocketFactory(sf);

URL url = new URL(strUrl);

con = (HttpsURLConnection) url.openConnection();

con.setRequestMethod("GET");

con.connect();

String cipher_suite = con.getCipherSuite();

Certificate[] certs = con.getServerCertificates();

} catch (SSLException e) {

// *** POINT 4** Exception handling suitable for the application for

// SSLException

e.printStackTrace();// This is sample, so omit the exception process

} catch (NoSuchAlgorithmException e) {

(continues on next page)

459



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

e.printStackTrace();// Exception handling is omitted

} catch (KeyManagementException e) {

e.printStackTrace();// Exception handling is omitted

} catch (ProtocolException e) {

e.printStackTrace();// Exception handling is omitted

} catch (MalformedURLException e) {

e.printStackTrace();// Exception handling is omitted

} catch (IOException e) {

e.printStackTrace();// Exception handling is omitted

}

return con;

}

private byte[] getByteArray(HttpsURLConnection con) {

byte[] buff = new byte[1024];

byte[] result = null;

BufferedInputStream inputStream = null;

ByteArrayOutputStream responseArray = null;

int length;

try {

inputStream = new BufferedInputStream(con.getInputStream());

responseArray = new ByteArrayOutputStream();

while ((length = inputStream.read(buff)) != -1) {

if (length > 0) {

responseArray.write(buff, 0, length);

}

}

result = responseArray.toByteArray();

} catch (IOException e) {

e.printStackTrace();

} finally {

if (inputStream != null) {

try {

inputStream.close();

} catch (IOException e) {

// Exception handling is omitted

}

}

if (responseArray != null) {

try {

responseArray.close();

} catch (IOException e) {

// Exception handling is omitted

}

}

}

return result;

}

private void checkResponse(HttpURLConnection response) throws IOException {

int statusCode = response.getResponseCode();

if (HttpURLConnection.HTTP_OK != statusCode) {

throw new IOException("HttpStatus: " + statusCode);

}

(continues on next page)

460



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

NoSSLv3SocketFactory.java

package org.jssec.android.https.imagesearch;

/*Copyright 2015 Bhavit Singh Sengar

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.You may obtain a␣

→˓copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.*/

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.InetAddress;

import java.net.Socket;

import java.net.SocketAddress;

import java.net.SocketException;

import java.nio.channels.SocketChannel;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import javax.net.ssl.HandshakeCompletedListener;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.net.ssl.SSLSocket;

import javax.net.ssl.SSLSocketFactory;

public class NoSSLv3SocketFactory extends SSLSocketFactory{

private final SSLSocketFactory delegate;

public NoSSLv3SocketFactory() {

this.delegate = HttpsURLConnection.getDefaultSSLSocketFactory();

}

public NoSSLv3SocketFactory(SSLSocketFactory delegate) {

this.delegate = delegate;

}

@Override

public String[] getDefaultCipherSuites() {

return delegate.getDefaultCipherSuites();

}

@Override

public String[] getSupportedCipherSuites() {

return delegate.getSupportedCipherSuites();

(continues on next page)

461



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private Socket makeSocketSafe(Socket socket) {

if (socket instanceof SSLSocket) {

socket = new NoSSLv3SSLSocket((SSLSocket) socket);

}

return socket;

}

@Override

public Socket createSocket(Socket s, String host, int port, boolean autoClose)␣

→˓throws IOException {

return makeSocketSafe(delegate.createSocket(s, host, port, autoClose));

}

@Override

public Socket createSocket(String host, int port) throws IOException {

return makeSocketSafe(delegate.createSocket(host, port));

}

@Override

public Socket createSocket(String host, int port, InetAddress localHost, int␣

→˓localPort) throws IOException {

return makeSocketSafe(delegate.createSocket(host, port, localHost,␣

→˓localPort));

}

@Override

public Socket createSocket(InetAddress host, int port) throws IOException {

return makeSocketSafe(delegate.createSocket(host, port));

}

@Override

public Socket createSocket(InetAddress address, int port, InetAddress␣

→˓localAddress, int localPort) throws IOException {

return makeSocketSafe(delegate.createSocket(address, port, localAddress,␣

→˓localPort));

}

private class NoSSLv3SSLSocket extends DelegateSSLSocket {

private NoSSLv3SSLSocket(SSLSocket delegate) {

super(delegate);

}

@Override

public void setEnabledProtocols(String[] protocols) {

if (protocols != null && protocols.length == 1 && "SSLv3".

→˓equals(protocols[0])) {

List<String> enabledProtocols = new ArrayList<String>(Arrays.

→˓asList(delegate.getEnabledProtocols()));

if (enabledProtocols!= null) {

enabledProtocols.remove("SSLv3");

System.out.println("Removed weak protocol from enabled␣

(continues on next page)

462



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

→˓protocols");

} else {

System.out.println("SSL stuck with protocol available for " +␣

→˓String.valueOf(enabledProtocols));

}

protocols = enabledProtocols.toArray(new String[enabledProtocols.

→˓size()]);

}

super.setEnabledProtocols(protocols);

}

}

public class DelegateSSLSocket extends SSLSocket {

protected final SSLSocket delegate;

DelegateSSLSocket(SSLSocket delegate) {

this.delegate = delegate;

}

@Override

public String[] getSupportedCipherSuites() {

return delegate.getSupportedCipherSuites();

}

@Override

public String[] getEnabledCipherSuites() {

return delegate.getEnabledCipherSuites();

}

@Override

public void setEnabledCipherSuites(String[] suites) {

delegate.setEnabledCipherSuites(suites);

}

@Override

public String[] getSupportedProtocols() {

return delegate.getSupportedProtocols();

}

@Override

public String[] getEnabledProtocols() {

return delegate.getEnabledProtocols();

}

@Override

public void setEnabledProtocols(String[] protocols) {

delegate.setEnabledProtocols(protocols);

}

@Override

public SSLSession getSession() {

return delegate.getSession();

}

(continues on next page)

463



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public void addHandshakeCompletedListener(HandshakeCompletedListener␣

→˓listener) {

delegate.addHandshakeCompletedListener(listener);

}

@Override

public void removeHandshakeCompletedListener(HandshakeCompletedListener␣

→˓listener) {

delegate.removeHandshakeCompletedListener(listener);

}

@Override

public void startHandshake() throws IOException {

delegate.startHandshake();

}

@Override

public void setUseClientMode(boolean mode) {

delegate.setUseClientMode(mode);

}

@Override

public boolean getUseClientMode() {

return delegate.getUseClientMode();

}

@Override

public void setNeedClientAuth(boolean need) {

delegate.setNeedClientAuth(need);

}

@Override

public void setWantClientAuth(boolean want) {

delegate.setWantClientAuth(want);

}

@Override

public boolean getNeedClientAuth() {

return delegate.getNeedClientAuth();

}

@Override

public boolean getWantClientAuth() {

return delegate.getWantClientAuth();

}

@Override

public void setEnableSessionCreation(boolean flag) {

delegate.setEnableSessionCreation(flag);

}

@Override

public boolean getEnableSessionCreation() {

return delegate.getEnableSessionCreation();

}

(continues on next page)

464



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public void bind(SocketAddress localAddr) throws IOException {

delegate.bind(localAddr);

}

@Override

public synchronized void close() throws IOException {

delegate.close();

}

@Override

public void connect(SocketAddress remoteAddr) throws IOException {

delegate.connect(remoteAddr);

}

@Override

public void connect(SocketAddress remoteAddr, int timeout) throws␣

→˓IOException {

delegate.connect(remoteAddr, timeout);

}

@Override

public SocketChannel getChannel() {

return delegate.getChannel();

}

@Override

public InetAddress getInetAddress() {

return delegate.getInetAddress();

}

@Override

public InputStream getInputStream() throws IOException {

return delegate.getInputStream();

}

@Override

public boolean getKeepAlive() throws SocketException {

return delegate.getKeepAlive();

}

@Override

public InetAddress getLocalAddress() {

return delegate.getLocalAddress();

}

@Override

public int getLocalPort() {

return delegate.getLocalPort();

}

@Override

public SocketAddress getLocalSocketAddress() {

return delegate.getLocalSocketAddress();

}

(continues on next page)

465



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public boolean getOOBInline() throws SocketException {

return delegate.getOOBInline();

}

@Override

public OutputStream getOutputStream() throws IOException {

return delegate.getOutputStream();

}

@Override

public int getPort() {

return delegate.getPort();

}

@Override

public synchronized int getReceiveBufferSize() throws SocketException {

return delegate.getReceiveBufferSize();

}

@Override

public SocketAddress getRemoteSocketAddress() {

return delegate.getRemoteSocketAddress();

}

@Override

public boolean getReuseAddress() throws SocketException {

return delegate.getReuseAddress();

}

@Override

public synchronized int getSendBufferSize() throws SocketException {

return delegate.getSendBufferSize();

}

@Override

public int getSoLinger() throws SocketException {

return delegate.getSoLinger();

}

@Override

public synchronized int getSoTimeout() throws SocketException {

return delegate.getSoTimeout();

}

@Override

public boolean getTcpNoDelay() throws SocketException {

return delegate.getTcpNoDelay();

}

@Override

public int getTrafficClass() throws SocketException {

return delegate.getTrafficClass();

}

(continues on next page)

466



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public boolean isBound() {

return delegate.isBound();

}

@Override

public boolean isClosed() {

return delegate.isClosed();

}

@Override

public boolean isConnected() {

return delegate.isConnected();

}

@Override

public boolean isInputShutdown() {

return delegate.isInputShutdown();

}

@Override

public boolean isOutputShutdown() {

return delegate.isOutputShutdown();

}

@Override

public void sendUrgentData(int value) throws IOException {

delegate.sendUrgentData(value);

}

@Override

public void setKeepAlive(boolean keepAlive) throws SocketException {

delegate.setKeepAlive(keepAlive);

}

@Override

public void setOOBInline(boolean oobinline) throws SocketException {

delegate.setOOBInline(oobinline);

}

@Override

public void setPerformancePreferences(int connectionTime, int latency, int␣

→˓bandwidth) {

delegate.setPerformancePreferences(connectionTime, latency, bandwidth);

}

@Override

public synchronized void setReceiveBufferSize(int size) throws␣

→˓SocketException {

delegate.setReceiveBufferSize(size);

}

@Override

public void setReuseAddress(boolean reuse) throws SocketException {

delegate.setReuseAddress(reuse);

}

(continues on next page)

467



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public synchronized void setSendBufferSize(int size) throws␣

→˓SocketException {

delegate.setSendBufferSize(size);

}

@Override

public void setSoLinger(boolean on, int timeout) throws SocketException {

delegate.setSoLinger(on, timeout);

}

@Override

public synchronized void setSoTimeout(int timeout) throws SocketException {

delegate.setSoTimeout(timeout);

}

@Override

public void setTcpNoDelay(boolean on) throws SocketException {

delegate.setTcpNoDelay(on);

}

@Override

public void setTrafficClass(int value) throws SocketException {

delegate.setTrafficClass(value);

}

@Override

public void shutdownInput() throws IOException {

delegate.shutdownInput();

}

@Override

public void shutdownOutput() throws IOException {

delegate.shutdownOutput();

}

@Override

public String toString() {

return delegate.toString();

}

@Override

public boolean equals(Object o) {

return delegate.equals(o);

}

}

}

Other sample code files (AndroidManifest.xml, ImageSearchActivity.java) are the same as "5.4.1.1. Communicating
via HTTP", so please refer to "5.4.1.1. Communicating via HTTP"

468



Secure Coding Guide Documentation Release 2025-01-29

5.4.1.3 Communicating via HTTPS with private certificate

This section shows a sample code of HTTPS communication with a server certificate issued privately (private cer-
tificate), but not with that issued by a trusted third party authority. Please refer to "5.4.3.1. How to Create Private
Certificate and Configure Server Settings" for creating a root certificate of a private certificate authority and private
certificates and setting HTTPS settings in a Web server. The sample program has a cacert.crt file in assets. It is a
root certificate file of private certificate authority.

The following sample code shows an application which gets an image on a Web server and shows it. HTTPS is used
for the communication with the server. The worker thread for communication process using AsyncTask is created
to avoid the communications performing on the UI thread. All contents (the URL of the image and the image data)
sent/received in the communications with the server are considered as sensitive here. To show the sample code simply,
no special handling for SSLException is performed. It is necessary to handle the exceptions properly depending on
the application specifications.

Points:

1. Verify a server certificate with the root certificate of a private certificate authority.

2. URI starts with https://.

3. Sensitive information may be contained in send data.

4. Received data can be trusted as same as the server.

5. SSLException should be handled with an appropriate sequence in an application.

PrivateCertificateHttpsGet.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.https.privatecertificate;

import java.io.BufferedInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.net.HttpURLConnection;

import java.net.URL;

import java.security.KeyStore;

import java.security.SecureRandom;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLException;

import javax.net.ssl.SSLSession;

import javax.net.ssl.TrustManagerFactory;

(continues on next page)

469

https://


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.content.Context;

import android.os.AsyncTask;

public abstract class PrivateCertificateHttpsGet

extends AsyncTask<String, Void, Object> {

private Context mContext;

public PrivateCertificateHttpsGet(Context context) {

mContext = context;

}

@Override

protected Object doInBackground(String... params) {

TrustManagerFactory trustManager;

BufferedInputStream inputStream = null;

ByteArrayOutputStream responseArray = null;

byte[] buff = new byte[1024];

int length;

try {

URL url = new URL(params[0]);

// *** POINT 1 *** Verify a server certificate with the root

// certificate of a private certificate authority.

// Set keystore which includes only private certificate that is stored

// in assets, to client.

KeyStore ks = KeyStoreUtil.getEmptyKeyStore();

KeyStoreUtil.loadX509Certificate(ks,

mContext.getResources().getAssets().open("cacert.crt"));

// Verify host name

HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {

@Override

public boolean verify(String hostname, SSLSession session) {

if (!hostname.equals(session.getPeerHost())) {

return false;

}

return true;

}

});

// *** POINT 2 *** URI starts with https://.

// *** POINT 3 *** Sensitive information may be contained in send data.

trustManager = TrustManagerFactory.getInstance(TrustManagerFactory.

→˓getDefaultAlgorithm());

trustManager.init(ks);

SSLContext sslCon = SSLContext.getInstance("TLS");

sslCon.init(null, trustManager.getTrustManagers(), new SecureRandom());

HttpURLConnection con = (HttpURLConnection)url.openConnection();

HttpsURLConnection response = (HttpsURLConnection)con;

response.setDefaultSSLSocketFactory(sslCon.getSocketFactory());

response.setSSLSocketFactory(sslCon.getSocketFactory());

checkResponse(response);

(continues on next page)

470



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 4 *** Received data can be trusted as same as the server.

inputStream = new BufferedInputStream(response.getInputStream());

responseArray = new ByteArrayOutputStream();

while ((length = inputStream.read(buff)) != -1) {

if (length > 0) {

responseArray.write(buff, 0, length);

}

}

return responseArray.toByteArray();

} catch(SSLException e) {

// *** POINT 5 *** SSLException should be handled with an appropriate

// sequence in an application.

// Exception process is omitted here since it's sample.

return e;

} catch(Exception e) {

return e;

} finally {

if (inputStream != null) {

try {

inputStream.close();

} catch (Exception e) {

// This is sample, so omit the exception process

}

}

if (responseArray != null) {

try {

responseArray.close();

} catch (Exception e) {

// This is sample, so omit the exception process

}

}

}

}

private void checkResponse(HttpURLConnection response) throws IOException {

int statusCode = response.getResponseCode();

if (HttpURLConnection.HTTP_OK != statusCode) {

throw new IOException("HttpStatus: " + statusCode);

}

}

}

KeyStoreUtil.java

package org.jssec.android.https.privatecertificate;

import java.io.IOException;

import java.io.InputStream;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;

import java.security.cert.Certificate;

import java.security.cert.CertificateException;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import java.util.Enumeration;

(continues on next page)

471



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public class KeyStoreUtil {

public static KeyStore getEmptyKeyStore() throws KeyStoreException,

NoSuchAlgorithmException,

CertificateException,

IOException {

KeyStore ks = KeyStore.getInstance("BKS");

ks.load(null);

return ks;

}

public static void loadAndroidCAStore(KeyStore ks)

throws KeyStoreException, NoSuchAlgorithmException,

CertificateException, IOException {

KeyStore aks = KeyStore.getInstance("AndroidCAStore");

aks.load(null);

Enumeration<String> aliases = aks.aliases();

while (aliases.hasMoreElements()) {

String alias = aliases.nextElement();

Certificate cert = aks.getCertificate(alias);

ks.setCertificateEntry(alias, cert);

}

}

public static void loadX509Certificate(KeyStore ks, InputStream is)

throws CertificateException, KeyStoreException {

try {

CertificateFactory factory = CertificateFactory.getInstance("X509");

X509Certificate x509 =

(X509Certificate)factory.generateCertificate(is);

String alias = x509.getSubjectDN().getName();

ks.setCertificateEntry(alias, x509);

} finally {

try {

is.close();

} catch (IOException e) {

/* This is sample, so omit the exception process */

}

}

}

}

PrivateCertificateHttpsActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

(continues on next page)

472



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*/

package org.jssec.android.https.privatecertificate;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.AsyncTask;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

public class PrivateCertificateHttpsActivity extends Activity {

private EditText mUrlBox;

private TextView mMsgBox;

private ImageView mImgBox;

private AsyncTask<String, Void, Object> mAsyncTask ;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mUrlBox = (EditText)findViewById(R.id.urlbox);

mMsgBox = (TextView)findViewById(R.id.msgbox);

mImgBox = (ImageView)findViewById(R.id.imageview);

}

@Override

protected void onPause() {

// After this, Activity may be discarded, so cancel asynchronous process

// in advance.

if (mAsyncTask != null) mAsyncTask.cancel(true);

super.onPause();

}

public void onClick(View view) {

String url = mUrlBox.getText().toString();

mMsgBox.setText(url);

mImgBox.setImageBitmap(null);

// Cancel, since the last asynchronous process might have not been

// finished yet.

if (mAsyncTask != null) mAsyncTask.cancel(true);

// Since cannot communicate through UI thread, communicate by worker

// thread by AsynchTask.

mAsyncTask = new PrivateCertificateHttpsGet(this) {

@Override

protected void onPostExecute(Object result) {

// Process the communication result through UI thread.

if (result instanceof Exception) {

Exception e = (Exception)result;

(continues on next page)

473



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

mMsgBox.append("\nException occurs\n" + e.toString());

} else {

byte[] data = (byte[])result;

Bitmap bmp =

BitmapFactory.decodeByteArray(data, 0, data.length);

mImgBox.setImageBitmap(bmp);

}

}

}.execute(url); // Pass URL and start asynchronization process

}

}

5.4.2 Rule Book

Follow the rules below to communicate with HTTP/HTTPS.

1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)

2. Received Data over HTTP Must be Handled Carefully and Securely (Required)

3. SSLException Must Be Handled Appropriately like Notification to User (Required)

4. Custom TrustManager Must Not Be Created (Required)

5. Custom HostnameVerifier Must Not Be Created (Required)

5.4.2.1 Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)

In HTTP transaction, sent and received information might be sniffed or tampered and the connected server might be
masqueraded. Sensitive information must be sent/ received by HTTPS communication.

5.4.2.2 Received Data over HTTP Must be Handled Carefully and Securely (Required)

Received data in HTTP communications might be generated by attackers for exploiting vulnerability of an application.
So you have to suppose that the application receives any values and formats of data and then carefully implement data
handlings for processing received data so as not to put any vulnerabilities in. Furthermore you should not blindly trust
the data from HTTPS server too. Because the HTTPS server may be made by the attacker or the received data may
be made in other place from the HTTPS server. Please refer to "3.2. Handling Input Data Carefully and Securely".

5.4.2.3 SSLException Must Be Handled Appropriately like Notification to User (Required)

In HTTPS communication, SSLException occurs as a verification error when a server certificate is not valid or the
communication is under the man-in-the-middle attack. So you have to implement an appropriate exception handling
for SSLException. Notifying the user of the communication failure, logging the failure and so on can be considered
as typical implementations of exception handling. On the other hand, no special notice to the user might be required
in some case. Like this, because how to handle SSLException depends on the application specs and characteristics
you need to determine it after first considering thoroughly.

As mentioned above, the application may be attacked by man-in-the-middle attack when SSLException occurs, so
it must not be implemented like trying to send/receive sensitive information again via non secure protocol such as
HTTP.

474



Secure Coding Guide Documentation Release 2025-01-29

5.4.2.4 Custom TrustManager Must Not Be Created (Required)

Just Changing KeyStore which is used for verifying server certificates is enough to communicate via HTTPS with a
private certificate like self-signed certificate. However, as explained in "5.4.3.3. Risky Code that Disables Certificate
Verification", there are so many dangerous TrustManager implementations as sample codes for such purpose on the
Internet. An Application implemented by referring to these sample codes may have the vulnerability.

When you need to communicate via HTTPS with a private certificate, refer to the secure sample code in "5.4.1.3.
Communicating via HTTPS with private certificate".

Of course, custom TrustManager can be implemented securely, but enough knowledge for encryption processing and
encryption communication is required so as not to implement vulnerable codes. So this rule dare be (Required).

5.4.2.5 Custom HostnameVerifier Must Not Be Created (Required)

Just Changing KeyStore which is used for verifying server certificates is enough to communicate via HTTPS with a
private certificate like self-signed certificate. However, as explained in "5.4.3.3. Risky Code that Disables Certificate
Verification", there are so many dangerous HostnameVerifier implementations as sample codes for such purpose on
the Internet. An Application implemented by referring to these sample codes may have the vulnerability.

When you need to communicate via HTTPS with a private certificate, refer to the secure sample code in "5.4.1.3.
Communicating via HTTPS with private certificate".

Of course, custom HostnameVerifier can be implemented securely, but enough knowledge for encryption processing
and encryption communication is required so as not to implement vulnerable codes. So this rule dare be (Required).

5.4.3 Advanced Topics

5.4.3.1 How to Create Private Certificate and Configure Server Settings

In this section, how to create a private certificate and configure server settings in Linux such as Ubuntu and CentOS
is described. Private certificate means a server certificate which is issued privately and is told from server certificates
issued by trusted third party certificate authorities like Cybertrust and VeriSign.

Create private certificate authority

First of all, you need to create a private certificate authority to issue a private certificate. Private certificate authority
means a certificate authority which is created privately as well as private certificate. You can issue plural private
certificates by using the single private certificate authority. PC in which the private certificate authority is stored
should be limited strictly to be accessed just by trusted persons.

To create a private certificate authority, you have to create two files such as the following shell script newca.sh and
the setting file openssl.cnf and then execute them. In the shell script, CASTART and CAEND stand for the valid
period of certificate authority and CASUBJ stands for the name of certificate authority. So these values need to be
changed according to a certificate authority you create. While executing the shell script, the password for accessing
the certificate authority is asked for 3 times in total, so you need to input it every time.

newca.sh -- Shell Script to create certificate authority

#!/bin/bash

umask 0077

CONFIG=openssl.cnf

CATOP=./CA

CAKEY=cakey.pem

CAREQ=careq.pem

CACERT=cacert.pem

CAX509=cacert.crt

CASTART=130101000000Z # 2013/01/01 00:00:00 GMT

(continues on next page)

475



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

CAEND=230101000000Z # 2023/01/01 00:00:00 GMT

CASUBJ="/CN=JSSEC Private CA/O=JSSEC/ST=Tokyo/C=JP"

mkdir -p ${CATOP}

mkdir -p ${CATOP}/certs

mkdir -p ${CATOP}/crl

mkdir -p ${CATOP}/newcerts

mkdir -p ${CATOP}/private

touch ${CATOP}/index.txt

openssl req -new -newkey rsa:2048 -sha256 -subj "${CASUBJ}" \

-keyout ${CATOP}/private/${CAKEY} -out ${CATOP}/${CAREQ}

openssl ca -selfsign -md sha256 -create_serial -batch \

-keyfile ${CATOP}/private/${CAKEY} \

-startdate ${CASTART} -enddate ${CAEND} -extensions v3_ca \

-in ${CATOP}/${CAREQ} -out ${CATOP}/${CACERT} \

-config ${CONFIG}

openssl x509 -in ${CATOP}/${CACERT} -outform DER -out ${CATOP}/${CAX509}

openssl.cnf - Setting file of openssl command which 2 shell scripts refers in␣

→˓common

[ ca ]

default_ca = CA_default # The default ca section

[ CA_default ]

dir = ./CA # Where everything is kept

certs = $dir/certs # Where the issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index.txt # database index file.

#unique_subject = no # Set to 'no' to allow creation of␣

→˓several ctificates with same subject.

new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number

crlnumber = $dir/crlnumber # the current crl number must be␣

→˓commented out to leave a V1 CRL

crl = $dir/crl.pem # The current CRL

private_key = $dir/private/cakey.pem # The private key

RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

policy = policy_match

[ policy_match ]

countryName = match

stateOrProvinceName = match

organizationName = supplied

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[ usr_cert ]

basicConstraints = CA:FALSE

nsComment = "OpenSSL Generated Certificate"

subjectKeyIdentifier = hash

(continues on next page)

476



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

authorityKeyIdentifier = keyid,issuer

subjectAltName = @alt_names

[ v3_ca ]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = CA:true

[ alt_names ]

DNS.1 = ${ENV::HOSTNAME}

DNS.2 = *.${ENV::HOSTNAME}

After executing the above shall script, a directory named CA is created just under the work directory. This CA direc-
tory is just a private certificate authority. CA/cacert.crt file is the root certificate of the private certificate authority.
And it's stored in assets directory of an application as described in "5.4.1.3. Communicating via HTTPS with private
certificate", or it's installed in Android device as described in "5.4.3.2. Install Root Certificate of Private Certificate
Authority to Android OS's Certification Store".

Create private certificate

To create a private certificate, you have to create a shell script like the following newca.sh and execute it. In the shell
script, SVSTART and SVEND stand for the valid period of private certificate, and SVSUBJ stands for the name of
Web server, so these values need to be changed according to the target Web server. Especially, you need to make
sure not to set a wrong host name to /CN of SVSUBJ with which the host name of Web server is to be specified.
While executing the shell script, the password for accessing the certificate authority is asked, so you need to input the
password which you have set when creating the private certificate authority. After that, y/n is asked 2 times in total
and you need to input y every time.

newsv.sh - Shell script which issues private certificate

#!/bin/bash

umask 0077

CONFIG=openssl.cnf

CATOP=./CA

CAKEY=cakey.pem

CACERT=cacert.pem

SVKEY=svkey.pem

SVREQ=svreq.pem

SVCERT=svcert.pem

SVX509=svcert.crt

SVSTART=130101000000Z # 2013/01/01 00:00:00 GMT

SVEND=230101000000Z # 2023/01/01 00:00:00 GMT

HOSTNAME=selfsigned.jssec.org

SVSUBJ="/CN="${HOSTNAME}"/O=JSSEC Secure Coding Group/ST=Tokyo/C=JP"

openssl genrsa -out ${SVKEY} 2048

openssl req -new -key ${SVKEY} -subj "${SVSUBJ}" -out ${SVREQ}

openssl ca -md sha256 \

-keyfile ${CATOP}/private/${CAKEY} -cert ${CATOP}/${CACERT} \

-startdate ${SVSTART} -enddate ${SVEND} \

-in ${SVREQ} -out ${SVCERT} -config ${CONFIG}

openssl x509 -in ${SVCERT} -outform DER -out ${SVX509}

After executing the above shall script, a private key file for Web server “svkey.pem” and private certificate file
“svcert.pem” are created just under the work directory.

If the Web server is Apache, you will specify prikey.pem and cert.pem in the configuration file as follows

477



Secure Coding Guide Documentation Release 2025-01-29

SSLCertificateFile "/path/to/svcert.pem"

SSLCertificateKeyFile "/path/to/svkey.pem"

5.4.3.2 Install Root Certificate of Private Certificate Authority to Android OS's Certification Store

In the sample code of "5.4.1.3. Communicating via HTTPS with private certificate", the method to establish HTTPS
sessions to a Web server from one application using a private certificate by installing the root certificate into the
application is introduced. In this section, the method to establish HTTPS sessions toWeb servers from all applications
using private certificates by installing the root certificate into Android OS is to be introduced. Note that all you install
should be certificates issued by trusted certificate authorities including your own certificate authorities.

However, the method described here can be used in versions prior to Android 6.0 (API level 23) only. Starting from
Android 7.0 (API level 24), even if the root certificate of the private certificate authority is installed, the system
ignores it. Starting from API level 24, to use a private certificate, refer to the section “Communicating via HTTPS
with private certificates” in "5.4.3.7. Network Security Configuration".

First of all, you need to copy the root certificate file "cacert.crt" to the internal storage of an Android device. You
can also get the root certificate file used in the sample code from [https://www.jssec.org/dl/android_securecoding_
sample_cacert.crt{]}(https://www.jssec.org/dl/android_securecoding_sample_cacert.crt).

And then, you will open Security page from Android Settings and you can install the root certificate in an Android
device by doing as follows.

Fig. 5.4.2: Steps to install root certificate of private certificate authority

478

https://www.jssec.org/dl/android_securecoding_sample_cacert.crt{]}(https://www.jssec.org/dl/android_securecoding_sample_cacert.crt
https://www.jssec.org/dl/android_securecoding_sample_cacert.crt{]}(https://www.jssec.org/dl/android_securecoding_sample_cacert.crt


Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.4.3: Checking if root certificate is installed or not

Android Once the root certificate is installed in Android OS, all applications can correctly verify every private cer-
tificate issued by the certificate authority. The following figure shows an example when displaying https://selfsigned.
jssec.org/droid_knight.png in Chrome browser.

Fig. 5.4.4: Once root certificate installed, private certificates can be verified correctly

By installing the root certificate this way, even applications using the sample code "5.4.1.2. Communicating via
HTTPS<!– 2b8c337d –>" can correctly connect via HTTPS to a Web server which is operated with a private certifi-
cate.

479

https://selfsigned.jssec.org/droid_knight.png
https://selfsigned.jssec.org/droid_knight.png


Secure Coding Guide Documentation Release 2025-01-29

5.4.3.3 Risky Code that Disables Certificate Verification

A lot of incorrect samples (code snippets), which allow applications to continue to communicate via HTTPSwithWeb
servers even after certificate verification errors occur, are found on the Internet. Since they are introduced as the way
to communicate via HTTPSwith aWeb server using a private certificate, there have been somany applications created
by developers who have used those sample codes by copy and paste. Unfortunately, most of them are vulnerable to
man-in-the-middle attack. As mentioned in the top of this article, "In 2012, many defects in implementation of
HTTPS communication were pointed out in Android applications", many Android applications which would have
implemented such vulnerable codes have been reported.

Several code snippets to cause vulnerable HTTPS communication are shown below. When you find this type of code
snippets, it's highly recommended to replace the sample code of "5.4.1.3. Communicating via HTTPS with private
certificate".

Risk:Case which creates empty TrustManager

TrustManager tm = new X509TrustManager() {

@Override

public void checkClientTrusted(X509Certificate[] chain,

String authType) throws CertificateException {

// Do nothing -> accept any certificates

}

@Override

public void checkServerTrusted(X509Certificate[] chain,

String authType) throws CertificateException {

// Do nothing -> accept any certificates

}

@Override

public X509Certificate[] getAcceptedIssuers() {

return null;

}

};

Risk:Case which creates empty HostnameVerifier

HostnameVerifier hv = new HostnameVerifier() {

@Override

public boolean verify(String hostname, SSLSession session) {

// Always return true -> Accespt any host names

return true;

}

};

Risk:Case that ALLOW_ALL_HOSTNAME_VERIFIER is used.

SSLSocketFactory sf;

[...]

sf.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

5.4.3.4 A note regarding the configuration of HTTP request headers

If you wish to specify your own individual HTTP request header for HTTP or HTTPS communication, use the
setRequestProperty() or addRequestProperty() methods in the URLConnection class. If you will be using input
data received from external sources as parameters for these methods, you must implement HTTP header-injection
protections. The first step in attacks based on HTTP header injection is to include carriage-return codes—which are

480



Secure Coding Guide Documentation Release 2025-01-29

used as separators in HTTP headers—in input data. For this reason, all carriage-return codes must be eliminated
from input data.

Configure HTTP request header

public byte[] openConnection(String strUrl, String strLanguage, String strCookie) {

// HttpURLConnection is a class derived from URLConnection

HttpURLConnection connection;

try {

URL url = new URL(strUrl);

connection = (HttpURLConnection) url.openConnection();

connection.setRequestMethod("GET");

// *** POINT *** When using input values in HTTP request

// headers, check the input data in accordance with the

// application's requirements(*)

if (strLanguage.matches("^[a-zA-Z ,-]+$")) {

connection.addRequestProperty("Accept-Language", strLanguage);

} else {

throw new IllegalArgumentException("Invalid Language : " +

strLanguage);

}

// *** POINT *** Or URL-encode the input data

// (as appropriate for the purposes of the app in queestion)

connection.setRequestProperty("Cookie",

URLEncoder.encode(strCookie, "UTF-8"));

connection.connect();

[...]

* See "3.2. Handling Input Data Carefully and Securely".

5.4.3.5 Notes and sample implementations for pinning

When an app uses HTTPS communication, one step in the handshake procedure carried out at the start of the com-
munication is to check whether or not the certificate sent from the remote server is signed by a third-party certificate
authority. However, attackers may acquire improper certificates from third-party authentication agents, or may ac-
quire signed keys from a certificate authority to construct improper certificates. In such cases, apps will be unable to
detect the attack during the handshake process—even in the event of a lure to an improper server established by the
attacker, or of an man-in-the-middle attack —and, as a result, there is a possibility that damage may be done.

"The technique of pinning" is an effective strategy for preventing man-in-the-middle attacks using these types of
certificates from improper third-party certificate authorities. In this method, certificates and public keys for remote
servers are stored in advance within an app, and this information is used for handshake processing and re-testing after
handshake processing has completed.

Pinningmay be used to restore the security of communications in cases where the credibility of a third-party certificate
authority—the foundation of public-key infrastructure—has been tarnished. App developers should assess the asset
level handled by their own apps and decide whether or not to implement these tests.

Use certificates and public keys stored within an app during the handshake procedure

To use information contained in remote-server certificates or public keys stored within an app during the handshake
procedure, an app must create its own KeyStore containing this information and use it when communicating. This
will allow the app to detect improprieties during the handshake procedure even in the event of a man-in-the-middle
attack using a certificate from an improper third-party certificate authority, as described above. Consult the sample
code presented in the section titled "5.4.1.3. Communicating via HTTPS with private certificate" for detailed methods
of establishing your app's own KeyStore to conduct HTTPS communication.

481



Secure Coding Guide Documentation Release 2025-01-29

Use certificates and public-key information stored within an app for re-testing after the handshake procedure
is complete

To re-test the remote server after the handshake procedure has completed, an app first obtains the certificate chain that
was tested and trusted by the system during the handshake, then compares this certificate chain against the information
stored in advance within the app. If the result of this comparison indicates agreement with the information stored
within the app, the communication may be permitted to proceed; otherwise, the communication procedure should be
aborted.

However, if an app uses the methods listed below in an attempt to obtain the certificate chain that the system trusted
during the handshake, the app may not obtain the expected certificate chain, posing a risk that the pinning may not
function properly20.

• javax.net.ssl.SSLSession.getPeerCertificates()

• javax.net.ssl.SSLSession.getPeerCertificateChain()

What these methods return is not the certificate chain that was trusted by the system during the handshake, but
rather the very certificate chain that the app received from the communication partner itself. For this reason, even
if an man-in-the-middle attack has resulted in a certificate from an improper certificate authority being appended
to the certificate chain, the above methods will not return the certificate that was trusted by the system during the
handshake; instead, the certificate of the server to which the app was originally attempting to connect will also be
returned at the same time. This certificate—"the certificate of the server to which the app was originally attempting
to connect"—will, because of pinning, be equivalent to the certificate pre-stored within the app; thus re-testing it will
not detect any improprieties. For this and other similar reasons, it is best to avoid using the above methods when
implementing re-testing after the handshake.

OnAndroid versions 4.2 (API Level 17) and later, using the checkServerTrusted() methodwithin net.http.X509Trust-
ManagerExtensions will allow the app to obtain only the certificate chain that was trusted by the system during the
handshake.

An example illustrating pinning using X509TrustManagerExtensions

// Store the SHA-256 hash value of the public key included in the correct

// certificate for the remote server (pinning)

private static final Set<String> PINS = new HashSet<>(Arrays.asList(

new String[] {

"d9b1a68fceaa460ac492fb8452ce13bd8c78c6013f989b76f186b1cbba1315c1",

"cd13bb83c426551c67fabcff38d4496e094d50a20c7c15e886c151deb8531cdc"

}

));

// Communicate using AsyncTask work threads

protected Object doInBackground(String... strings) {

[...]

// Obtain the certificate chain that was trusted by the system by

// testing during the handshake

X509Certificate[] chain =

(X509Certificate[]) connection.getServerCertificates();

X509TrustManagerExtensions trustManagerExt =

new X509TrustManagerExtensions(

(X509TrustManager) (trustManagerFactory.getTrustManagers()[0]));

List<X509Certificate> trustedChain =

trustManagerExt.checkServerTrusted(chain, "RSA", url.getHost());

// Use public-key pinning to test

boolean isValidChain = false;

(continues on next page)

20 The following article explains this risk in detail: https://www.synopsys.com/blogs/software-security/
ineffective-certificate-pinning-implementations/

482

https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/
https://www.synopsys.com/blogs/software-security/ineffective-certificate-pinning-implementations/


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

for (X509Certificate cert : trustedChain) {

PublicKey key = cert.getPublicKey();

MessageDigest md = MessageDigest.getInstance("SHA-256");

String keyHash = bytesToHex(md.digest(key.getEncoded()));

// Compare to the hash value stored by pinning

if(PINS.contains(keyHash)) isValidChain = true;

}

if (isValidChain) {

// Proceed with operation

} else {

// Do not proceed with operation

}

[...]

}

private String bytesToHex(byte[] bytes) {

StringBuilder sb = new StringBuilder();

for (byte b : bytes) {

String s = String.format("%02x", b);

sb.append(s);

}

return sb.toString();

}

5.4.3.6 Strategies for addressing OpenSSL vulnerabilities using Google Play Services

Google Play Services (version 5.0 and later) provides a framework known as Provider Installer. This may be used to
address vulnerabilities in Security Provider, an implementation of OpenSSL and other encryption-related technolo-
gies. For details, see Section "5.6.3.5. Addressing Vulnerabilities with Security Provider from Google Play Services".

5.4.3.7 Network Security Configuration

Android 7.0 (API Level 24) introduced a framework known as Network Security Configuration that allows individual
apps to configure their own security settings for network communication. Using this framework makes it easy for
apps to incorporate a variety of techniques for improving app security, including not only HTTPS communication
with private certificates and public key pinning but also prevention of unencrypted (HTTP) communication and the
use of private certificates enabled only during debugging21.

The various types of functionality offered by Network Security Configuration may be accessed simply by configuring
settings in xml files, which may be applied to the entirety of an app's HTTP and HTTPS communications. This
eliminates the need for modifying an app's code or carrying out any additional processing, simplifying implementation
and providing an effective protection against Incorporating bugs or vulnerabilities.

Communicating via HTTPS with private certificates

Section "5.4.1.3. Communicating via HTTPS with private certificate" presents sample code that performs HTTPS
communication with private certificates (e.g. self-signed certificates or intra-company certificates). However, by
using Network Security Configuration, developers may use private certificates without implementation presented in
the sample code of Section "5.4.1.2. Communicating via HTTPS<!– 2b8c337d –>".

Use private certificates to communicate with specific domains

21 For more information on Network Security Configuration, see https://developer.android.com/training/articles/security-config.html

483

https://developer.android.com/training/articles/security-config.html


Secure Coding Guide Documentation Release 2025-01-29

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

<domain-config>

<domain includeSubdomains="true">jssec.org</domain>

<trust-anchors>

<certificates src="@raw/private_ca" />

</trust-anchors>

</domain-config>

</network-security-config>

In the example above, the private certificates (private_ca) used for communication may be stored as resources within
the app, with the conditions for their use and their range of applicability described in .xml files. By using the <domain-
config> tag, it is possible to apply private certificates to specific domains only. To use private certificates for all HTTPS
communications performed by the app, use the <base-config> tag, as shown below.

Use private certificates for all HTTPS communications performed by the app

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

<base-config>

<trust-anchors>

<certificates src="@raw/private_ca" />

</trust-anchors>

</base-config>

</network-security-config>

Pinning

We mentioned public key pinning in Section "5.4.3.5. Notes and sample implementations for pinning" By using Net-
work Security Configuration to configure settings as in the example below, you eliminate the need to implement the
authentication process in your code; instead, the specifications in the xml file suffice to ensure proper authentication.

Use public key pinning for HTTPS communication

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

<domain-config>

<domain includeSubdomains="true">jssec.org</domain>

<pin-set expiration="2018-12-31">

<pin digest="SHA-256">e30Lky+iWK21yHSls5DJoRzNikOdvQUOGXvurPidc2E=</

→˓pin>

<!-- for backup -->

<pin digest="SHA-256">fwza0LRMXouZHRC8Ei+4PyuldPDcf3UKgO/04cDM1oE=</

→˓pin>

</pin-set>

</domain-config>

</network-security-config>

The quantity described by the <pin> tag above is the base64-encoded hash value of the public key used for pinning.
The only supported hash function is SHA-256.

Prevent unencrypted (HTTP) communication

Using Network Security Configuration allows you to prevent HTTP communication (unencrypted communication)
from apps.

The methods of restricting unencrypted communications are as follows.

1. Basically, the <base-config> tag is used to restrict unencrypted communications (HTTP communication) in
communication with all domains22

22 See the following API reference about how the Network Security Configuration works for non-HTTP connections. https://developer.android.

484

https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted


Secure Coding Guide Documentation Release 2025-01-29

2. Only for domains that require unencrypted communications for unavoidable reasons, the <domain-config> tag
can be used to individually set exceptions that allow unencrypted communications. For details on determining
whether unencrypted communications should be permitted, refer to "5.4.1.1. Communicating via HTTP".

Unencrypted communications are restricted by setting the cleartextTrafficPermitted attribute to false. An example of
this is shown below.

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

<!-- Disallow unencrypted communication by default -->

<base-config cleartextTrafficPermitted="false">

</base-config>

<!-- Only for domains that require unencrypted communications for unavoidable␣

→˓reason,

use <domain-config> tag to individualy set to "true" -->

<domain-config cleartextTrafficPermitted="true">

<domain includeSubdomains="true">www.jssec.org</domain>

</domain-config>

</network-security-config>

This setting is also applied in the WebView from Android 8.0 (API level 26), but be aware that it is not applied to
WebView for Android 7.1 (API level 25) and earlier.

Prior to Android 9.0 (API level 28), the default value of the attribute cleartextTrafficPermitted was true, but from
Android 9.0, it was changed to false. For this reason, if targeting API level 28 and higher, declaration using <base-
config> in the above example is not needed. However, to clearly define the intention and to avoid the effect of different
behavior depending on the target API level, explicitly including as shown in the example above is recommended.

Private certificates exclusively for debugging purposes

For purposes of debugging during app development, developers may wish to use private certificates to communicate
with certain HTTPS servers that exist for app-development purposes. In this case, developers must be careful to
ensure that no dangerous implementations—including code that disables certificate authentication—are incorporated
into the app; this is discussed in Section "5.4.3.3. Risky Code that Disables Certificate Verification". In Network
Security Configuration, settings may be configured as in the example below to specify a set of certificates to be used
only when debugging (only if android:debuggable is set to "true” in the file AndroidManifest.xml). This eliminates
the risk that dangerous code may inadvertently be retained in the release version of an app, thus constituting a useful
means of preventing vulnerabilities.

Use private certificates only when debugging

<?xml version="1.0" encoding="utf-8"?>

<network-security-config>

<debug-overrides>

<trust-anchors>

<certificates src="@raw/private_cas" />

</trust-anchors>

</debug-overrides>

</network-security-config>

5.4.3.8 (Column): Transitioning to TLS1.2/TLS1.3 for secure connections

The 1994 release of SSL 2, which was its first public release, had a major vulnerability in security protocol, and so
SSL 3.0 (RFC 6101) was completely redesigned from the ground up and was released in the second half of 1995.
However, due to a vulnerability known as POODLE23 announced by the Google Security Team in 2014, it was found
that the padding for SSL 3.0 was not safe. In TLS 1.0 (RFC 2246), which was released in 1999, a defect in the
padding design was corrected, but an attack method known as BEAST that extracts encrypted data was announced

com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
23 “This POODLE bites: exploiting the SSL 3.0 fallback”(Google Security Team, October 14, 2014) (https://googleonlinesecurity.blogspot.

co.uk/2014/10/this-poodle-bites-exploiting-ssl-30.html)

485

https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://developer.android.com/reference/android/security/NetworkSecurityPolicy.html#isCleartextTrafficPermitted
https://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodle-bites-exploiting-ssl-30.html


Secure Coding Guide Documentation Release 2025-01-29

in 2011 by Duong and Rizzo24. TLS 1.1 (RFC 4346) was released in 2006 with security fixes (enhanced safety
from TLS 1.0), and TLS 1.2 (RFC 5246), which was released in 2008, enables the use of even stronger encryption
algorithms, including the use of SHA-2 hash functions (SHA-256 and SHA-384) and supports cipher suites where
authenticated encryption with associated data (AEAD) usage modes (GCM, CCM) can be used.

With this as a background, in its guidelines25 on TLS issued on October 15, 2018, the (U.S.) National Institute of
Standards and Technology (NIST) either deprecated or prohibited the use of TLS 1.1 and lower, and it requires not
only government agencies, but also the servers that support non-government apps to migrate to TLS 1.2. In line with
this move, given the rash of security incidents in recent years and the availability of new TLS versions, an increasing
number of sites and services are discontinuing support for “old versions of SSL or TLS”, and the transition to TLS
1.2 is well underway26.

For example, one manifestation of this transition is a new security standard known as "the Payment Card Industry
Data Security Standard (PCIDSS)", established by the Payment Card Industry Security Standards Council (PCI SSC).
The latest version is v3.2.1 released in May 201827. Smartphones and tablets are also widely used for E-commerce
today, with credit cards typically used for payment. Indeed, we expect that many users of this document (Android
Application Secure Design / Secure Coding Guide) will offer services that send credit-card information and other
data to the server side; when using credit cards in networked environments, it is essential to ensure the security of the
data pathway, and PCI DSS is a standard that governs the handling of member data in services of this type, designed
with the objective of preventing improper card use, information leaks, and other harmful consequences. Among
these security standards, although the exact version numbers are not specified, support for all SSL versions and early
TLS versions susceptible to known exploits (attack programs) was discontinued on June 30, 2018, and websites were
required to upgrade to a safer version (TLS 1.2 or higher).

In communication between smartphones and servers, the need to ensure the security of data pathways is not restricted
to handling of credit-card information, but is also an extremely important aspect of operations involving the handling
of private data or other sensitive information. Thus, the need to transition to secure connections using TLS 1.2 on
the service-provision (server) side may now be said to be an urgent requirement.

On the other hand, in Android—which runs on the client side—WebView functionality supporting TLS 1.1 and later
versions has been available since Android 4.4 (Kitkat), and for direct HTTP communication since Android 4.1 (early
Jelly Bean), although some additional implementation is needed in this case.

Among service developers, the adoption of TLS 1.2 means cutting off access to users of Android 4.3 and earlier
versions, so it might seem that such a step would have significant repercussions. However, as shown in the figure
below, the most recent data28 (current as of May 2019) show that Android versions 4.4 and later account for the
overwhelming majority—96.2%—of all Android systems currently in use. In view of this fact, and considering the
importance of guaranteeing the security of assets handled by apps, we recommend that serious consideration be paid
to transitioning to TLS 1.2.

24 “Here come the ⊕Ninjas”(Thai Duong, Juliano Rizzo, May 13, 2011) (http://www.hit.bme.hu/%7Ebuttyan/courses/EIT-SEC/abib/04-TLS/
BEAST.pdf)

25 “Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations” (Rvision 2, October 2018) (https:
//csrc.nist.gov/CSRC/media/Publications/sp/800-52/rev-2/draft/documents/sp800-52r2-draft2.pdf)

26 Encryption Design Guidelines, IPA (https://www.ipa.go.jp/security/vuln/ssl_crypt_config.html)
27 “Requirements and Security Assessment Procedures” (Version 3.2.1, May 2018) (https://ja.pcisecuritystandards.org/document_library)
28 Distribution dashboard - Platform versions (https://developer.android.com/about/dashboards/index.html)

486

http://www.hit.bme.hu/%7Ebuttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf
http://www.hit.bme.hu/%7Ebuttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-52/rev-2/draft/documents/sp800-52r2-draft2.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-52/rev-2/draft/documents/sp800-52r2-draft2.pdf
https://www.ipa.go.jp/security/vuln/ssl_crypt_config.html
https://ja.pcisecuritystandards.org/document_library
https://developer.android.com/about/dashboards/index.html


Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.4.5: Distribution of OS versions among Android systems in current use(Source: Android Developers site)

TLS 1.3 (RFC 8446), which was released in August 2018, was a complete redesign of protocols and encryption
algorithms for the purpose of providing fixes for new vulnerabilities and exploits discovered since the issuing of
TLS 1.2 and for providing performance enhancements29. Starting from Android 10, platform TLS implementation
supports TLS 1.3, and TLS 1.3 is enabled for all TLS connections by default30. Also, the following cipher suites with
low safety were removed starting from Android 10 (mode: CBC, MAC: SHA2)31.

• TLS_RSA_WITH_AES_128_CBC_SHA256

• TLS_RSA_WITH_AES_256_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

5.5 Handling privacy data

In recent years, "Privacy-by-Design" concept has been proposed as a global trend to protect the privacy data. And
based on the concept, governments are promoting legislation for privacy protection.

Applications that make use of user data in smartphones must take steps to ensure that users may use the application
safely and securely without fears regarding privacy and personal data. These steps include handling user data appro-
priately and asking users to choose whether or not an application may use certain data. To this end, each application
must prepare and display an application privacy policy indicating which information the application will use and how
it will use that information; moreover, when fetching and using certain information, the application must first ask the
user’s permission. Note that application privacy policies differ from other documents that may have been present in
the past—such as "Personal Data Protection Policies" or "Terms of Use"—and must be created separately from any
such documents.

29 The Transport Layer Security (TLS) Protocol Version 1.3 (https://datatracker.ietf.org/doc/rfc8446/)
30 Android Q features and APIs - TLS 1.3 support (https://developer.android.com/preview/features#tls-1.3)
31 SHA-2 CBC cipher suites removed (https://developer.android.com/preview/behavior-changes-all#sha2-cbc-cipher-suites)

487

https://datatracker.ietf.org/doc/rfc8446/
https://developer.android.com/preview/features#tls-1.3
https://developer.android.com/preview/behavior-changes-all#sha2-cbc-cipher-suites


Secure Coding Guide Documentation Release 2025-01-29

For details on the creation and execution of privacy policies, see the document "Smartphone Privacy Initiative" and
"Smartphone Privacy Initiative II" (JMIC’s SPI) released by Japan’s Ministry of Internal Affairs and Communications
(MIC).

The terminology used in this section is defined in the text and in Section "5.5.3.2. Glossary of Terms".

5.5.1 Sample Code

When preparing application privacy policy, you may use the "Tools to Assist in Creating Application Privacy Poli-
cies"32. These tools output two files—a summary version and a detailed version of the application privacy policy
—both in HTML format and XML format. The HTML and XML content of these files comports with the recom-
mendations of MIC’s SPI including features such as search tags. In the sample code below, we will demonstrate the
use of this tool to present application privacy policy using the HTML files prepared by this tool.

Fig. 5.5.1: Sample of Abstract Application Privacy Policy

More specifically, you may use the following flowchart to determine which sample code to use.
32 http://www.kddi-research.jp/newsrelease/2013/090401.html

488

http://www.kddi-research.jp/newsrelease/2013/090401.html


Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.2: Flow Figure to select sample code of handling privacy data

Here the phrase “broad consent” refers to a broad permission, granted by the user to the application upon the first
launch of the application through display and review of the application privacy policy, for the application to transmit
user data to servers.

In contrast, the phrase “specific consent” refers to pre consent obtained immediately prior to the transmission of
specific user data.

5.5.1.1 Both broad consent and specific consent are granted: Applications that incorporate ap-
plication privacy policy

Points: (Both broad consent and specific consent are granted: Applications that incorporate application privacy policy)

1. On first launch (or application update), obtain broad consent to transmit user data that will be handled by the
application.

2. If the user does not grant broad consent, do not transmit user data.

3. Obtain specific consent before transmitting user data that requires
particularly delicate handling.

4. If the user does not grant specific consent, do not transmit the
corresponding data.

5. Provide methods by which the user can review the application privacy
policy.

6. Provide methods by which transmitted data can be deleted by user
operations.

7. Provide methods by which transmitting data can be stopped by user
operations.

8. Use UUIDs or cookies to keep track of user data.

9. Place a summary version of the application privacy policy in the
assets folder.

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

(continues on next page)

489



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicy;

import java.io.IOException;

import org.json.JSONException;

import org.json.JSONObject;

import org.jssec.android.privacypolicy.ConfirmFragment.DialogListener;

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.GoogleApiAvailability;

import com.google.android.gms.location.FusedLocationProviderClient;

import com.google.android.gms.location.LocationServices;

import com.google.android.gms.tasks.OnSuccessListener;

import android.Manifest;

import android.location.Location;

import android.os.AsyncTask;

import android.os.Build;

import android.os.Bundle;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import androidx.core.app.ActivityCompat;

import androidx.fragment.app.FragmentActivity;

import androidx.fragment.app.FragmentManager;

import androidx.core.content.ContextCompat;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity implements DialogListener {

private static final String BASE_URL = "https://www.example.com/pp";

private static final String GET_ID_URI = BASE_URL + "/get_id.php";

private static final String SEND_DATA_URI = BASE_URL + "/send_data.php";

private static final String DEL_ID_URI = BASE_URL + "/del_id.php";

private static final String ID_KEY = "id";

private static final String LOCATION_KEY = "location";

private static final String NICK_NAME_KEY = "nickname";

(continues on next page)

490



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static final String PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY =

"privacyPolicyComprehensiveAgreed";

private static final String PRIVACY_POLICY_DISCRETE_TYPE1_AGREED_KEY =

"privacyPolicyDiscreteType1Agreed";

private static final String PRIVACY_POLICY_PREF_NAME =

"privacypolicy_preference";

private static final int MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION = 1;

private String UserId = "";

private FusedLocationProviderClient mFusedLocationClient;

private final int DIALOG_TYPE_COMPREHENSIVE_AGREEMENT = 1;

private final int DIALOG_TYPE_PRE_CONFIRMATION = 2;

private static final int VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW = 1;

private TextWatcher watchHandler = new TextWatcher() {

@Override

public void beforeTextChanged(CharSequence s,

int start, int count, int after) {

}

@Override

public void onTextChanged(CharSequence s,

int start, int before, int count) {

boolean buttonEnable = (s.length() > 0);

MainActivity.this

.findViewById(R.id.buttonStart).setEnabled(buttonEnable);

}

@Override

public void afterTextChanged(Editable s) {

}

};

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mFusedLocationClient =

LocationServices.getFusedLocationProviderClient(this);

if (Build.VERSION.SDK_INT >= 23) {

// API Level 23 or later requires permission for getting location info.

int permissionCheck =

ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION);

if (permissionCheck != PackageManager.PERMISSION_GRANTED) {

// Because we have not permission, request it to user

ActivityCompat.requestPermissions(this,

new String[]{Manifest.permission.ACCESS_FINE_LOCATION},

MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION);

(continues on next page)

491



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

}

@Override

public void onRequestPermissionsResult(int requestCode,

String permissions[],

int[] grantResults) {

switch (requestCode) {

case MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION: {

if (grantResults.length > 0

&& grantResults[0] == PackageManager.PERMISSION_GRANTED) {

// Permission is granted

// Fetch user ID from server

new GetDataAsyncTask().execute();

findViewById(R.id.buttonStart).setEnabled(false);

((TextView) findViewById(R.id.editTextNickname))

.addTextChangedListener(watchHandler);

int resultCode = GoogleApiAvailability

.getInstance()

.isGooglePlayServicesAvailable(this);

if (resultCode != ConnectionResult.SUCCESS) {

// Googleplay service is unavailable, our sample app will

// terminate.

finish();

}

} else {

// Permission is not granted, sample app will terminate

finish();

}

}

}

}

@Override

protected void onStart() {

super.onStart();

SharedPreferences pref =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

int privacyPolicyAgreed =

pref.getInt(PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY, -1);

if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

// *** POINT 1 *** On first launch (or application update),

// obtain broad consent to transmit user data that will be handled

// by the application.

// When the application is updated, it is only necessary to renew

// the user's grant of broad consent

// if the updated application will handle new types of user data.

ConfirmFragment dialog =

ConfirmFragment.newInstance(R.string.privacyPolicy,

R.string.agreePrivacyPolicy,

DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);

dialog.setDialogListener(this);

FragmentManager fragmentManager = getSupportFragmentManager();

dialog.show(fragmentManager, "dialog");

(continues on next page)

492



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

public void onSendToServer(View view) {

// Check the status of user consent.

// Actually, it is necessary to obtain consent for each user data type.

SharedPreferences pref =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

int privacyPolicyAgreed =

pref.getInt(PRIVACY_POLICY_DISCRETE_TYPE1_AGREED_KEY, -1);

if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

// *** POINT 3 *** Obtain specific consent before transmitting user

// data that requires particularly delicate handling.

ConfirmFragment dialog =

ConfirmFragment.newInstance(R.string.sendLocation,

R.string.cofirmSendLocation,

DIALOG_TYPE_PRE_CONFIRMATION);

dialog.setDialogListener(this);

FragmentManager fragmentManager = getSupportFragmentManager();

dialog.show(fragmentManager, "dialog");

} else {

// Start transmission, since it has the user consent.

onPositiveButtonClick(DIALOG_TYPE_PRE_CONFIRMATION);

}

}

public void onPositiveButtonClick(int type) {

if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

// *** POINT 1 *** On first launch (or application update),

// obtain broad consent to transmit user data that will be handled by

// the application.

SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_

→˓PREF_NAME, MODE_PRIVATE).edit();

pref.putInt(PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY, getVersionCode());

pref.apply();

} else if (type == DIALOG_TYPE_PRE_CONFIRMATION) {

// *** POINT 3 *** Obtain specific consent before transmitting user

// data that requires particularly delicate handling.

mFusedLocationClient.getLastLocation()

.addOnSuccessListener(this, new OnSuccessListener<Location>() {

@Override

public void onSuccess(Location location) {

String nickname =

((TextView) findViewById(R.id.editTextNickname))

.getText().toString();

if (location != null) {

String locationData =

"Latitude:" + location.getLatitude() +

", Longitude:" + location.getLongitude();

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

"\n - nickname : " + nickname +

"\n - location : " + locationData,

Toast.LENGTH_SHORT).show();

new SendDataAsyncTack().execute(SEND_DATA_URI,

UserId, locationData, nickname);

(continues on next page)

493



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

} else {

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

"\n - nickname : " + nickname +

"\n - location : unavailable",

Toast.LENGTH_SHORT).show();

}

}

});

// Store the status of user consent.

// Actually, it is necessary to obtain consent for each user data type.

SharedPreferences.Editor pref =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE)

.edit();

pref.putInt(PRIVACY_POLICY_DISCRETE_TYPE1_AGREED_KEY,

getVersionCode());

pref.apply();

}

}

public void onNegativeButtonClick(int type) {

if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

// *** POINT 2 *** If the user does not grant general consent, do not

// transmit user data.

// In this sample application we terminate the application in this

// case.

finish();

} else if (type == DIALOG_TYPE_PRE_CONFIRMATION) {

// *** POINT 4 *** If the user does not grant specific consent, do not

// transmit the corresponding data.

// The user did not grant consent, so we do nothing.

}

}

private int getVersionCode() {

int versionCode = -1;

PackageManager packageManager = this.getPackageManager();

try {

PackageInfo packageInfo =

packageManager.getPackageInfo(this.getPackageName(),

PackageManager.GET_ACTIVITIES);

versionCode = packageInfo.versionCode;

} catch (NameNotFoundException e) {

// This is sample, so omit the exception process

}

return versionCode;

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

@Override

(continues on next page)

494



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.action_show_pp:

// *** POINT 5 *** Provide methods by which the user can review the

// application privacy policy.

Intent intent = new Intent();

intent.setClass(this, WebViewAssetsActivity.class);

startActivity(intent);

return true;

case R.id.action_del_id:

// *** POINT 6 *** Provide methods by which transmitted data can be

// deleted by user operations.

new SendDataAsyncTack().execute(DEL_ID_URI, UserId);

return true;

case R.id.action_donot_send_id:

// *** POINT 7 *** Provide methods by which transmitting data can be

// stopped by user operations.

// If the user stop sending data, user consent is deemed to have been

// revoked.

SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_

→˓PREF_NAME, MODE_PRIVATE).edit();

pref.putInt(PRIVACY_POLICY_COMPREHENSIVE_AGREED_KEY, 0);

pref.apply();

// In this sample application if the user data cannot be sent by user

// operations, finish the application because we do nothing.

String message = getString(R.string.stopSendUserData);

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() + " - " + message,

Toast.LENGTH_SHORT).show();

finish();

return true;

}

return false;

}

private class GetDataAsyncTask extends AsyncTask<String, Void, String> {

private String extMessage = "";

@Override

protected String doInBackground(String... params) {

// *** POINT 8 *** Use UUIDs or cookies to keep track of user data

// In this sample we use an ID generated on the server side

SharedPreferences sp =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

UserId = sp.getString(ID_KEY, null);

if (UserId == null) {

// There is not token in SharedPreferences, obtain ID from server

try {

UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

} catch (IOException e) {

// Handle exception such as certificate error

extMessage = e.toString();

(continues on next page)

495



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

// Save obtained ID in SharedPreferences

sp.edit().putString(ID_KEY, UserId).commit();

}

return UserId;

}

@Override

protected void onPostExecute(final String data) {

String status = (data != null) ? "success" : "error";

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

" - " + status + " : " + extMessage,

Toast.LENGTH_SHORT).show();

}

}

private class SendDataAsyncTack extends AsyncTask<String, Void, Boolean> {

private String extMessage = "";

@Override

protected Boolean doInBackground(String... params) {

String url = params[0];

String id = params[1];

String location = params.length > 2 ? params[2] : null;

String nickname = params.length > 3 ? params[3] : null;

Boolean result = false;

try {

JSONObject jsonData = new JSONObject();

jsonData.put(ID_KEY, id);

if (location != null)

jsonData.put(LOCATION_KEY, location);

if (nickname != null)

jsonData.put(NICK_NAME_KEY, nickname);

NetworkUtil.sendJSON(url, "", jsonData.toString());

result = true;

} catch (IOException e) {

// Catch exceptions such as certification errors

extMessage = e.toString();

} catch (JSONException e) {

extMessage = e.toString();

}

return result;

}

@Override

protected void onPostExecute(Boolean result) {

String status = result ? "Success" : "Error";

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

" - " + status + " : " + extMessage,

Toast.LENGTH_SHORT).show();

(continues on next page)

496



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

}

ConfirmFragment.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicy;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.os.Bundle;

import androidx.fragment.app.DialogFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.TextView;

public class ConfirmFragment extends DialogFragment {

private DialogListener mListener = null;

public static interface DialogListener {

public void onPositiveButtonClick(int type);

public void onNegativeButtonClick(int type);

}

public static ConfirmFragment newInstance(int title, int sentence, int type) {

ConfirmFragment fragment = new ConfirmFragment();

Bundle args = new Bundle();

args.putInt("title", title);

args.putInt("sentence", sentence);

args.putInt("type", type);

fragment.setArguments(args);

return fragment;

}

(continues on next page)

497



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public Dialog onCreateDialog(Bundle args) {

// *** POINT 1 *** On first launch (or application update), obtain broad

// consent to transmit user data that will be handled by the application.

// *** POINT 3 *** Obtain specific consent before transmitting user data

// that requires particularly delicate handling.

final int title = getArguments().getInt("title");

final int sentence = getArguments().getInt("sentence");

final int type = getArguments().getInt("type");

LayoutInflater inflater = (LayoutInflater) getActivity()

.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

View content = inflater.inflate(R.layout.fragment_comfirm, null);

TextView linkPP = (TextView) content.findViewById(R.id.tx_link_pp);

linkPP.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

// *** POINT 5 *** Provide methods by which the user can review

// the application privacy policy.

Intent intent = new Intent();

intent.setClass(getActivity(), WebViewAssetsActivity.class);

startActivity(intent);

}

});

AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

builder.setIcon(R.drawable.ic_launcher);

builder.setTitle(title);

builder.setMessage(sentence);

builder.setView(content);

builder.setPositiveButton(R.string.buttonConsent,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {

if (mListener != null) {

mListener.onPositiveButtonClick(type);

}

}

});

builder.setNegativeButton(R.string.buttonDonotConsent,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {

if (mListener != null) {

mListener.onNegativeButtonClick(type);

}

}

});

Dialog dialog = builder.create();

dialog.setCanceledOnTouchOutside(false);

return dialog;

}

@Override

public void onAttach(Activity activity) {

(continues on next page)

498



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

super.onAttach(activity);

if (!(activity instanceof DialogListener)) {

throw new ClassCastException(activity.toString() +

" must implement DialogListener.");

}

mListener = (DialogListener) activity;

}

public void setDialogListener(DialogListener listener) {

mListener = listener;

}

}

WebViewAssetsActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicy;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

// *** POINT 9 *** Place a summary version of the application privacy policy

// in the assets folder

private static final String ABST_PP_URL =

"file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html

→˓";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_webview);

WebView webView = (WebView) findViewById(R.id.webView);

WebSettings webSettings = webView.getSettings();

webSettings.setAllowFileAccess(false);

webView.loadUrl(ABST_PP_URL);

}

(continues on next page)

499



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

5.5.1.2 Broad consent is granted: Applications that incorporate application privacy policy

Points: (Broad consent is granted: Applications that incorporate application privacy policy)

1. On first launch (or application update), obtain broad consent to transmit user data that will be handled by the
application.

2. If the user does not grant broad consent, do not transmit user data.

3. Provide methods by which the user can review the application privacy
policy.

4. Provide methods by which transmitted data can be deleted by user
operations.

5. Provide methods by which transmitting data can be stopped by user
operations.

6. Use UUIDs or cookies to keep track of user data.

7. Place a summary version of the application privacy policy in the
assets folder.

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicynopreconfirm;

import java.io.IOException;

import java.util.UUID;

import org.json.JSONException;

import org.json.JSONObject;

import org.jssec.android.privacypolicynopreconfirm.ConfirmFragment.DialogListener;

import android.os.AsyncTask;

import android.os.Bundle;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.pm.PackageInfo;

import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

(continues on next page)

500



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import androidx.fragment.app.FragmentActivity;

import androidx.fragment.app.FragmentManager;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity implements DialogListener {

private final String BASE_URL = "https://www.example.com/pp";

private final String GET_ID_URI = BASE_URL + "/get_id.php";

private final String SEND_DATA_URI = BASE_URL + "/send_data.php";

private final String DEL_ID_URI = BASE_URL + "/del_id.php";

private final String ID_KEY = "id";

private final String NICK_NAME_KEY = "nickname";

private final String LN_KEY = "lineNumber";

private final String PRIVACY_POLICY_AGREED_KEY = "privacyPolicyAgreed";

private final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";

private String mUUId = "";

private String UserId = "";

private final int DIALOG_TYPE_COMPREHENSIVE_AGREEMENT = 1;

private final int VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW = 1;

private TextWatcher watchHandler = new TextWatcher() {

@Override

public void beforeTextChanged(CharSequence s,

int start, int count, int after) {

}

@Override

public void onTextChanged(CharSequence s,

int start, int before, int count) {

boolean buttonEnable = (s.length() > 0);

MainActivity.this.findViewById(R.id.buttonStart)

.setEnabled(buttonEnable);

}

@Override

public void afterTextChanged(Editable s) {

}

};

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

(continues on next page)

501



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

setContentView(R.layout.activity_main);

// send randomly generated UUID

mUUId = UUID.randomUUID().toString();

// Fetch user ID from serverFetch user ID from server

new GetDataAsyncTask().execute();

findViewById(R.id.buttonStart).setEnabled(false);

((TextView) findViewById(R.id.editTextNickname))

.addTextChangedListener(watchHandler);

}

@Override

protected void onStart() {

super.onStart();

SharedPreferences pref =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

int privacyPolicyAgreed =

pref.getInt(PRIVACY_POLICY_AGREED_KEY, -1);

if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

// *** POINT 1 *** On first launch (or application update), obtain

// broad consent to transmit user data that will be handled by the

// application.

// When the application is updated, it is only necessary to renew

// the user's grant of broad consent if the updated application

// will handle new types of user data.

ConfirmFragment dialog =

ConfirmFragment.newInstance(R.string.privacyPolicy,

R.string.agreePrivacyPolicy,

DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);

dialog.setDialogListener(this);

FragmentManager fragmentManager = getSupportFragmentManager();

dialog.show(fragmentManager, "dialog");

}

}

public void onSendToServer(View view) {

String nickname =

((TextView) findViewById(R.id.editTextNickname)).getText().toString();

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName()

+ "\n - nickname : " + nickname + ", UUID = " + mUUId,

Toast.LENGTH_SHORT).show();

new SendDataAsyncTack().execute(SEND_DATA_URI, UserId, nickname, mUUId);

}

public void onPositiveButtonClick(int type) {

if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

// *** POINT 1 *** On first launch (or application update), obtain

// broad consent to transmit user data that will be handled by the

// application.

SharedPreferences.Editor pref =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE)

(continues on next page)

502



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

.edit();

pref.putInt(PRIVACY_POLICY_AGREED_KEY, getVersionCode());

pref.apply();

}

}

public void onNegativeButtonClick(int type) {

if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {

// *** POINT 2 *** If the user does not grant general consent, do not

// transmit user data.

// In this sample application we terminate the application in this

// case.

finish();

}

}

private int getVersionCode() {

int versionCode = -1;

PackageManager packageManager = this.getPackageManager();

try {

PackageInfo packageInfo =

packageManager.getPackageInfo(this.getPackageName(),

PackageManager.GET_ACTIVITIES);

versionCode = packageInfo.versionCode;

} catch (NameNotFoundException e) {

// This is sample, so omit the exception process

}

return versionCode;

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.action_show_pp:

// *** POINT 3 *** Provide methods by which the user can review the

// application privacy policy.

Intent intent = new Intent();

intent.setClass(this, WebViewAssetsActivity.class);

startActivity(intent);

return true;

case R.id.action_del_id:

// *** POINT 4 *** Provide methods by which transmitted data can be

// deleted by user operations.

new SendDataAsyncTack().execute(DEL_ID_URI, UserId);

return true;

case R.id.action_donot_send_id:

// *** POINT 5 *** Provide methods by which transmitting data can be

// stopped by user operations.

(continues on next page)

503



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// If the user stop sending data, user consent is deemed to have been

// revoked.

SharedPreferences.Editor pref =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE)

.edit();

pref.putInt(PRIVACY_POLICY_AGREED_KEY, 0);

pref.apply();

// In this sample application if the user data cannot be sent by user

// operations, finish the application because we do nothing.

String message = getString(R.string.stopSendUserData);

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() + " - " + message,

Toast.LENGTH_SHORT).show();

finish();

return true; }

return false;

}

private class GetDataAsyncTask extends AsyncTask<String, Void, String> {

private String extMessage = "";

@Override

protected String doInBackground(String... params) {

// *** POINT 6 *** Use UUIDs or cookies to keep track of user data

// In this sample we use an ID generated on the server side

SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME,

MODE_PRIVATE);

UserId = sp.getString(ID_KEY, null);

if (UserId == null) {

// No token in SharedPreferences; fetch ID from server

try {

UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

} catch (IOException e) {

// Catch exceptions such as certification errors

extMessage = e.toString();

}

// Store the fetched ID in SharedPreferences

sp.edit().putString(ID_KEY, UserId).commit();

}

return UserId;

}

@Override

protected void onPostExecute(final String data) {

String status = (data != null) ? "success" : "error";

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

" - " + status + " : " + extMessage,

Toast.LENGTH_SHORT).show();

}

}

private class SendDataAsyncTack extends AsyncTask<String, Void, Boolean> {

(continues on next page)

504



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private String extMessage = "";

@Override

protected Boolean doInBackground(String... params) {

String url = params[0];

String id = params[1];

String nickname = params.length > 2 ? params[2] : null;

String lineNum = params.length > 3 ? params[3] : null;

Boolean result = false;

try {

JSONObject jsonData = new JSONObject();

jsonData.put(ID_KEY, id);

if (nickname != null)

jsonData.put(NICK_NAME_KEY, nickname);

if (lineNum != null)

jsonData.put(LN_KEY, lineNum);

NetworkUtil.sendJSON(url, "", jsonData.toString());

result = true;

} catch (IOException e) {

// Catch exceptions such as certification errors

extMessage = e.toString();

} catch (JSONException e) {

extMessage = e.toString();

}

return result;

}

@Override

protected void onPostExecute(Boolean result) {

String status = result ? "Success" : "Error";

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

" - " + status + " : " + extMessage,

Toast.LENGTH_SHORT).show();

}

}

}

ConfirmFragment.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

(continues on next page)

505



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicynopreconfirm;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.os.Bundle;

import androidx.fragment.app.DialogFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.TextView;

public class ConfirmFragment extends DialogFragment {

private DialogListener mListener = null;

public static interface DialogListener {

public void onPositiveButtonClick(int type);

public void onNegativeButtonClick(int type);

}

public static ConfirmFragment newInstance(int title, int sentence, int type) {

ConfirmFragment fragment = new ConfirmFragment();

Bundle args = new Bundle();

args.putInt("title", title);

args.putInt("sentence", sentence);

args.putInt("type", type);

fragment.setArguments(args);

return fragment;

}

@Override

public Dialog onCreateDialog(Bundle args) {

// *** POINT 1 *** On first launch (or application update), obtain broad

// consent to transmit user data that will be handled by the application.

final int title = getArguments().getInt("title");

final int sentence = getArguments().getInt("sentence");

final int type = getArguments().getInt("type");

LayoutInflater inflater = (LayoutInflater) getActivity()

.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

View content = inflater.inflate(R.layout.fragment_comfirm, null);

TextView linkPP = (TextView) content.findViewById(R.id.tx_link_pp);

linkPP.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

// *** POINT 3 *** Provide methods by which the user can review

// the application privacy policy.

(continues on next page)

506



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Intent intent = new Intent();

intent.setClass(getActivity(), WebViewAssetsActivity.class);

startActivity(intent);

}

});

AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

builder.setIcon(R.drawable.ic_launcher);

builder.setTitle(title);

builder.setMessage(sentence);

builder.setView(content);

builder.setPositiveButton(R.string.buttonConsent,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {

if (mListener != null) {

mListener.onPositiveButtonClick(type);

}

}

});

builder.setNegativeButton(R.string.buttonDonotConsent,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {

if (mListener != null) {

mListener.onNegativeButtonClick(type);

}

}

});

Dialog dialog = builder.create();

dialog.setCanceledOnTouchOutside(false);

return dialog;

}

@Override

public void onAttach(Activity activity) {

super.onAttach(activity);

if (!(activity instanceof DialogListener)) {

throw new ClassCastException(activity.toString()

+ " must implement DialogListener.");

}

mListener = (DialogListener) activity;

}

public void setDialogListener(DialogListener listener) {

mListener = listener;

}

}

WebViewAssetsActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

(continues on next page)

507



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicynopreconfirm;

import org.jssec.android.privacypolicynopreconfirm.R;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

// *** POINT 7 *** Place a summary version of the application privacy policy

// in the assets folder

private final String ABST_PP_URL =

"file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html

→˓";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_webview);

WebView webView = (WebView) findViewById(R.id.webView);

WebSettings webSettings = webView.getSettings();

webSettings.setAllowFileAccess(false);

webView.loadUrl(ABST_PP_URL);

}

}

5.5.1.3 Broad consent is not needed: Applications that incorporate application privacy policy

Points: (Broad consent is not needed: Applications that incorporate application privacy policy)

1. Provide methods by which the user can review the application privacy policy.

2. Provide methods by which transmitted data can be deleted by user operations.

3. Provide methods by which transmitting data can be stopped by user operations

4. Use UUIDs or cookies to keep track of user data.

5. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association
(continues on next page)

508



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicynocomprehensive;

import java.io.IOException;

import org.json.JSONException;

import org.json.JSONObject;

import android.os.AsyncTask;

import android.os.Bundle;

import android.content.Intent;

import android.content.SharedPreferences;

import androidx.fragment.app.FragmentActivity;

import android.text.Editable;

import android.text.TextWatcher;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends FragmentActivity {

private static final String BASE_URL = "https://www.example.com/pp";

private static final String GET_ID_URI = BASE_URL + "/get_id.php";

private static final String SEND_DATA_URI = BASE_URL + "/send_data.php";

private static final String DEL_ID_URI = BASE_URL + "/del_id.php";

private static final String ID_KEY = "id";

private static final String NICK_NAME_KEY = "nickname";

private static final String PRIVACY_POLICY_PREF_NAME =

"privacypolicy_preference";

private String UserId = "";

private TextWatcher watchHandler = new TextWatcher() {

@Override

public void beforeTextChanged(CharSequence s,

int start, int count, int after) {

}

@Override

public void onTextChanged(CharSequence s,

(continues on next page)

509



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

int start, int before, int count) {

boolean buttonEnable = (s.length() > 0);

MainActivity.this.findViewById(R.id.buttonStart)

.setEnabled(buttonEnable);

}

@Override

public void afterTextChanged(Editable s) {

}

};

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

// Fetch user ID from serverFetch user ID from server

new GetDataAsyncTask().execute();

findViewById(R.id.buttonStart).setEnabled(false);

((TextView) findViewById(R.id.editTextNickname))

.addTextChangedListener(watchHandler);

}

public void onSendToServer(View view) {

String nickname =

((TextView) findViewById(R.id.editTextNickname))

.getText().toString();

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

"\n - nickname : " + nickname,

Toast.LENGTH_SHORT).show();

new sendDataAsyncTack().execute(SEND_DATA_URI, UserId, nickname);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.action_show_pp:

// *** POINT 1 *** Provide methods by which the user can review the

// application privacy policy.

Intent intent = new Intent();

intent.setClass(this, WebViewAssetsActivity.class);

startActivity(intent);

return true;

case R.id.action_del_id:

// *** POINT 2 *** Provide methods by which transmitted data can be

// deleted by user operations.

new sendDataAsyncTack().execute(DEL_ID_URI, UserId);

(continues on next page)

510



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return true;

case R.id.action_donot_send_id:

// *** POINT 3 *** Provide methods by which transmitting data can be

// stopped by user operations.

// In this sample application if the user data cannot be sent by user

// operations, finish the application because we do nothing.

String message = getString(R.string.stopSendUserData);

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() + " - " + message,

Toast.LENGTH_SHORT).show();

finish();

return true;

}

return false;

}

private class GetDataAsyncTask extends AsyncTask<String, Void, String> {

private String extMessage = "";

@Override

protected String doInBackground(String... params) {

// *** POINT 4 *** Use UUIDs or cookies to keep track of user data

// In this sample we use an ID generated on the server side

SharedPreferences sp =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

UserId = sp.getString(ID_KEY, null);

if (UserId == null) {

// No token in SharedPreferences; fetch ID from server

try {

UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

} catch (IOException e) {

// Catch exceptions such as certification errors

extMessage = e.toString();

}

// Store the fetched ID in SharedPreferences

sp.edit().putString(ID_KEY, UserId).commit();

}

return UserId;

}

@Override

protected void onPostExecute(final String data) {

String status = (data != null) ? "success" : "error";

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

" - " + status + " : " + extMessage,

Toast.LENGTH_SHORT).show();

}

}

private class sendDataAsyncTack extends AsyncTask<String, Void, Boolean> {

private String extMessage = "";

(continues on next page)

511



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

protected Boolean doInBackground(String... params) {

String url = params[0];

String id = params[1];

String nickname = params.length > 2 ? params[2] : null;

Boolean result = false;

try {

JSONObject jsonData = new JSONObject();

jsonData.put(ID_KEY, id);

if (nickname != null)

jsonData.put(NICK_NAME_KEY, nickname);

NetworkUtil.sendJSON(url, "", jsonData.toString());

result = true;

} catch (IOException e) {

// Catch exceptions such as certification errors

extMessage = e.toString();

} catch (JSONException e) {

extMessage = e.toString();

}

return result;

}

@Override

protected void onPostExecute(Boolean result) {

String status = result ? "Success" : "Error";

Toast.makeText(MainActivity.this,

this.getClass().getSimpleName() +

" - " + status + " : " + extMessage,

Toast.LENGTH_SHORT).show();

}

}

}

WebViewAssetsActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicynocomprehensive;

(continues on next page)

512



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import org.jssec.android.privacypolicynocomprehensive.R;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;

import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {

// *** POINT 5 *** Place a summary version of the application privacy policy

// in the assets folder

private static final String ABST_PP_URL =

"file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html

→˓";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_webview);

WebView webView = (WebView) findViewById(R.id.webView);

WebSettings webSettings = webView.getSettings();

webSettings.setAllowFileAccess(false);

webView.loadUrl(ABST_PP_URL);

}

}

5.5.1.4 Applications that do not incorporate an application privacy policy

Points: (Applications that do not incorporate an application privacy policy)

1. You do not need to display an application privacy policy if your application will only use the information it
obtains within the device.

2. In the documentation for marketplace applications or similar
applications, note that the application does not transmit the information it obtains to the outside world

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.privacypolicynoinfosent;

(continues on next page)

513



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.GoogleApiAvailability;

import com.google.android.gms.location.FusedLocationProviderClient;

import com.google.android.gms.location.LocationServices;

import com.google.android.gms.tasks.OnSuccessListener;

import android.Manifest;

import android.location.Location;

import android.net.Uri;

import android.os.Build;

import android.os.Bundle;

import android.content.Intent;

import android.content.pm.PackageManager;

import androidx.core.app.ActivityCompat;

import androidx.fragment.app.FragmentActivity;

import androidx.core.content.ContextCompat;

import android.util.Log;

import android.view.Menu;

import android.view.View;

public class MainActivity extends FragmentActivity {

private FusedLocationProviderClient mFusedLocationClient;

private final int MY_PERMISSIONS_REQUEST_ACCESS_LOCATION = 257;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mFusedLocationClient =

LocationServices.getFusedLocationProviderClient(this);

if (Build.VERSION.SDK_INT >= 23) {

// API level 23 and greater requires permission to get location info.

Boolean permissionCheck = (ContextCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION)

== PackageManager.PERMISSION_GRANTED);

if (!permissionCheck) {

// We have no permission, request to user

ActivityCompat.requestPermissions(this,

new String[]{Manifest.permission.ACCESS_FINE_LOCATION},

MY_PERMISSIONS_REQUEST_ACCESS_LOCATION);

}

}

}

@Override

public void onRequestPermissionsResult(int requestCode,

String permissions[],

int[] grantResults) {

switch (requestCode) {

case MY_PERMISSIONS_REQUEST_ACCESS_LOCATION: {

if (grantResults.length > 0 && grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

(continues on next page)

514



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// permission is granted

int resultCode =

GoogleApiAvailability.getInstance()

.isGooglePlayServicesAvailable(this);

if (resultCode != ConnectionResult.SUCCESS) {

// We cannot use Googleplay service, sample app will

// terminate.

finish();

}

} else {

// permission is not granted, we sample app will terminate.

finish();

}

}

}

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

public void onStartMap(View view) {

Log.d("onStartMap()"," called");

// *** POINT 1 *** You do not need to display an application privacy policy

// if your application will only use the information it obtains within the

// device.

mFusedLocationClient.getLastLocation()

.addOnSuccessListener(this, new OnSuccessListener<Location>() {

@Override

public void onSuccess(Location location) {

if (location != null) {

Intent intent =

new Intent(Intent.ACTION_VIEW,

Uri.parse("geo:" + location.getLatitude() +

"," + location.getLongitude())

);

startActivity(intent);

}

}

});

}

}

Sample description on the marketplace is below.

515



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.3: Description on the marketplace

5.5.2 Rule Book

When working with private date, obey the following rules.

1. Restrict transmissions of user data to the minimum necessary (Required)

2. On first launch (or application update), obtain broad consent to transmit user data that requires particularly
delicate handling or that may be difficult for users to change (Required)

3. Obtain specific consent before transmitting user data that requires particularly delicate handling (Required)

4. Provide methods by which the user can review the application privacy policy (Required)

5. Use UUIDs or cookies for identifiers linked with user data (Do not use device-specific identifiers) (Required)

6. Provide methods by which transmitted data can be deleted and transmitting data can be stopped by user operations
(Recommended)

7. If you will only be using user data within the device, notify the user that data will not be transmitted externally.
(Recommended)

8. Place a summary version of the application privacy policy in the assets folder (Recommended)

5.5.2.1 Restrict transmissions of user data to the minimum necessary (Required)

When transmitting usage data to external servers or other destinations, restrict transmissions to the bare minimum
necessary to provide service. In particular, you should design that applications have access to only user data of which
purpose of use the user can imagine on the basis of the application description.

For example, an application that the user can imagine it is an alarm application, must not have access location data.
On the other hand, if an alarm application can sound the alarm depending on the location of user and its feature is
written on the description of the application, the application may have access to location data.

In cases where information need only be accessed within an application, avoid transmitting it externally and take other
steps to minimize the possibility of inadvertent leakage of user data.

516



Secure Coding Guide Documentation Release 2025-01-29

5.5.2.2 On first launch (or application update), obtain broad consent to transmit user data that
requires particularly delicate handling or that may be difficult for users to change (Re-
quired)

If an application will transmit to external servers any user data that may be difficult for users to change, or any
user data that requires particularly delicate handling, the application must obtain advance consent (opt-in) from the
user—before the user begins using the application—informing the user of what types of information will be sent,
for what purposes, to servers, and whether or not any third-party providers will be involved. More specifically, on
first launch the application should display its application privacy policy and confirm that the user has reviewed it and
consented. Also, whenever an application is updated in such a way that it now transmits new types of user data to
external servers, it must again confirm that the user has reviewed and consented to these changes. If the user does not
consent, the application should terminate or otherwise take steps to ensure that all functions requiring the transmission
of data are disabled.

These steps serve to guarantee that users understand how their data will be handled when they use an application,
providing users with a sense of security and enhancing their trust in the application.

MainActivity.java

protected void onStart() {

super.onStart();

// (some portions omitted)

if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {

// *** POINT *** On first launch (or application update),

// obtain broad consent to transmit user data that will be handled

// by the application.

// When the application is updated, it is only necessary to renew

// the user’s grant of broad consent

// if the updated application will handle new types of user data.

ConfirmFragment dialog =

ConfirmFragment.newInstance(R.string.privacyPolicy,

R.string.agreePrivacyPolicy,

DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);

dialog.setDialogListener(this);

FragmentManager fragmentManager = getSupportFragmentManager();

dialog.show(fragmentManager, "dialog");

}

517



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.4: Example of broad consent

5.5.2.3 Obtain specific consent before transmitting user data that requires particularly delicate
handling (Required)

When transmitting to external servers any user data that requires particularly delicate handling, an application must
obtain advance consent (opt-in) from users for each such type of user data (or for each feature that involves the
transmission of user data); this is in addition to the need to obtain general consent. If the user does not grant consent,
the application must not send the corresponding data to the external server.

This ensures that users can obtain a more thorough understanding of the relationship between an application’s features
(and the services it provides) and the transmission of user data for which the user granted general consent; at the same
time, application providers can expect to obtain user consent on the basis of more precise decision-making.

MainActivity.java

public void onSendToServer(View view) {

// *** POINT *** Obtain specific consent before transmitting user data

// that requires particularly delicate handling.

ConfirmFragment dialog =

ConfirmFragment.newInstance(R.string.sendLocation,

R.string.cofirmSendLocation,

DIALOG_TYPE_PRE_CONFIRMATION);

dialog.setDialogListener(this);

FragmentManager fragmentManager = getSupportFragmentManager();

dialog.show(fragmentManager, "dialog");

}

518



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.5: Example of specific consent

5.5.2.4 Provide methods by which the user can review the application privacy policy (Required)

In general, the Android application marketplace will provide links to application privacy policies for users to review
before choosing to install the corresponding application. In addition to supporting this feature, it is important for
applications to provide methods by which users can review application privacy policies after installing applications
on their devices. It is particularly important to provide methods by which users can easily review application privacy
policies in cases involving consent to transmit user data to external servers to assist users in making appropriate
decisions.

MainActivity.java

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.action_show_pp:

// *** POINT *** Provide methods by which the user can review the

// application privacy policy.

Intent intent = new Intent();

intent.setClass(this, WebViewAssetsActivity.class);

startActivity(intent);

return true;

519



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.6: Context menu to show privacy policy

5.5.2.5 Use UUIDs or cookies for identifiers linked with user data (Do not use device-specific
identifiers) (Required)

IMEIs and other device-specific IDs should not be transmitted in ways that are tied to user data. Indeed, if a device
-specific ID and a piece of user data are bundled together and released or leaked to public—even just once—it will
be impossible subsequently to change that device -specific ID, whereupon it will be impossible (or at least difficult) to
sever ties between the ID and the user data. Also, in Android 10, the obtaining of IMEI and other device-specific iden-
tifiers is no longer possible regardless of the targetSdkVersion for the app. For this reason, UUIDs or cookies—that
is, variable identifiers that are regenerated each time based on random numbers without using device-specific iden-
tifiers—must be transmitted together with user data. This allows an implementation of the notion, discussed below,
of the “right to be forgotten.”

MainActivity.java

@Override

protected String doInBackground(String... params) {

// *** POINT *** Use UUIDs or cookies to keep track of user data

// In this sample we use an ID generated on the server side

SharedPreferences sp =

getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);

UserId = sp.getString(ID_KEY, null);

if (UserId == null) {

// No token in SharedPreferences; fetch ID from server

try {

UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");

} catch (IOException e) {

// Catch exceptions such as certification errors

extMessage = e.toString();

}

(continues on next page)

520



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Store the fetched ID in SharedPreferences

sp.edit().putString(ID_KEY, UserId).commit();

return UserId;

}

5.5.2.6 Place a summary version of the application privacy policy in the assets folder (Recom-
mended)

It is a good idea to place a summary version of the application privacy policy in the assets folder to ensure that users
may review it as necessary. Ensuring that the application privacy policy is present in the assets folder not only allows
users to access it easily at any time, but also avoids the risk that users may see a counterfeit or corrupted version of
the application privacy policy prepared by a malicious third party.

5.5.2.7 Provide methods by which transmitted data can be deleted and transmitting data can be
stopped by user operations (Recommended)

It is a good idea to provide methods by which user data that has been transmitted to external servers can be deleted
at the user’s request. Similarly, in cases in which the application itself has stored user data (or a copy thereof) within
the device, it is a good idea to provide users with methods for deleting this data. And, it is a good idea to provide
methods by which transmitting user data can be stopped at the user’s request.

This rule (recommendation) is codified by the “right to be forgotten” promoted in the EU; more generally, in the
future it seems clear that various proposals will call for further strengthening the rights of users to have their data
protected, and for this reason in these guidelines we recommend the provision of methods for the deletion of user
data unless there is some specific reason to do otherwise. And, regarding stop transmitting data, it is the one that is
defined by the point of view "Do Not Track (deny track)" of the correspondence by the browser is progressing mainly.

MainActivity.java

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

// (some portions omitted)

case R.id.action_del_id:

// *** POINT *** Provide methods by which transmitted data can be

// deleted by user operations.

new SendDataAsyncTack().execute(DEL_ID_URI, UserId);

return true;

}

5.5.2.8 If you will only be using user data within the device, notify the user that data will not be
transmitted externally. (Recommended)

Even in cases in which user data will only be accessed temporarily within the user’s device, it is a good idea to
communicate this fact to the user to ensure that the user’s understanding of the application’s behavior remains full and
transparent. More specifically, users should be informed that the user data accessed by an application will only be used
within the device for a certain specific purpose and will not be stored or sent. Possible methods for communicating
this content to users include specifying it within the description of the application on the application marketplace.
Information that is only used temporarily within a device need not be discussed in the application privacy policy.

521



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.7: Description on the marketplace

5.5.3 Advanced Topics

5.5.3.1 Some background and context regarding privacy policies

For cases in which a smartphone application will obtain user data and transmit this data externally, it is necessary to
prepare and display an application privacy policy to inform users of details such as the types of data will be collected
and the ways in which the data will be handled. The content that should be included in an application privacy policy
is detailed in the Smartphone Privacy Initiative advocated by JMIC’s SPI. The primary objective of the application
privacy policy should be to state clearly all types of user data that will be accessed by an application, the purposes for
which the data will be used, where the data will be stored, and to what destinations the data will be transmitted.

A second document, separate from and required in addition to the application privacy policy, is the Enterprise Privacy
Policy, which details how all user data gathered by a corporation from its various applications will be stored, managed,
and disposed of. This Enterprise Privacy Policy corresponds to the privacy policy that would traditionally have been
prepared to comply with Japan’s Personal Information Protection Law.

A detailed description of proper methods for preparing and displaying privacy policies, together with a dis-
cussion of the roles played by the various different types of privacy policies, may be found in the document “A
Discussion of the Creation and Presentation of Privacy Policies for JSSEC Smartphone Applications”, available at this
URL:[https://www.jssec.org/event/20140206/03-1_app_policy.pdf](https://www.jssec.org/event/20140206/03-1_app_policy.pdf)
(Japanese only).

5.5.3.2 Glossary of Terms

In the table below we define a number of terms that are used in these guidelines; these definitions are taken from the
document “A Discussion of the Creation and Presentation of Privacy Policies for JSSEC Smartphone Applications”
([https://www.jssec.org/event/20140206/03-1_app_policy.pdf](https://www.jssec.org/event/20140206/03-1_app_policy.pdf))
(Japanese only).

522

https://www.jssec.org/event/20140206/03-1_app_policy.pdf{]}(https://www.jssec.org/event/20140206/03-1_app_policy.pdf


Secure Coding Guide Documentation Release 2025-01-29

Table 5.5.1: Glossary of Terms

Term Description
Enterprise Privacy Policy A privacy policy that defines a corporation’s policies for protecting

personal data. Created in accordance with Japan’s Personal Infor-
mation Protection Law.

Application Privacy Policy An application-specific privacy policy. Created in accordance with
the guidelines of the Smartphone Privacy Initiative (SPI) of Japan’s
Ministry of Internal Affairs and detailed versions containing easily
understandable explanations.

Summary version of the Application Pri-
vacy Policy

A brief document that concisely summarizes what user information
an application will use, for what purpose, and whether or not this
information will be provided to third parties.

Detailed version of the Application Privacy
Policy

A detailed document that complies with the 8 items specified by
the Smartphone Privacy Initiative (SPI) and the Smartphone Pri-
vacy Initiative II (SPI II) of Japan’s Ministry of Internal Affairs and
Communications (MIC).

User data that is easy for users to change Cookies, UUIDs, etc.
User data that is difficulty for users to
change

IMEIs, IMSIs, ICCIDs, MAC addresses, OS-generated IDs, etc.

User data requiring particularly delicate
handling

Location information, address books, telephone numbers, email ad-
dresses, etc.

5.5.3.3 Version-dependent differences in handling of Android IDs

TheAndroid ID (Settings.Secure.ANDROID_ID) is a randomly-generated 64-bit number expressed as a hexadecimal
character string that serves as an identifier to identify individual terminals (although duplicate identifiers are possible
in extremely rare cases). For this reason, incorrect usage can create serious risks associated with user tracking, and
thus special care must be taken when using Android IDs. However, the rules governing aspects such as ID generation
and accessible ranges differ for terminals running Android 7.1 (API Level 25) versus terminals running Android 8.0
(API Level 26). In what follows we describe these differences.

Terminals running Android 7.1(API Level 25) or earlier

For terminals running Android 7.1(API Level 25) or earlier, only one Android ID value exists in a given terminal;
this value may be accessed by all apps running on that terminal. However, note that, for terminals with multiuser
support, separate values are generated for each user. Android IDs are generated upon the first startup of a terminal
after shipping from the factory, and are newly regenerated upon each subsequent factory reset.

Terminals running Android 8.0 (API Level 26) or later

For terminals running Android 8.0 (API Level 26) or later, each app (developer) has its own distinct value, which
may only be accessed by the app in question. More specifically, whereas the values used in Android 7.1 (API Level
25) and earlier were user-specific and terminal-specific but not app-specific, in Android 8.0 (API Level 26) and later
versions the app signature is added to the list of elements used to generate unique values, so that apps with different
signatures now have different Android ID values. (Apps with identical signatures have identical Android ID values.)

The occasions on which Android ID values are generated or modified remain essentially unchanged, but there are a
few points to note, as discussed below.

• On package uninstallation / reinstallation:

&nbsp;
As long as the signature of the app remains unchanged, its Android ID will be unchanged after uninstalling and
reinstalling. On the other hand, note that, if the key used as the signature is modified, the Android ID will be
different after re-installation, even if the package name is unchanged.

• On updates to terminals running Android 8.0 (API Level 26) or later:

&nbsp;
If an app was already installed on a terminal running Android 7.1 (API Level 25) or earlier, the Android ID

523



Secure Coding Guide Documentation Release 2025-01-29

value that may be obtained by the app remains unchanged after the terminal is updated to Android 8.0 (API
Level 26) or later. However, this excludes cases in which apps are uninstalled and reinstalled after the update.

Note that all Android IDs are classified as User information that is difficult for users to exchange (as described in
Section "5.5.3.2. Glossary of Terms"), and thus—as noted at the beginning of this discussion—we recommend that
similar levels of caution be employed when using Android IDs.

5.5.3.4 Restriction on obtaining non-resettable device identifiers on Android 10

To protect privacy, in Android 10, more restrictions have been placed on the obtaining of non-resettable device
identifiers. To obtain device identifiers, the READ_PRIVILEGED_PHONE_STATE permission is required, but
this permission is normally not granted to an app. This change affects all apps running in Android 10 regardless of
the setting for targetSdkVersion. For this reason, even in apps that ran using the granting of normal permissions,
unexpected behavior can still occur due to occurrence of a security exception or returning of null. The types of
information that are affected by this and the APIs for obtaining them are as follows. (It is assumed that required
permissions such as READ_PHONE_STATE were already granted.)

• Build Class

Table 5.5.2: Build Class

API Information to be ac-
quired

targetSDKVersion=29 targetSDKVersion29

(field))BUILD.SERIAL Device serial number Unknown Unknown
getSerial Device serial number SecurityException Unknown

• TelephonyManager Class

Table 5.5.3: TelephomyManager Class

API Information to be ac-
quired

targetSDKVersion=29 targetSDKVersion29

getImei IMEI SecurityException null
getSubscriberId IMSI SecurityException null
getDeviceId IMEI, MEID, ESN SecurityException null
getMeid MEID SecurityException null
getSimSerialNumber SIM Serial SecurityException null

5.5.3.5 Data Access Auditing

“Data access auditing” was added to make the accessing process to user private data such as location information and
contact lists transparent on Android 11. To use this, register the AppOpsManager.OnOpNotedCallback instance and
implement the callback logic in the component where data access needs to be audited, such as within the onCreate()
method of the activity. This enables easy recording of access to user private data.

Defined attribution tags can be included on access records by defining the callback logic to include the defined attri-
bution tag names on the application’s log.

public class SharePhotoLocationActivity extends AppCompatActivity {

private Context attributionContext;

// ~snip~

@Override

public void onCreate(@Nullable Bundle savedInstanceState,

@Nullable PersistableBundle persistentState) {

attributionContext = createAttributionContext("sharePhotos");

// ~snip~

AppOpsManager.OnOpNotedCallback appOpsCallback =

new AppOpsManager.OnOpNotedCallback() {

(continues on next page)

524



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private void logPrivateDataAccess(String opCode, String␣

→˓attributionTag, String trace) {

Log.i(TAG, "Private data accessed. ");

Log.i(TAG,"Operation:" + opCode);

Log.i(TAG,"Attribution Tag: " + attributionTag);

Log.i(TAG, "Stack Trace: " + trace);

}

@Override

public void onNoted(@NonNull SyncNotedAppOp syncNotedAppOp) {

logPrivateDataAccess(syncNotedAppOp.getOp(),

syncNotedAppOp.getAttributionTag(),

Arrays.toString(new Throwable().

→˓getStackTrace()));

}

@Override

public void onSelfNoted(@NonNull SyncNotedAppOp syncNotedAppOp) {

logPrivateDataAccess(syncNotedAppOp.getOp(),

syncNotedAppOp.getAttributionTag(),

Arrays.toString(new Throwable().

→˓getStackTrace()));

}

@Override

public void onAsyncNoted(@NonNull AsyncNotedAppOp asyncNotedAppOp)

→˓{

logPrivateDataAccess(asyncNotedAppOp.getOp(),

asyncNotedAppOp.getAttributionTag(),

asyncNotedAppOp.getMessage());

}

};

AppOpsManager appOpsManager = getSystemService(AppOpsManager.class);

if (appOpsManager != null) {

appOpsManager.setNotedAppOpsCollector(appOpsCollector);

}

}

Also, for applications that target Android 12, these attribution tags must be declared within the manifest file.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

package="xxx.xxxx.myapplication">

...

<attribution

android:tag="sharePhotos"

android:label="@string/share_photos_attribution_label" />

...

</manifest>

If attribution tags that have not been declared are to be used, the attributionTag value is output to LogCat in the null
state.

525



Secure Coding Guide Documentation Release 2025-01-29

5.5.3.6 Location Information Access

Location information access permission is divided by foreground and background on Android 10 and above. The
following shows the permissions for each.

• Foreground

– ACCESS_COARSE_LOCATION (Specifies city blocks for location information accuracy)

– ACCESS_FINE_LOCATION (Specifies more accurate location information compared to AC-
CESS_COARSE_LOCATION)

• Background

– ACCESS_BACKGROUND_LOCATION

Requests for location information permissions based on its use cases are required for applications with a feature that
uses the location information service. The following shows the process to request permission.

1. Declare use of permission based on the use case in the manifest file

2. Execute requestPermission and request user permission for location information

Examples of declaration in the manifest file

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION" />

Foreground location information and background location information permissions cannot be requested simultane-
ously on Android 11. If permissions for both are required, requests for permissions must be made in phases.

The process to request permission in phases is indicated below.

1. Declare use of permission based on the use case in the manifest file

2. Execute requestPermissions and request user permission for foreground location information access

3. Execute requestPermissions and request user permission for background location information access when
users try to use a feature that requires background location information access later on

Google Play restricts use of high risk or sensitive permissions, and it is expected that unnecessary access to location
information in the background will become prohibited. If it is not essential, it is recommended to either delete it from
the app or to implement access to location information in the foreground, such as when the app’s activity is visible to
users33.

If requesting ACCESS_FINE_LOCATION permissions on apps that target Android 12, ACCESS_COARSE_LO-
CATION permissions must be requested as well.

Also, users can request that the app retrieve only approximate location information even when the app requests an
ACCESS_FINE_LOCATION runtime permission.

For user privacy protection, it is recommended to request only ACCESS_COARSE_LOCATION if objectives are
accomplished by using approximate location information.

ACCESS_FINE_LOCATION is also required when using the Wi-Fi APIs, but since it is difficult for users to intu-
itively associate location information with Wi-Fi settings, a new runtime permission, NEARBY_WIFI_DEVICES
permission, was introduced in the NEARBY_DEVICES permission group starting from Android 13 (API level 33).

This permission applies to the following Wi-Fi APIs.
33 https://support.google.com/googleplay/android-developer/answer/9799150?hl=en

526

https://support.google.com/googleplay/android-developer/answer/9799150?hl=en


Secure Coding Guide Documentation Release 2025-01-29

Table 5.5.4: Wi-Fi APIs Requiring NEARBY_WIFI_DEVICES Permis-
sion

Class API
WifiManager startLocalOnlyHotspot()
WifiAwareManager attach()
WifiAwareSession publish()

subscribe()
WifiP2pManager addLocalService()

connect()
createGroup()
discoverPeers()
discoverServices()
requestDeviceInfo()
requestGroupInfo()
requestPeers()

WifiRttManager startRanging()

When using these Wi-Fi APIs in apps targeting Android 13 and the app states that it will not obtain physical lo-
cation information from Wi-Fi device information, NEARBY_WIFI_DEVICES must be declared in place of AC-
CESS_FINE_LOCATION.

The sample code is as follows.

First, this is an example of the declaration. The following shows the code for a declaration of NEARBY_WIFI_DE-
VICES and statement that no physical location information will be obtained. The sample code also declares
CHANGE_WIFI_STATE in order to use startLocalOnlyHotspot.

<uses-permission

android:name="android.permission.NEARBY_WIFI_DEVICES"

android:usesPermissionFlags="neverForLocation" />

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />

Next, the following is an example of code that requests the NEARBY_WIFI_DEVICES permission from the user
when the button is pressed.

private ActivityResultLauncher<String> requestPermissionLauncher =

registerForActivityResult(new ActivityResultContracts.RequestPermission(),␣

→˓isGranted -> {

if (isGranted) {

wifiManager = (WifiManager)getSystemService(Context.WIFI_SERVICE);

MainActivity.this.startLocalOnlyHotspot();

} else {

// Explain to the user that the feature is unavailable because the

// features requires a permission that the user has denied. At the

// same time, respect the user's decision. Don't link to system

// settings in an effort to convince the user to change their

// decision.

}

});

@Override

protected void onCreate(Bundle savedInstanceState) {

// ...

buttonStart.setOnClickListener( v -> {

requestPermissionLauncher.launch("android.permission.NEARBY_WIFI_DEVICES");

});

(continues on next page)

527



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private void startLocalOnlyHotspot() {

wifiManager.startLocalOnlyHotspot(new WifiManager.LocalOnlyHotspotCallback() {

@Override

public void onStarted(WifiManager.LocalOnlyHotspotReservation reservation)

→˓{

super.onStarted(reservation);

buttonStart.setEnabled(false);

statusTextView.setText("startLocalOnlyHotspot: onStarted");

}

The permission dialog that appears when the above code is executed on Android 13 and the button is pressed is shown
below.

Fig. 5.5.8: Appearance of Permission Dialog

NEARBY_WIFI_DEVICES was introduced from Android 13 and requires a build with targetSDKVersion set to
33 or higher to execute the above code. If targetSDKVersion is set to 32 or lower, the following SecurityException
exception occurs when startLocalOnlyHotspot is executed.

Process: com.example.myapplication, PID: 1229

(continues on next page)

528



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

java.lang.SecurityException: UID 10267 does not have Coarse/Fine Location␣

→˓permission

5.5.3.7 Microphones and Cameras For Android 12

Microphones and cameras can be set to on or off from quick settings or the [Privacy] screen of system settings on
Android 12. These settings are reflected on all applications on the device.

If users launch the application that accesses microphones and cameras that have been set to off, the system notifies
users that these devices are off.

This function is available for use only on supported devices and can be confirmed with the following code.

SensorPrivacyManager sensorPrivacyManager = getApplicationContext().

→˓getSystemService(SensorPrivacyManager.class);

boolean supportsMicrophoneToggle = sensorPrivacyManager.

→˓supportsSensorToggle(Sensors.MICROPHONE);

boolean supportsCameraToggle = sensorPrivacyManager.supportsSensorToggle(Sensors.

→˓CAMERA);

For applications that use microphones and cameras, it is recommended to access them through the following methods
based on permissions.

• The device camera will not be accessed until the user applies CAMERA permissions to the application.

• The device microphone will not be accessed until the user applies RECORD_AUDIO permissions to the ap-
plication.

When the application accesses the microphone or camera, an icon is displayed in the status bar to indicate that it is
being accessed. Users can confirm which application is currently using microphones or cameras by tapping the icon
from quick settings.

5.5.3.8 SameSite Cookie on WebView

The following privacy protection changes are applied on WebView for applications that target Android 12.

• Cookies without a SameSite attribute are handled as SameSite=Lax. In other words, only cookies of the same
domain as the accessed website can be set.

• The Secure attribute must be clearly specified for cookies with SameSite=None. In other words, unless an
HTTPS connection is established, cookie settings and loading is unavailable.

This is to prevent Cross Site Request Forgery (CSRF) attacks and is applied on application WebView targeted for
Android 12 and later.

If using WebView on an application or if managing websites and services that use cookies, it is necessary to check
that the existing flow operates correctly in advance.

Furthermore, this change is applied on WebView version (89.0.4385.0) and later of Android 12, and version verifi-
cation can be performed from the “App Info” screen (“Settings” - “Applications” - “Android System WebView”)34.

5.5.3.9 Media Owner Package Names

MediaColumns in the MediaStore stores various information about the file as columns, such as TITLE, DIS-
PLAY_NAME,MIME_TYPE, etc., and it is possible to query media files in the device using this column information
as conditions.

34 The WebView version was 93.0.4577.82 when verified on an Android 12 (build number SPB5.210812.002) terminal

529



Secure Coding Guide Documentation Release 2025-01-29

Starting with Android 14, OWNER_PACKAGE_NAME, which represents the package name for the application
that created the media file, has been removed from this column information and can no longer be specified as a query
condition.

This is because information on installed applications is now considered personal and confidential information of the
user.

The following is a sample code that queries an audio file stored on a device and displays the OWNER_PACK-
AGE_NAME of the file.

cursor = contentResolver.query(

MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,

null,null,null,null);

if (cursor != null && cursor.moveToFirst()) {

Log.d(TAG, cursor.getString(cursor.getColumnIndex(MediaStore.Audio.Media.OWNER_

→˓PACKAGE_NAME)));

The differences between Android 13 (API Level 33) and Android 14 (API Level 34) when executing this code are as
follows.

When executed on Android 13:

D voicerecorder.audiorecorder.voice

When executed on Android 14:

E Unknown message received from debugger! ''

When executed on Android 13, the package name for the application that created the media file is output, while on
Android 14, the query using OWNER_PACKAGE_NAME cannot be performed, and an error message is displayed
in the Logcat output.

5.5.3.10 Screen Recording Detection

Starting with Android 15, the ability for apps to detect screen recordings has been added.

During the execution of screen recording, a callback is invoked when the app is transitioned to visible or invisible.
An app is considered visible when the activity owned by the UID of the registered process is being recorded. Apps
can now notify users during sensitive operations when screen recording is detected sensitive operations on the app.

For example, when a screen is being recorded by a user or another application, the user can be warned or prohibited
from using the application before the ID and password input screen or the screen displaying personal information
appears on the application to prevent unintended recording or distribution of confidential or personal information. It
is possible to prevent unintentional recording and distribution of confidential and personal information.

An example implementation is as follows:

AndroidManifest.xml

<uses-permission android:name="android.permission.DETECT_SCREEN_RECORDING" />

MainActivity.kt

private val mCallback = Consumer<Int> { state ->

if (state == SCREEN_RECORDING_STATE_VISIBLE) {

Log.i("TAG", "We're being recorded")

} else {

Log.i("TAG", "We're not being recorded")

}

(continues on next page)

530



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

override fun onStart() {

super.onStart()

val initialState =

windowManager.addScreenRecordingCallback(mainExecutor, mCallback)

mCallback.accept(initialState)

}

override fun onStop() {

super.onStop()

windowManager.removeScreenRecordingCallback(mCallback)

}

5.5.3.11 Partial Screen Sharing

Android 15 introduces a new partial screen sharing feature, which allows you to share or record only specific app
windows. This change aims to address the need for privacy protection and focusing on the content of a specific
application. Below are the steps on how to implement it.

1. Request permission for overlay display

The app needs to obtain permission to display an overlay on top of other apps. The following code requests the user’s
permission for overlay display.

private fun checkOverlayPermissionAndRequestMediaProjection() {

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

if (!Settings.canDrawOverlays(this)) {

val intent = Intent(Settings.ACTION_MANAGE_OVERLAY_PERMISSION, Uri.

→˓parse("package:$packageName"))

overlayPermissionLauncher.launch(intent)

} else {

requestMediaProjectionPermission()

}

} else {

requestMediaProjectionPermission()

}

}

private val overlayPermissionLauncher = registerForActivityResult(

ActivityResultContracts.StartActivityForResult()

) { result ->

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

if (Settings.canDrawOverlays(this)) {

requestMediaProjectionPermission()

} else {

Toast.makeText(this, "Overlay permission denied", Toast.LENGTH_SHORT).

→˓show()

}

}

}

When the above code is executed, a dialog appears requesting the user’s permission for the application to display an
overlay on top of other applications.

531



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.9: Permission to display overlays

2. Request permission to capture the screen and handle the result

Once overlay permission has been granted, use MediaProjectionManager to request permission to capture the screen
and handle the result.

private fun requestMediaProjectionPermission() {

val captureIntent = mediaProjectionManager.createScreenCaptureIntent()

mediaProjectionLauncher.launch(captureIntent)

}

private val mediaProjectionLauncher = registerForActivityResult(

ActivityResultContracts.StartActivityForResult()

) { result ->

if (result.resultCode == Activity.RESULT_OK && result.data != null) {

val serviceIntent = Intent(this, MediaProjectionService::class.java).apply

→˓{

putExtra("resultCode", result.resultCode)

putExtra("data", result.data)

}

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

startForegroundService(serviceIntent)

} else {

startService(serviceIntent)

}

} else {

Toast.makeText(this, "Permission denied", Toast.LENGTH_SHORT).show()

}
(continues on next page)

532



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

When the above code is executed, a dialog will appear asking the user for permission for the application to capture
the screen of other apps.

Fig. 5.5.10: Allow recording or casting

3. Select the app you want to capture

When you click the Start button, a list of apps will be displayed and you can select the app you want to capture. The
following is an example of the Android standard Clock app.

533



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.11: Apps list

534



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.5.12: Select the Clock app

5.5.3.12 Changes in Global State Management in DND mode

Before Android 14, apps could directly modify DND global states using setInterruptionFilter and setNotificationPol-
icy.

fun setInterruptionFilter(context: Context, filter: Int) {

val notificationManager = context.getSystemService(Context.NOTIFICATION_

→˓SERVICE) as NotificationManager

notificationManager.setInterruptionFilter(filter)

}

Starting in Android 15, apps can no longer directly modify DND global states. Instead, they must use AutomaticZen-
Rule, which automatically enables/disables DND mode when specific conditions (time schedules, location triggers,
calendar events) are met. The system merges existing rules by prioritizing the most restrictive policy, preventing
unauthorized apps from overriding user settings.

AutomaticZenRule is a system-managed rule that enables indirect control of DND mode by activating/deactivating
it based on predefined conditions.

Creating Rules

fun createAutomaticZenRule(context: Context) {

val notificationManager = context.getSystemService(Context.NOTIFICATION_

→˓SERVICE) as NotificationManager

// Define the condition for the rule (e.g., a condition to enable DND at a␣

→˓specific time)
(continues on next page)

535



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

val conditionId = Uri.parse("content://com.example.myapp/condition")

// Create the AutomaticZenRule

val zenRule = AutomaticZenRule(

"My Automatic Zen Rule",

ComponentName(context.packageName, MyConditionConfigurationActivity::class.

→˓java.name),

conditionId,

null, // ZenPolicy is optional, pass null if not needed

NotificationManager.INTERRUPTION_FILTER_PRIORITY,

true

)

// Add the rule

val ruleUri = notificationManager.addAutomaticZenRule(zenRule)

if (ruleUri != null) {

println("AutomaticZenRule created: $ruleUri")

} else {

println("Failed to create AutomaticZenRule")

}

}

Updating Rules

fun updateAutomaticZenRule(context: Context, ruleId: String) {

val notificationManager = context.getSystemService(Context.NOTIFICATION_

→˓SERVICE) as NotificationManager

// Change the condition for the rule

val newConditionId = Uri.parse("content://com.example.myapp/new_condition")

// Retrieve the existing rule

val zenRule = notificationManager.getAutomaticZenRule(ruleId)

if (zenRule != null) {

// Update the rule

val updatedZenRule = AutomaticZenRule(

zenRule.name,

zenRule.owner,

zenRule.configurationActivity,

newConditionId,

zenRule.zenPolicy,

zenRule.interruptionFilter,

zenRule.isEnabled

)

notificationManager.updateAutomaticZenRule(ruleId, updatedZenRule)

println("AutomaticZenRule updated: $ruleId")

} else {

println("AutomaticZenRule not found: $ruleId")

}

}

Calling legacy APIs that previously affected global state (setInterruptionFilter, setNotificationPolicy) now implicitly
creates or updates an AutomaticZenRule. This rule toggles on/off based on the API call cycle.

For example, using setInterruptionFilter(NotificationManager.INTERRUPTION_FILTER_ALL) to disable DND
mode will also implicitly create an AutomaticZenRule, which the system manages appropriately.

536



Secure Coding Guide Documentation Release 2025-01-29

5.6 Using Cryptography

In the security world, the terms "confidentiality", "integrity", and "availability" are used in analyzing responses to
threats. These three terms refer, respectively, to measures to prevent the third parties from viewing private data,
protections to ensure that the data referenced by users has not been modified (or techniques for detecting when it has
been falsified) and the ability of users to access services and data at all times. All three of these elements are important
to consider when designing security protections. In particular, encryption techniques are frequently used to ensure
confidentiality and integrity, and Android is equipped with a variety of cryptographic features to allow applications
to realize confidentiality and integrity.

In this section we will use sample code to illustrate methods by which Android applications can securely implement
encryption and decryption (to ensure confidentiality) and message authentication codes (MAC) or digital signatures
(to ensure integrity).

5.6.1 Sample Code

A variety of cryptographic methods have been developed for specific purposes and conditions, including use cases
such as "encrypting and decrypting data (to ensure confidentiality)" and "detecting falsification of data (to ensure
integrity)". Here is sample code that is categorized into three broad groups of cryptography techniques on the basis
of the purpose of each technology. The features of the cryptographic technology in each case should make it possible
to choose an appropriate encryption method and key type. For cases in which more detailed considerations are
necessary, see Section "5.6.3.1. Choosing encryption methods".

Before designing an implementation that uses encryption technology, be sure to read Section "5.6.3.3. Measures to
Protect against Vulnerabilities in Random-Number Generators".

• Protecting data from third-party eavesdropping

Fig. 5.6.1: Selection flowchart for sample code to protect data from eavesdropping

• Detecting falsification of data made by a third party

537



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.6.2: Selection flowchart for sample code to detect falsifications

5.6.1.1 Encrypting and Decrypting With Password-based Keys

You may use password-based key encryption for the purpose of protecting a user’s confidential data assets.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption technologies (specifically, technologies that meet the relevant criteria), including algo-
rithms, block cipher modes, and padding modes.

3. When generating a key from password, use Salt.

4. When generating a key from password, specify an appropriate hash iteration count.

5. Use a key of length sufficient to guarantee the strength of encryption.

AesCryptoPBEKey.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.cryptsymmetricpasswordbasedkey;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.security.spec.InvalidKeySpecException;

import java.util.Arrays;

(continues on next page)

538



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.PBEKeySpec;

public final class AesCryptoPBEKey {

// *** POINT 1 *** Explicitly specify the encryption mode and the padding.

// *** POINT 2 *** Use strong encryption technologies (specifically,

// technologies that meet the relevant criteria),

// including algorithms, block cipher modes, and padding modes.

// Parameters passed to the getInstance method of the Cipher class:

// Encryption algorithm, block encryption mode, padding rule

// In this sample, we choose the following parameter values:

// encryption algorithm=AES, block encryption mode=CBC, padding

// rule=PKCS7Padding

private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";

// A string used to fetch an instance of the class that generates the key

private static final String KEY_GENERATOR_MODE =

"PBEWITHSHA256AND128BITAES-CBC-BC";

// *** POINT 3 *** When generating a key from a password, use Salt.

// Salt length in bytes

public static final int SALT_LENGTH_BYTES = 20;

// *** POINT 4 *** When generating a key from a password,

// specify an appropriate hash iteration count.

// Set the number of mixing repetitions used when generating keys via PBE

private static final int KEY_GEN_ITERATION_COUNT = 1024;

// *** POINT 5 *** Use a key of length sufficient to guarantee

// the strength of encryption.

// Key length in bits

private static final int KEY_LENGTH_BITS = 128;

private byte[] mIV = null;

private byte[] mSalt = null;

public byte[] getIV() {

return mIV;

}

public byte[] getSalt() {

return mSalt;

}

AesCryptoPBEKey(final byte[] iv, final byte[] salt) {

mIV = iv;

mSalt = salt;

}

(continues on next page)

539



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

AesCryptoPBEKey() {

mIV = null;

initSalt();

}

private void initSalt() {

mSalt = new byte[SALT_LENGTH_BYTES];

SecureRandom sr = new SecureRandom();

sr.nextBytes(mSalt);

}

public final byte[] encrypt(final byte[] plain, final char[] password) {

byte[] encrypted = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption technologies (specifically,

// technologies that meet the relevant criteria),

// including algorithms, modes, and padding.

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

// *** POINT 3 *** When generating keys from passwords, use Salt.

SecretKey secretKey = generateKey(password, mSalt);

cipher.init(Cipher.ENCRYPT_MODE, secretKey);

mIV = cipher.getIV();

encrypted = cipher.doFinal(plain);

} catch (NoSuchAlgorithmException e) {

} catch (NoSuchPaddingException e) {

} catch (InvalidKeyException e) {

} catch (IllegalBlockSizeException e) {

} catch (BadPaddingException e) {

} finally {

}

return encrypted;

}

public final byte[] decrypt(final byte[] encrypted, final char[] password) {

byte[] plain = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption technologies (specifically,

// technologies that meet the relevant criteria),

// including algorithms, block cipher modes, and padding modes.

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

// *** POINT 3 *** When generating a key from a password, use Salt.

SecretKey secretKey = generateKey(password, mSalt);

IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);

cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);

(continues on next page)

540



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

plain = cipher.doFinal(encrypted);

} catch (NoSuchAlgorithmException e) {

} catch (NoSuchPaddingException e) {

} catch (InvalidKeyException e) {

} catch (InvalidAlgorithmParameterException e) {

} catch (IllegalBlockSizeException e) {

} catch (BadPaddingException e) {

} finally {

}

return plain;

}

private static final SecretKey generateKey(final char[] password,

final byte[] salt) {

SecretKey secretKey = null;

PBEKeySpec keySpec = null;

try {

// *** POINT 2 *** Use strong encryption technologies (specifically,

// technologies that meet the relevant criteria),

// including algorithms, block cipher modes, and padding modes.

// Fetch an instance of the class that generates the key

// In this example, we use a KeyFactory that uses SHA256

// to generate AES-CBC 128-bit keys.

SecretKeyFactory secretKeyFactory =

SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);

// *** POINT 3 *** When generating a key from a password, use Salt.

// *** POINT 4 *** When generating a key from a password,

// specify an appropriate hash iteration count.

// *** POINT 5 *** Use a key of length sufficient to guarantee

// the strength of encryption.

keySpec = new PBEKeySpec(password,

salt,

KEY_GEN_ITERATION_COUNT,

KEY_LENGTH_BITS);

// Clear password

Arrays.fill(password, '?');

// Generate the key

secretKey = secretKeyFactory.generateSecret(keySpec);

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeySpecException e) {

} finally {

keySpec.clearPassword();

}

return secretKey;

}

}

541



Secure Coding Guide Documentation Release 2025-01-29

5.6.1.2 Encrypting and Decrypting With Public Keys

In some cases, only data encryption will be performed -using a stored public key- on the application side, while
decryption is performed in a separate safe location (such as a server) under a private key. In cases such as this, it is
possible to use public-key encryption.

Points:

1. Explicitly specify the encryption mode and the padding

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms,
block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the strength of encryption.

RsaCryptoAsymmetricKey.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.cryptasymmetrickey;

import java.security.InvalidKeyException;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.interfaces.RSAPublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.PKCS8EncodedKeySpec;

import java.security.spec.X509EncodedKeySpec;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

public final class RsaCryptoAsymmetricKey {

// *** POINT 1 *** Explicitly specify the encryption mode and the padding.

// *** POINT 2 *** Use strong encryption methods (specifically, technologies

// that meet the relevant criteria), including algorithms, block cipher

// modes, and padding modes..

// Parameters passed to getInstance method of the Cipher class: Encryption

// algorithm, block encryption mode, padding rule.

// In this sample, we choose the following parameter values: encryption

// algorithm=RSA, block encryption mode=NONE, padding rule=OAEPPADDING.

(continues on next page)

542



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static final String TRANSFORMATION = "RSA/NONE/OAEPPADDING";

// encryption algorithm

private static final String KEY_ALGORITHM = "RSA";

// *** POINT 3 *** Use a key of length sufficient to guarantee the strength of

// encryption.

// Check the length of the key

private static final int MIN_KEY_LENGTH = 2000;

RsaCryptoAsymmetricKey() {

}

public final byte[] encrypt(final byte[] plain, final byte[] keyData) {

byte[] encrypted = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes..

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

PublicKey publicKey = generatePubKey(keyData);

if (publicKey != null) {

cipher.init(Cipher.ENCRYPT_MODE, publicKey);

encrypted = cipher.doFinal(plain);

}

} catch (NoSuchAlgorithmException e) {

} catch (NoSuchPaddingException e) {

} catch (InvalidKeyException e) {

} catch (IllegalBlockSizeException e) {

} catch (BadPaddingException e) {

} finally {

}

return encrypted;

}

public final byte[] decrypt(final byte[] encrypted, final byte[] keyData) {

// In general, decryption procedures should be implemented on the server

// side; however, in this sample code we have implemented decryption

// processing within the application to ensure confirmation of proper

// execution.

// When using this sample code in real-world applications, be careful

// not to retain any private keys within the application.

byte[] plain = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes..

(continues on next page)

543



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

PrivateKey privateKey = generatePriKey(keyData);

cipher.init(Cipher.DECRYPT_MODE, privateKey);

plain = cipher.doFinal(encrypted);

} catch (NoSuchAlgorithmException e) {

} catch (NoSuchPaddingException e) {

} catch (InvalidKeyException e) {

} catch (IllegalBlockSizeException e) {

} catch (BadPaddingException e) {

} finally {

}

return plain;

}

private static final PublicKey generatePubKey(final byte[] keyData) {

PublicKey publicKey = null;

KeyFactory keyFactory = null;

try {

keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));

} catch (IllegalArgumentException e) {

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeySpecException e) {

} finally {

}

// *** POINT 3 *** Use a key of length sufficient to guarantee

// the strength of encryption.

// Check the length of the key

if (publicKey instanceof RSAPublicKey) {

int len = ((RSAPublicKey) publicKey).getModulus().bitLength();

if (len < MIN_KEY_LENGTH) {

publicKey = null;

}

}

return publicKey;

}

private static final PrivateKey generatePriKey(final byte[] keyData) {

PrivateKey privateKey = null;

KeyFactory keyFactory = null;

try {

keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

privateKey =

keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));

} catch (IllegalArgumentException e) {

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeySpecException e) {

} finally {

}

(continues on next page)

544



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

return privateKey;

}

}

5.6.1.3 Encrypting and Decrypting Using Pre Shared Keys

Pre shared keys may be used when working with large data sets or to protect the confidentiality of an application’s or
a user’s assets.

Points:

1. Explicitly specify the encryption mode and the padding

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms,
block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the strength of encryption.

AesCryptoPreSharedKey.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.cryptsymmetricpresharedkey;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public final class AesCryptoPreSharedKey {

// *** POINT 1 *** Explicitly specify the encryption mode and the padding.

// *** POINT 2 *** Use strong encryption methods (specifically, technologies

// that meet the relevant criteria), including algorithms, block cipher

// modes, and padding modes.

// Parameters passed to getInstance method of the Cipher class: Encryption

// algorithm, block encryption mode, padding rule.

(continues on next page)

545



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// In this sample, we choose the following parameter values: encryption

// algorithm=AES, block encryption mode=CBC, padding rule=PKCS7Padding

private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";

// Encryption algorithm

private static final String KEY_ALGORITHM = "AES";

// Length of IV in bytes

public static final int IV_LENGTH_BYTES = 16;

// *** POINT 3 *** Use a key of length sufficient to guarantee the strength of

// encryption

// Check the length of the key

private static final int MIN_KEY_LENGTH_BYTES = 16;

private byte[] mIV = null;

public byte[] getIV() {

return mIV;

}

AesCryptoPreSharedKey(final byte[] iv) {

mIV = iv;

}

AesCryptoPreSharedKey() {

}

public final byte[] encrypt(final byte[] keyData, final byte[] plain) {

byte[] encrypted = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

SecretKey secretKey = generateKey(keyData);

if (secretKey != null) {

cipher.init(Cipher.ENCRYPT_MODE, secretKey);

mIV = cipher.getIV();

encrypted = cipher.doFinal(plain);

}

} catch (NoSuchAlgorithmException e) {

} catch (NoSuchPaddingException e) {

} catch (InvalidKeyException e) {

} catch (IllegalBlockSizeException e) {

} catch (BadPaddingException e) {

} finally {

}

return encrypted;

}

(continues on next page)

546



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

public final byte[] decrypt(final byte[] keyData, final byte[] encrypted) {

byte[] plain = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

SecretKey secretKey = generateKey(keyData);

if (secretKey != null) {

IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);

cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);

plain = cipher.doFinal(encrypted);

}

} catch (NoSuchAlgorithmException e) {

} catch (NoSuchPaddingException e) {

} catch (InvalidKeyException e) {

} catch (InvalidAlgorithmParameterException e) {

} catch (IllegalBlockSizeException e) {

} catch (BadPaddingException e) {

} finally {

}

return plain;

}

private static final SecretKey generateKey(final byte[] keyData) {

SecretKey secretKey = null;

try {

// *** POINT 3 *** Use a key of length sufficient to guarantee the

// strength of encryption

if (keyData.length >= MIN_KEY_LENGTH_BYTES) {

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);

}

} catch (IllegalArgumentException e) {

} finally {

}

return secretKey;

}

}

547



Secure Coding Guide Documentation Release 2025-01-29

5.6.1.4 Using Password-based Keys to Detect Data Falsification

You may use password-based (shared-key) encryption to verify the integrity of a user’s data.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms,
block cipher modes, and padding modes.

3. When generating a key from a password, use Salt.

4. When generating a key from a password, specify an appropriate hash iteration count.

5. Use a key of length sufficient to guarantee the MAC strength.

HmacPBEKey.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.signsymmetricpasswordbasedkey;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.security.spec.InvalidKeySpecException;

import java.util.Arrays;

import javax.crypto.Mac;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.PBEKeySpec;

public final class HmacPBEKey {

// *** POINT 1 *** Explicitly specify the encryption mode and the padding.

// *** POINT 2 *** Use strong encryption methods (specifically, technologies

// that meet the relevant criteria),

// including algorithms, block cipher modes, and padding modes.

// Parameters passed to the getInstance method of the Mac class:

// Authentication mode

private static final String TRANSFORMATION = "PBEWITHHMACSHA1";

// A string used to fetch an instance of the class that generates the key

private static final String KEY_GENERATOR_MODE = "PBEWITHHMACSHA1";

(continues on next page)

548



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// *** POINT 3 *** When generating a key from a password, use Salt.

// Salt length in bytes

public static final int SALT_LENGTH_BYTES = 20;

// *** POINT 4 *** When generating a key from a password, specify an

// appropriate hash iteration count.

// Set the number of mixing repetitions used when generating keys via PBE

private static final int KEY_GEN_ITERATION_COUNT = 1024;

// *** POINT 5 *** Use a key of length sufficient to guarantee the MAC

// strength.

// Key length in bits

private static final int KEY_LENGTH_BITS = 160;

private byte[] mSalt = null;

public byte[] getSalt() {

return mSalt;

}

HmacPBEKey() {

initSalt();

}

HmacPBEKey(final byte[] salt) {

mSalt = salt;

}

private void initSalt() {

mSalt = new byte[SALT_LENGTH_BYTES];

SecureRandom sr = new SecureRandom();

sr.nextBytes(mSalt);

}

public final byte[] sign(final byte[] plain, final char[] password) {

return calculate(plain, password);

}

private final byte[] calculate(final byte[] plain, final char[] password) {

byte[] hmac = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

Mac mac = Mac.getInstance(TRANSFORMATION);

// *** POINT 3 *** When generating a key from a password, use Salt.

SecretKey secretKey = generateKey(password, mSalt);

mac.init(secretKey);

hmac = mac.doFinal(plain);

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeyException e) {

(continues on next page)

549



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

} finally {

}

return hmac;

}

public final boolean verify(final byte[] hmac,

final byte[] plain, final char[] password) {

byte[] hmacForPlain = calculate(plain, password);

if (Arrays.equals(hmac, hmacForPlain)) {

return true;

}

return false;

}

private static final SecretKey generateKey(final char[] password,

final byte[] salt) {

SecretKey secretKey = null;

PBEKeySpec keySpec = null;

try {

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

// Fetch an instance of the class that generates the key

// In this example, we use a KeyFactory that uses SHA1 to

// generate AES-CBC 128-bit keys.

SecretKeyFactory secretKeyFactory =

SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);

// *** POINT 3 *** When generating a key from a password, use Salt.

// *** POINT 4 *** When generating a key from a password, specify an

// appropriate hash iteration count.

// *** POINT 5 *** Use a key of length sufficient to guarantee the MAC

// strength.

keySpec = new PBEKeySpec(password, salt,

KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);

// Clear password

Arrays.fill(password, '?');

// Generate the key

secretKey = secretKeyFactory.generateSecret(keySpec);

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeySpecException e) {

} finally {

keySpec.clearPassword();

}

return secretKey;

}

}

550



Secure Coding Guide Documentation Release 2025-01-29

5.6.1.5 Using Public Keys to Detect Data Falsification

When working with data whose signature is determined using private keys stored in distinct, secure locations (such as
servers), you may utilize public-key encryption for applications involving the storage of public keys on the application
side solely for the purpose of authenticating data signatures.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms,
block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the signature strength.

RsaSignAsymmetricKey.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.signasymmetrickey;

import java.security.InvalidKeyException;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.Signature;

import java.security.SignatureException;

import java.security.interfaces.RSAPublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.PKCS8EncodedKeySpec;

import java.security.spec.X509EncodedKeySpec;

public final class RsaSignAsymmetricKey {

// *** POINT 1 *** Explicitly specify the encryption mode and the padding.

// *** POINT 2 *** Use strong encryption methods (specifically, technologies

// that meet the relevant criteria), including algorithms, block cipher

// modes, and padding modes.

// Parameters passed to the getInstance method of the Cipher class:

// Encryption algorithm, block encryption mode, padding rule.

// In this sample, we choose the following parameter values: encryption

// algorithm=RSA, block encryption mode=NONE, padding rule=OAEPPADDING.

private static final String TRANSFORMATION = "SHA256withRSA";

// encryption algorithm

(continues on next page)

551



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

private static final String KEY_ALGORITHM = "RSA";

// *** POINT 3 *** Use a key of length sufficient to guarantee the signature

// strength.

// Check the length of the key

private static final int MIN_KEY_LENGTH = 2000;

RsaSignAsymmetricKey() {

}

public final byte[] sign(final byte[] plain, final byte[] keyData) {

// In general, signature procedures should be implemented on the server

// side; however, in this sample code we have implemented signature

// processing within the application to ensure confirmation of proper

// execution.

// When using this sample code in real-world applications, be careful

// not to retain any private keys within the application.

byte[] sign = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

Signature signature = Signature.getInstance(TRANSFORMATION);

PrivateKey privateKey = generatePriKey(keyData);

signature.initSign(privateKey);

signature.update(plain);

sign = signature.sign();

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeyException e) {

} catch (SignatureException e) {

} finally {

}

return sign;

}

public final boolean verify(final byte[] sign,

final byte[] plain, final byte[] keyData) {

boolean ret = false;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

Signature signature = Signature.getInstance(TRANSFORMATION);

PublicKey publicKey = generatePubKey(keyData);

(continues on next page)

552



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

signature.initVerify(publicKey);

signature.update(plain);

ret = signature.verify(sign);

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeyException e) {

} catch (SignatureException e) {

} finally {

}

return ret;

}

private static final PublicKey generatePubKey(final byte[] keyData) {

PublicKey publicKey = null;

KeyFactory keyFactory = null;

try {

keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));

→˓

} catch (IllegalArgumentException e) {

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeySpecException e) {

} finally {

}

// *** POINT 3 *** Use a key of length sufficient to guarantee the

// signature strength.

// Check the length of the key

if (publicKey instanceof RSAPublicKey) {

int len = ((RSAPublicKey) publicKey).getModulus().bitLength();

if (len < MIN_KEY_LENGTH) {

publicKey = null;

}

}

return publicKey;

}

private static final PrivateKey generatePriKey(final byte[] keyData) {

PrivateKey privateKey = null;

KeyFactory keyFactory = null;

try {

keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);

privateKey = keyFactory

.generatePrivate(new PKCS8EncodedKeySpec(keyData));

} catch (IllegalArgumentException e) {

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeySpecException e) {

} finally {

}

return privateKey;

(continues on next page)

553



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

}

5.6.1.6 Using Pre Shared Keys to Detect Data Falsification

You may use pre-shared keys to verify the integrity of application assets or user assets.

Points:

1. Explicitly specify the encryption mode and the padding.

2. Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms,
block cipher modes, and padding modes.

3. Use a key of length sufficient to guarantee the MAC strength.

HmacPreSharedKey.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.signsymmetricpresharedkey;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import javax.crypto.Mac;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

public final class HmacPreSharedKey {

// *** POINT 1 *** Explicitly specify the encryption mode and the padding.

// *** POINT 2 *** Use strong encryption methods (specifically, technologies

// that meet the relevant criteria), including algorithms, block cipher

// modes, and padding modes.

// Parameters passed to the getInstance method of the Mac class:

// Authentication mode

private static final String TRANSFORMATION = "HmacSHA256";

// Encryption algorithm

private static final String KEY_ALGORITHM = "HmacSHA256";

// *** POINT 3 *** Use a key of length sufficient to guarantee the MAC

(continues on next page)

554



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// strength.

// Check the length of the key

private static final int MIN_KEY_LENGTH_BYTES = 16;

HmacPreSharedKey() {

}

public final byte[] sign(final byte[] plain, final byte[] keyData) {

return calculate(plain, keyData);

}

public final byte[] calculate(final byte[] plain, final byte[] keyData) {

byte[] hmac = null;

try {

// *** POINT 1 *** Explicitly specify the encryption mode and the

// padding.

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

// algorithms, block cipher modes, and padding modes.

Mac mac = Mac.getInstance(TRANSFORMATION);

SecretKey secretKey = generateKey(keyData);

if (secretKey != null) {

mac.init(secretKey);

hmac = mac.doFinal(plain);

}

} catch (NoSuchAlgorithmException e) {

} catch (InvalidKeyException e) {

} finally {

}

return hmac;

}

public final boolean verify(final byte[] hmac,

final byte[] plain, final byte[] keyData) {

byte[] hmacForPlain = calculate(plain, keyData);

if (hmacForPlain != null && Arrays.equals(hmac, hmacForPlain)) {

return true;

}

return false;

}

private static final SecretKey generateKey(final byte[] keyData) {

SecretKey secretKey = null;

try {

// *** POINT 3 *** Use a key of length sufficient to guarantee the MAC

// strength.

if (keyData.length >= MIN_KEY_LENGTH_BYTES) {

// *** POINT 2 *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria), including

(continues on next page)

555



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// algorithms, block cipher modes, and padding modes.

secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);

}

} catch (IllegalArgumentException e) {

} finally {

}

return secretKey;

}

}

5.6.2 Rule Book

When using encryption technology, it is important to obey the following rules.

1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the Padding (Required)

2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)

3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)

4. When Generating Keys from Passwords, Use Salt (Required)

5. When Generating Key from Password, Specify Appropriate Hash Iteration Count (Required)

6. Take Steps to Increase the Strengths of Passwords (Recommended)

5.6.2.1 When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and
the Padding (Required)

When using cryptographic technologies such as encryption and data verification, it is important that the encryption
mode and the padding be explicitly specified. When using encryption in Android application development, you will
primarily use the Cipher class within java.crypto. To use the Cipher class, you will first create an instance of Cipher
class object by specifying the type of encryption to use. This specification is called a Transformation, and there are
two formats in which Transformations may be specified:

• “algorithm/mode/padding”

• “algorithm”

In the latter case, the encryption mode and the padding will be implicitly set to the appropriate default values for the
encryption service provider that Android may access. These default values are chosen to prioritize convenience and
compatibility and in some cases may not be particularly secure choices. For this reason, to ensure proper security
protections it is mandatory to use the former of the two formats, in which the encryption mode and padding are
explicitly specified.

5.6.2.2 Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Re-
quired)

When using cryptographic technologies it is important to choose strong algorithms which meet certain criteria. In
addition, in cases where an algorithm allows multiple key lengths, it is important to consider the application’s full
product lifetime and to choose keys of length sufficient to guarantee security. Moreover, for some encryption modes
and padding modes there exist known strategies of attack; it is important to make choices that are robust against such
threats.

Indeed, choosing weak encryption methods can have disastrous consequences; for example, files which were suppos-
edly encrypted to prevent eavesdropping by a third party may in fact be only ineffectually protected and may allow

556



Secure Coding Guide Documentation Release 2025-01-29

third-party eavesdropping. Because the continual progress of IT leads to continual improvements in encryption-
analysis technologies, it is crucial to consider and select algorithms that can guarantee security throughout the entire
period during which you expect an application to remain in operation.

Algorithm Security Lifetime, that are expected to be secure for the entire security life of the protected data and
Standards for actual encryption technologies differ from country to country, as detailed in the tables below.

Table 5.6.1: NIST, FIPS(USA)353637

Algorithm
Security
Lifetimes

Symmetric
Key

algorithms

Asymmetric
Key algo-
rithms(e.g.,
RSA, DSA,

DH)

Elliptic-curve
cryptogra-
phy(e.g.,
ECDSA)

Digital
Signatures

and hash-only
applications

HMAC,Key
Derivation
Functions,
Random
Number

Generation
Legacy(max.
of 80 bits of
strength)

80 1024 160 160 160

Through
2030(min. of
112 bits of
strength)

112 2048 224 224 160

Beyond
2030(min. of
128 bits of
strength)

128 3072 256 256 160

Unit bit

Table 5.6.2: ECRYPT II (EU)38

Algorithm
Security Lifetimes

Symmetric Key
algorithms

Asymmetric Key
algorithms

Elliptic-curve
cryptography

HASH

less or equal to 4
years protection

80 1248 160 160

10 years
protection

96 1776 192 192

20 years
protection

112 2432 224 224

30 years
protection

128 3248 256 256

Good protection
against quantum
computers unless
Shor’s algorithm

applies.

256 15424 512 512

Unit bit
35 NIST Special Publication 800-57 Part1 Revision4(1/28/2016) “Recommendation for Key Management Part1:General” “5.6 Guidance for

Cryptographic Algorithm and Key Size Selection” (https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf)
36 NIST Special Publication 800-131A Revision2(3/21/2019) “Transitioning the Use of Cryptographic Algorithms and Key Lengths” “1.1

Background and Purpose” “1.2.1 Security Strengths” (https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf)
37 Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program(Last Modified Date:05/10/2017) “7.5 Strength

of Key Establishment Methods” (https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/
fips1402ig.pdf)

38 “ECRYPT II Yearly Report on Algorithms and Keysizes(2011-2012)” (European Network of Excellence for Cryptology II, Revision 1.0,
30. Sept 2012 (http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf)

557

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf


Secure Coding Guide Documentation Release 2025-01-29

Table 5.6.3: CRYPTREC(Japan) CRYPTREC Ciphers List39

Technology family Name
Public-key cryptography Signature DSA, ECDSA, RSA=PSS, RSASSA=PKCS1=V1_5

Confidentiality RSA-OAEP
Key sharing DH, ECDH

Shared-key cryptography 64 bit block encryption 3-key Triple DES
128 bit block encryption AES, Camellia
Stream encryption KCipher-2

Hash function SHA-256, SHA-384, SHA-512
Encryption usage mode Cipher mode CBC, CFB, CTR, OFB

Authenticated cipher modes CCM, GCM
Message authentication codes CMAC, HMAC
Entity authentication ISO/IEC 9798-2, ISO/IEC 9798-3

5.6.2.3 When Using Password-based Encryption, Do Not Store Passwords on Device (Required)

In password-based encryption, when generating an encryption key based on a password input by a user, do not store
the password within the device. The advantage of password-based encryption is that it eliminates the need to manage
encryption keys; storing the password on the device eliminates this advantage. Needless to say, storing passwords
on a device invites the risk of eavesdropping by other applications, and thus storing passwords on devices is also
unacceptable for security reasons.

5.6.2.4 When Generating Keys from Passwords, Use Salt (Required)

In password-based encryption, when generating an encryption key based on a password input by a user, always use
Salt. In addition, if you are providing features to different users within the same device, use a different Salt for each
user. The reason for this is that, if you generate encryption keys using only a simple hash function without using Salt,
the passwords may be easily recovered using a technique known as a “rainbow table.” When Salt is applied, keys
generated from the same password will be distinct (different hash values), preventing the use of a rainbow table to
search for keys.

(Sample) When generating keys from passwords, use salt

public final byte[] encrypt(final byte[] plain, final char[] password) {

byte[] encrypted = null;

try {

// *** POINT *** Explicitly specify the encryption mode

// and the padding.

// *** POINT *** Use strong encryption methods (specifically,

// technologies that meet the relevant criteria),

// including algorithms, block cipher modes, and padding modes.

Cipher cipher = Cipher.getInstance(TRANSFORMATION);

// *** POINT *** When generating keys from passwords, use Salt.

SecretKey secretKey = generateKey(password, mSalt);

39 https://www.cryptrec.go.jp/list.html

558

https://www.cryptrec.go.jp/list.html


Secure Coding Guide Documentation Release 2025-01-29

5.6.2.5 When Generating Key from Password, Specify Appropriate Hash Iteration Count (Re-
quired)

In password-based encryption, when generating an encryption key based on a password input by a user, youwill choose
a number of times for the hashing procedure to be repeated during the process of key generation (“stretching”); it
is important to specify this number large enough to ensure security. In general, the iteration count equal to 1,000
or greater is considered sufficient. If you are using the key to protect even more valuable assets, specify a count
equal to 1,000,000 or greater. Because the processing time required for a single computation of the hash function
is minuscule, it may be easy for attackers to launch brute-force attacks. Thus, by using the stretching method - in
which hash processing is repeated many times - we can purposely ensure that the process consumes significant time
and thus that brute-force attacks are more costly. Note that the number of stretching repetitions will also affect your
application’s processing speed, so take care in choosing an appropriate value.

(Sample) When generating key from password, Set hash iteration counts

private static final SecretKey generateKey(final char[] password,

final byte[] salt) {

SecretKey secretKey = null;

PBEKeySpec keySpec = null;

(Omit)

// *** POINT *** When generating a key from password, use Salt.

// *** POINT *** When generating a key from password, specify

// an appropriate hash iteration count.

// ** POINT *** Use a key of length sufficient to guarantee

// the strength of encryption.

keySpec = new PBEKeySpec(password,

salt,

KEY_GEN_ITERATION_COUNT,

KEY_LENGTH_BITS);

5.6.2.6 Take Steps to Increase the Strengths of Passwords (Recommended)

In password-based encryption, when generating an encryption key based on a password input by a user, the strength
of the generated key is strongly affected by the strength of the user’s password, and thus it is desirable to take steps to
strengthen the passwords received from users. For example, you might require that passwords be at least 8 characters
long and contain multiple types of characters—perhaps at least one letter, one numeral, and one symbol.

5.6.3 Advanced Topics

5.6.3.1 Choosing encryption methods

In the above "sample codes", we showed implementation examples involving three types of cryptographic methods
each for encryption and decryption and for detecting data falsification. Youmay use "Fig. 5.6.1 Selection flowchart for
sample code to protect data from eavesdropping", "Fig. 5.6.2 Selection flowchart for sample code to detect falsifications"
to make a coarse-grained choice of which cryptographic method to use based on your application. On the other hand,
more fine-tuned choices of cryptographic methods require more detailed comparisons of the features of various
methods. In what follows we consider some of these comparisons.

Comparison of cryptographic methods for encryption and decryption

Public-key cryptography has high processing cost and thus is not well suited for large-scale data processing. However,
because the keys used for encryption and for decryption are different, it is relatively easy tomanage keys in cases where
you handle only the public key on the application side (i.e. you only perform encryption) and perform decryption
in a separate (secure) location. Shared-key cryptography is an all-purpose encryption scheme with few limitations,
but in this case the same key is used for encryption and decryption, and thus it is necessary to store the key securely

559



Secure Coding Guide Documentation Release 2025-01-29

within the application, making key management difficult. Password-based cryptography (shared-key cryptography
based on a password) generates keys from user-specified passwords, obviating the need to store key-related secrets
within devices. This method is used for applications protecting only user assets but not application assets. Because
the strength of the encryption depends on the strength of the password, it is necessary to choose passwords whose
complexity grows in proportion to the value of assets to be protected. Please refer to "5.6.2.6. Take Steps to Increase
the Strengths of Passwords (Recommended)".

Table 5.6.4: Comparison of cryptographic methods for encryption and de-
cryption

Public key Shared key Password-based
Processing of large-scale
data

NO (processing cost too
high)

OK OK

Protecting application (or
service) assets

OK OK NO (allows eavesdrop-
ping by users)

Protecting user assets OK OK OK
Strength of encryption Depends on key length Depends on key length Depends on strength of

password, on Salt, and on
the number of hash repe-
titions

Key storage Easy (only public keys) Difficult Easy
Processing carried out by
application

Encryption (decryption is
done on servers or else-
where)

Encryption and decryp-
tion

Encryption and decryp-
tion

Comparison of cryptographic methods for detecting data falsification

The comparison here is similar to that discussed above for encryption and decryption, with the exception that that
table item corresponding to data size is no longer relevant.

Table 5.6.5: Comparison of cryptographic methods for detecting data fal-
sification

Public key Shared key Password-based
Protecting application (or
service) assets

OK OK NO (allows falsification
by users)

Protecting user assets OK OK OK
Strength of encryption Depends on key length Depends on key length Depends on strength of

password, on Salt, and on
the number of hash repe-
titions

Key storage Easy (only public keys) Difficult(Refer to
“5.6.3.4. Protecting
Key”)

Easy

Processing carried out by
application

Encryption (decryption is
done on servers or else-
where)

MAC computation, MAC
verification

MAC computation, MAC
verification

MAC: Message authentication code

Note that these guidelines are primarily concerned with the protection of assets deemed low-level or medium-level
assets according to the classification discussed in Section "3.1.3. Asset Classification and Protective Countermeasures".
Because the use of encryption involves the consideration of a greater number of issues—such as the problem of key
storage—than other preventative measures (such as access controls), encryption should only be considered for cases
in which assets cannot be adequately protected within the Android OS security mode.

560



Secure Coding Guide Documentation Release 2025-01-29

5.6.3.2 Generation of random numbers

When using cryptographic technologies, it is extremely important to choose strong encryption algorithms and en-
cryption modes and sufficiently long keys in order to ensure the security of the data handled by applications and
services. However, even if all of these choices are made appropriately, the strength of the security guaranteed by
the algorithms in use plummets immediately to zero when the keys that form the linchpin of the security protocol
are leaked or guessed. Even for the initial vector (IV) used for shared-key encryption under AES and similar proto-
cols, or the Salt used for password-based encryption, large biases can make it easy for third parties to launch attacks,
heightening the risk of exposure to data leakage or corruption. To prevent such situations, it is necessary to generate
keys and IVs in such a way as to make it difficult for third parties to guess their values, and random numbers play an
immensely important role in ensuring the realization of this imperative. A device that generates random numbers is
called a random-number generator. Whereas hardware random-number generators (RNGs) may use sensors or other
devices to produce random numbers by measuring natural phenomena that cannot be predicted or reproduced, it
is more common to encounter software-implemented random-number generators, known as pseudorandom-number
generators (PRNGS).

In Android applications, random numbers of sufficient security for use in encryption may be generated via the Se-
cureRandom class. The SecureRandom class can internally havemultiple implementations, which are called providers
and provide the function, and if no provider is explicitly specified, then the default provider will be selected. Crypto
Provider, which provides the SHA1PRNG algorithm that is cryptographically unsafe40, was deprecated in Android
7.0 (API level 24), and it was removed in Android 9.0 (API level 28)414243. If Crypto Provider is specified and
SecureRandom is used, NoSuchProviderException will always occur in devices running Android 9.0 and higher, and
NoSuchProviderException will occur even in devices running Android 7.0 and higher if targetSdkVersion>=24. For
this reason, generally, the use of SecureRandom without specifying the provider is recommended. In what follows
we offer examples to demonstrate the use of SecureRandom.

Note that SecureRandommay exhibit a number of weaknesses depending on the Android version, requiring preventa-
tivemeasures to be put in place in implementations. Please refer to "5.6.3.3.Measures to Protect against Vulnerabilities
in Random-Number Generators".

Using SecureRandom (using the default implementation)

import java.security.SecureRandom;

[...]

SecureRandom random = new SecureRandom();

byte[] randomBuf = new byte [128];

random.nextBytes(randomBuf);

[...]

The pseudorandom-number generators found in programs like SecureRandom typically operate on the basis of a
process like that illustrated in "Fig. 5.6.3 Inner process of pseudorandom number generator". A random number
seed is entered to initialize the internal state; thereafter, the internal state is updated each time a random number is
generated, allowing the generation of a sequence of random numbers.

40 On statistical distance based testing of pseudo random sequences and experiments with PHP and Debian OpenSSL - 8.1 Java SHA1PRNG
API based sequences (https://webpages.uncc.edu/yonwang/papers/lilesorics.pdf)

41 Security “Crypto” provider deprecated in Android N (https://android-developers.googleblog.com/2016/06/
security-crypto-provider-deprecated-in.html)

42 Cryptography Changes in Android P (https://android-developers.googleblog.com/2018/03/cryptography-changes-in-android-p.html)
43 SecureRandom (https://developer.android.com/reference/java/security/SecureRandom)

561

https://webpages.uncc.edu/yonwang/papers/lilesorics.pdf
https://android-developers.googleblog.com/2016/06/security-crypto-provider-deprecated-in.html
https://android-developers.googleblog.com/2016/06/security-crypto-provider-deprecated-in.html
https://android-developers.googleblog.com/2018/03/cryptography-changes-in-android-p.html
https://developer.android.com/reference/java/security/SecureRandom


Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.6.3: Inner process of pseudorandom number generator

Random number seeds

The seed plays an extremely important role in a pseudorandom number generator (PRNG).

As noted above, PRNGs must be initialized by specifying a seed. Thereafter, the process used to generate random
numbers is a deterministic algorithm, so if you specify the same seed you will get the same sequence of random
numbers. This means that if a third party gains access to (that is, eavesdrops upon) or guesses the seed of a PRNG,
he can produce the same sequence of random numbers, thus destroying the properties of confidentiality and integrity
that the random numbers provide.

For this reason, the seed of a random number generator is itself a highly confidential piece of information—and
one which must be chosen in such a way as to be impossible to predict or guess. For example, time information or
device-specific data (such as a MAC address, IMEI, or Android ID) should not be used to construct RNG seeds. On
many Android devices, /dev/urandom or /dev/random is available, and the default implementation of SecureRandom
provided byAndroid uses these device files to determine seeds for random number generators. As far as confidentiality
is concerned, as long as the RNG seed exists only in memory, there is little risk of discovery by third parties with
the exception of malware tools that acquire root privileges. If you need to implement security measures that remain
effective even on rooted devices, consult an expert in secure design and implementation.

The internal state of a pseudorandom number generator

The internal state of a pseudorandom number generator is initialized by the seed, then updated each time a random
number is generated. Just as for the case of PRNGs initialized by the same seed, two PRNGs with the same internal
state will subsequently produce precisely the same sequence of random numbers. Consequently, it is also important to
protect the internal state against eavesdropping by third parties. However, because the internal state exists in memory,
there is little risk of discovery by third parties except in cases involving malware tools that acquire root access. If you
need to implement security measures that remain effective even on rooted devices, consult an expert in secure design
and implementation.

5.6.3.3 Measures to Protect against Vulnerabilities in Random-Number Generators

The "Crypto" Provider implementation of SecureRandom, found in Android versions 4.3.x and earlier, suffered from
the defect of insufficient entropy (randomness) of the internal state. In particular, in Android versions 4.1.x and earlier,
the "Crypto" Provider was the only available implementation of SecureRandom, and thus most applications that use
SecureRandom either directly or indirectly were affected by this vulnerability. Similarly, the "AndroidOpenSSL"
Provider offered as the default implementation of SecureRandom inAndroid versions 4.2 and later exhibited the defect
that the majority of the data items used by OpenSSL as "random-number seeds" were shared between applications
(Android versions 4.2.x—4.3.x), creating a vulnerability in which any one application can easily predict the random
numbers generated by other applications. The table below details the impact of the vulnerabilities present in various
versions of Android OS.

562



Secure Coding Guide Documentation Release 2025-01-29

Table 5.6.6: Android OS version and feature influenced by each vulnera-
bilities

Insufficient entropy in the “Crypto”
Provider implementation of Se-
cureRandom

Can guess the random number seeds
used by OpenSSL in other applications

Android 4.1.x and
before • Default implementation of Se-

cureRandom
• Explicit use of Crypto Provider
• Encryption functionality provided
by the Cipher class

• HTTPS communication function-
ality, etc.

• No impact

Android 4.2 - 4.3.x
• Use a clearly identified Crypto
Provider

• Default implementation of Se-
cureRandom

• Explicit use of AndroidOpenSSL
Provider

• Direct use of random-number gen-
eration functionality provided by
OpenSSL

• Encryption functionality provided by
the Cipher class

• HTTPS communication functional-
ity, etc.

Android 4.4 - 6.0
• No impact • No impact

Android 7.0 and
later • Security “Crypto” provider depre-

cated
• No impact

Since August 2013, patches that remove these Android OS vulnerabilities have been distributed by Google to its
partners (device makers, etc.)

However, these vulnerabilities associated with SecureRandom affected a wide range of applications—including en-
cryption functionality and HTTPS communication functionality—and presumably many devices remain unpatched.
For this reason, when designing applications targeted at Android 4.3.x and earlier, we recommend that you incorporate
the countermeasures (implementations) discussed in the following site.

[https://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html{]}(https://
android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html)

5.6.3.4 Protecting Key

When using encryption techniques to ensure the security (confidentiality and integrity) of sensitive data, even the most
robust encryption algorithm and key lengths will not protect data from third-party attacks if the data content of the
keys themselves are readily available. For this reason, the proper handling of keys is among the most important items
to consider when using encryption. Of course, depending on the level of the assets you are attempting to protect, the
proper handling of keys may require extremely sophisticated design and implementation techniques which exceed the
scope of these guidelines. Here we can only offer some basic ideas regarding the secure handling of keys for various
applications and key storage locations; our discussion does not extend to specific implementation methods, and as
necessary we recommend that you consult an expert in secure design and implementation for Android.

To begin, "Fig. 5.6.4 Places of encrypt keys and strategies for protecting them" illustrates the various places in which
keys used for encryption and related purposes in Android smartphones and tablets may exist, and outlines strategies

563

https://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html{]}(https://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html
https://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html{]}(https://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html


Secure Coding Guide Documentation Release 2025-01-29

for protecting them.

Fig. 5.6.4: Places of encrypt keys and strategies for protecting them

The table below summarizes the asset classes of the assets protected by keys, as well as the protection policies appro-
priate for various asset owners. For more information on asset classes, please refer to "3.1.3. Asset Classification and
Protective Countermeasures".

Table 5.6.7: Asset classification and protective countermeasures-1

Asset owner Device User Application / Service Provider
Asset level High Medium / Low High Medium / Low
Key storage loca-
tion

Protection policy

User’s memory Improve password strength Disallow the use of user passwords
Application direc-
tory (non-public
storage)

Encryption or ob-
fuscation of key
data

Forbid read/write
operations from
outside the applica-
tion

Encryption or ob-
fuscation of key
data

Forbid read/write
operations from
outside the applica-
tion

If keys are stored in public strage such as an APK file or an SD card, it is as follows.

Table 5.6.8: Asset classification and protective countermeasures-2

Key storage location Protection policy
APK file Obfuscation of key data Note:Be aware that most Java obfuscation

tools, such as Proguard, do not obfuscate data (character) strings.
SD card or elsewhere (public storage) Encryption or obfuscation of key data

In what follows, we will augment the discussion of protective measures appropriate for the various places in which
keys may be stored.

Keys stored in a user’s memory

Here we are considering password-based encryption. When keys are generated from passwords, the key storage
location is the user’s memory, so there is no danger of leakage due to malware. However, depending on the strength
of the password, it may be easy to reproduce keys. For this reason, it is necessary to take steps—similar to those taken

564



Secure Coding Guide Documentation Release 2025-01-29

when asking users to specify service login passwords—to ensure the strength of passwords; for example, passwords
may be restricted by the UI, or warning messages may be used. Please refer to "5.5.2.6. Place a summary version
of the application privacy policy in the assets folder (Recommended)". Of course, when passwords are stored in a
user’s memory one must keep in mind the possibility that the password will be forgotten. To ensure that data may be
recovered in the event of a forgotten password, it is necessary to store backup data in a secure location other than the
device (for example, on a server).

Keys stored in application directories

When keys are stored in Private mode in application directories, the key data cannot be read by other applications.
In addition, if the application has disabled backup functionality, users will also be unable to access the data. Thus,
when storing keys used to protect application assets in application directories, you should disable backups.

However, if you also need to protect keys from applications or users with root privileges, youmust encrypt or obfuscate
the keys. For keys used to protect user assets, you may use password-based encryption. For keys used to encrypt
application assets that you wish to keep private from users as well, you must store the key used for key encryption in
an APK file, and the key data must be obfuscated.

Keys stored in APK Files

Because data in APK files may be accessed, in general this is not an appropriate place to store confidential data such
as keys. When storing keys in APK files, you must obfuscate the key data and take steps to ensure that the data may
not be easily read from the APK file.

Keys stored in public storage locations (such as SD cards)

Because public storage can be accessed by all applications, in general it is not an appropriate place to store confidential
data such as passwords. When storing keys in public locations, it is necessary to encrypt or obfuscate the key data
to ensure that the data cannot be easily accessed. See also the protections suggested above under "Keys stored in
application directories" for cases in which keys must also be protected from applications or users with root privileges.

Handling of keys within process memory

When using the cryptographic technologies available in Android, key data that have been encrypted or obfuscated
somewhere other than the application process shown in the figure above must be decrypted (or, for password-based
keys, generated) in advance of the encryption procedure; in this case, key data will reside in process memory in
unencrypted form. On the other hand, the memory of an application process may not generally be read by other
applications, so if the asset class falls within the range covered by these guidelines there is no particular need to
take specific steps to ensure security. In cases where—due to the specific objective in question or to the level of the
assets handled by an application—it is unacceptable for key data to appear in unencrypted form (even though they are
present that way in process memory), it may be necessary to resort to obfuscation or other techniques for key data and
encryption logic. However, these methods are difficult to realize at the Java level; instead, you will use obfuscation
tools at the JNI level. Such measures fall outside the scope of these guidelines; consult an expert in secure design and
implementation.

5.6.3.5 Addressing Vulnerabilities with Security Provider from Google Play Services

Google Play Services (Version 5.0 and later) provides a framework known as Provider Installer that may be used to
address vulnerabilities in Security Provider.

First, Security Provider provides implementations of various encryption-related algorithms based on Java Cryptog-
raphy Architecture (JCA). These Security Provider algorithms may be used via classes such as Cipher, Signature,
and Mac to make use of encryption technology in Android apps. In general, rapid response is required whenever
vulnerabilities are discovered in encryption-technology-related implementations. Indeed, the exploitation of such
vulnerabilities for malicious purposes could result in major damage. Because encryption technologies are also rele-
vant for Security Provider, it is desirable that revisions designed to address vulnerabilities be reflected as quickly as
possible.

The most common method of reflecting Security Provider revisions is to use device updates. The process of reflecting
revisions via device updates begins with the device manufacturer preparing an update, after which users apply this
update to their devices. Thus, the question of whether or not an app has access to an up-to-date version of Security
Provider—including the most recent revisions—depends in practice on compliance from both manufacturers and

565



Secure Coding Guide Documentation Release 2025-01-29

users. In contrast, using Provider Installer from Google Play Services ensures that apps have access to automatically-
updated versions of Security Provider.

With Provider Installer from Google Play Services, calling Provider Installer from an app allows access to Security
Provider as provided by Google Play Services. Google Play Services is automatically updated via the Google Play
Store, and thus the Security Provider provided by Provider Installer will be automatically updated to the latest version,
with no dependence on compliance from manufacturers or users.

Sample code that calls Provider Installer is shown below.

Call Provider Installer

import com.google.android.gms.common.GooglePlayServicesUtil;

import com.google.android.gms.security.ProviderInstaller;

public class MainActivity extends Activity

implements ProviderInstaller.ProviderInstallListener {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

ProviderInstaller.installIfNeededAsync(this, this);

setContentView(R.layout.activity_main);

}

@Override

public void onProviderInstalled() {

// Called when Security Provider is the latest version,

// or when installation completes.

}

@Override

public void onProviderInstallFailed(int errorCode, Intent recoveryIntent) {

GoogleApiAvailability.getInstance().showErrorNotification(this, errorCode);

}

}

5.6.3.6 Conscrypt Module

TheConscryptmodule is anAPEXfile that is used to correct vulnerabilities that become clear through implementation
of technologies related to cryptography without relying on OTA updates prepared by manufacturers.

Android specific public API for Conscrypt is not included on Android 9. However, a small number of public API
methods are added in android.net.ssl on Android 10, enabling access to the Conscrypt function that is not exposed
by the classes under javax.net.ssl.

The Conscrypt module uses the native library BoringSSL that was forked by Google from OpenSSL, and is applied
to encryption and TLS on many Google products.

Originally, clearly requesting specific providers as shown below was not recommended. And BouncyCastle provider
implementations of encryption algorithms were deleted from Android 1244.

Cipher.getInstance("AES/CBC/PKCS7PADDING", "BC");

// OR

Cipher.getInstance("AES/CBC/PKCS7PADDING", Security.getProvider("BC"));

Applications that are affected by this change include the following.
44 At the time of this writing, it has been confirmed that no warning occurs during building and this can be run without any problems on the

Android 12 emulator. However, there is no mistake that this is not recommended.

566



Secure Coding Guide Documentation Release 2025-01-29

1. Application that uses invalid key sizes with KeyGenerator

2. Application that has initialized the Galois/Counter Mode (GCM) encryption using a size other than 12 bytes
for the initial vector byte size

Concerning 1, the key sizes supported by Conscrypt are 128 bits, 192 bits, and 256 bits. If a key size other than
these is specified, an exception occurs while the KeyGenerator.init() method is running. In this case, it is necessary
to correct the key size to an appropriate supported size.

keygen.init(512, random); // // Exception occurs. Caused by: java.security.

→˓InvalidParameterException: Key size must be either 128, 192, or 256 bits

Concerning 2, if using a GCM encryption, the byte size for the initial vector must␣

→˓be 12 bytes. If other size, for example 16 bytes, is specified, an exception␣

→˓occurs when running the Cipher.init() method. In this case, it is necessary to␣

→˓correct the initial vector byte size to an appropriate supported size.

SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

byte[] INITIALV = new byte[16]; // // Specify initial vector byte size to 16

random.nextBytes(INITIALV);

~

byte[] iv = INITIALV;

SecretKeySpec skey = new SecretKeySpec(key, CIPHER);

IvParameterSpec ivp = new IvParameterSpec(iv);

Cipher cipher = Cipher.getInstance("AES_256/GCM/NOPADDING"); // // GCM encryption␣

→˓algorithm

cipher.init(Cipher.ENCRYPT_MODE, skey, ivp); // Exception occurs. java.security.

→˓InvalidAlgorithmParameterException: Expected IV length of 12 but was 16

5.6.3.7 Countermeasures against backup data leaks

If an attacker gains access to backup files, unencrypted data backed up by the app may be retrieved. To prevent
backups when unnecessary, add this to your manifest:

<application android:name="com.example.foo" android:allowBackup="false">

...

</application>

In Android 12 and later, setting allowBackup to false restricts cloud and ADB backups but allows device-to-device
migration.

If backup is required as a specification of the application, specify the type of data to be backed up as follows (Android
12 or later).

<application android:name="com.example.foo"

android:dataExtractionRules="backup_rules.xml">

--

</application>

<application android:name="com.example.foo"

android:fullBackupContent="@xml/backup_rules">

--

</application>

For more information, see the Android Developer Guide:45

45 https://developer.android.com/privacy-and-security/risks/backup-leaks?hl=ja

567

https://developer.android.com/privacy-and-security/risks/backup-leaks?hl=ja


Secure Coding Guide Documentation Release 2025-01-29

5.6.3.8 Hard-coded Cryptographic Secrets

Developers can use cryptography to protect data confidentiality and integrity, but often do not properly leverage key
storage and instead hardcode cryptographic secrets into application code or asset files, which poses serious security
issues.

Hardcoded credentials and cryptographic secrets can be easily obtained using reverse engineering tools, which allows
attackers to access sensitive data and creates significant security risks.

Therefore, when system-level authentication information is required, it is recommended to use the KeyChain API,
and to store app-specific authentication information using the Android Keystore provider. In particular, fromAndroid
16 onwards, StrongBox support is becoming mandatory for devices equipped with Secure Elements, and it is expected
that storing credentials in KeyChain or KeyStore will become a common practice in the future. By utilizing these
features, the risks associated with hardcoding can be effectively reduced. For more information, see the Android
Developer Guide.46

Implementation Procedure

1. Use Android Keystore provider to store app-specific authentication information

Generate and store AES symmetric keys using Android Keystore.

companion object {

private const val ANDROID_KEY_STORE_PROVIDER = "AndroidKeyStore"

private const val ANDROID_KEY_STORE_ALIAS = "AES_KEY_DEMO"

}

@Throws(

KeyStoreException::class,

NoSuchAlgorithmException::class,

NoSuchProviderException::class,

InvalidAlgorithmParameterException::class

)

private fun createAndStoreSecretKey() {

val builder: KeyGenParameterSpec.Builder = KeyGenParameterSpec.Builder(

ANDROID_KEY_STORE_ALIAS,

KeyProperties.PURPOSE_ENCRYPT or KeyProperties.PURPOSE_DECRYPT

)

val keySpec: KeyGenParameterSpec = builder

.setKeySize(256)

.setBlockModes(KeyProperties.BLOCK_MODE_GCM)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)

.setRandomizedEncryptionRequired(true)

.build()

val aesKeyGenerator: KeyGenerator =

KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES, ANDROID_KEY_

→˓STORE_PROVIDER)

aesKeyGenerator.init(keySpec)

aesKeyGenerator.generateKey()

}

@Throws(

KeyStoreException::class,

UnrecoverableEntryException::class,

NoSuchAlgorithmException::class,

CertificateException::class,

IOException::class,

NoSuchPaddingException::class,

(continues on next page)

46 https://developer.android.com/privacy-and-security/risks/hardcoded-cryptographic-secrets

568

https://developer.android.com/privacy-and-security/risks/hardcoded-cryptographic-secrets


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

InvalidKeyException::class,

IllegalBlockSizeException::class,

BadPaddingException::class

)

private fun encryptWithKeyStore(plainText: String): ByteArray? {

// Initialize KeyStore

val keyStore: KeyStore = KeyStore.getInstance(ANDROID_KEY_STORE_PROVIDER)

keyStore.load(null)

// Retrieve the key with alias created before

val keyEntry: KeyStore.SecretKeyEntry =

keyStore.getEntry(ANDROID_KEY_STORE_ALIAS, null) as KeyStore.SecretKeyEntry

val key: SecretKey = keyEntry.secretKey

// Use the secret key at your convenience

val cipher: Cipher = Cipher.getInstance("AES/GCM/NoPadding")

cipher.init(Cipher.ENCRYPT_MODE, key)

return cipher.doFinal(plainText.toByteArray())

}

2. Use the KeyChain API to manage system-level credentials

Use the KeyChain API to manage certificates and private keys shared across the system

private fun selectCertificate() {

KeyChain.choosePrivateKeyAlias(this, object : KeyChainAliasCallback {

override fun alias(alias: String?) {

if (alias != null) {

// Use the alias to retrieve the certificate

try {

val privateKey = KeyChain.getPrivateKey(this@MainActivity,␣

→˓alias)

val certificateChain = KeyChain.

→˓getCertificateChain(this@MainActivity, alias)

println("Selected Certificate Alias: $alias")

// Example usage of the private key and certificate chain

// Typically, you would use these for SSL/TLS connections or␣

→˓signing operations

} catch (e: KeyChainException) {

e.printStackTrace()

} catch (e: InterruptedException) {

e.printStackTrace()

}

}

}

}, null, null, null, -1, null)

}

3. Obtaining and encrypting credentials, selecting a certificate

Obtain an API key from a remote server, encrypt it, and then select a system-level certificate to use.

try {

createAndStoreSecretKey()

val apiKey = fetchApiKeyFromServer()

val encryptedData = encryptWithKeyStore(apiKey)

// Do something with the encrypted data (e.g., log output)

println("Encrypted API Key: ${encryptedData?.joinToString(", ")}")

(continues on next page)

569



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// Use KeyChain to select and use a system-level certificate

selectCertificate()

} catch (e: Exception) {

e.printStackTrace()

}

The increasing adoption of StrongBox-equipped devices is expected to create synergies with the KeyStore and Key-
Chain APIs. As a hardware-based security module, StrongBox enhances protection for cryptographic keys and cre-
dentials managed by these APIs, thereby elevating overall security levels. For devices without StrongBox, the Key-
Store and KeyChain APIs still provide significant security improvements through software-based mechanisms like
the Trusted Execution Environment (TEE). Given the anticipated migration toward StrongBox-equipped devices,
proactive implementation of these APIs is strongly recommended. This approach effectively mitigates security risks
associated with hardcoding while enabling robust, future-proof application development.

5.7 Using biometric authentication features

A variety of methods for biological authentication are currently under research and development, with methods using
facial information and vocal signatures particularly prominent. Among these methods, methods for using fingerprint
authentication to identify individuals have been used since ancient times, and are used today for purposes such as
signatures (by thumbprint) and crime investigation. Applications of fingerprinting have also advanced in several areas
of the computer world, and in recent years these methods have begun to enjoy wide recognition as highly convenient
techniques (offering advantages such as ease of input) for use in areas such as identifying the owner of a smartphone
(primarily for unlocking screens).

Capitalizing on these trends, Android 6.0(API Level 23) incorporates a framework for fingerprint authentication
on terminals, which allows apps to make use of fingerprint authentication features(FingerprintManager) to identify
individuals. Also, in Android 9.0 (API level 28), a BiometricPrompt API was added for providing comprehensive
support for face recognition, iris recognition, and other biometric recognition functions beyond just simply fingerprint
authentication. Also, the authentication UI that previously had to be provided separately by the app is no longer
needed, and a standard authentication dialog box is automatically used instead. Together with this change, the previous
fingerprint authentication function (FingerprintManager) was deprecated. In what follows we discuss some security
precautions to keep in mind when using BiometricPrompt authentication.

5.7.1 Sample Code

In biometric authentication functions, there are two major use cases: when a key linked to the user’s authentication
information is used and when simply performing user authentication only. Based on the application of this biometric
authentication, select the sample code based on Fig. 5.7.1.

570



Secure Coding Guide Documentation Release 2025-01-29

Fig. 5.7.1: Selection flowchart for sample code using biometric authentication

At the time when Android 9.0 (API level 29) was released, no BiometricPrompt support library was available, and
so this meant that usage was limited to devices running Android 9.0 only. However, currently, the support library
[androidx.biometric](https://developer.android.com/reference/androidx/biometric/package-summary) is available,
and this enables the use of BiometricPrompt in a wide range of models from Android 6.0 and higher. The sample
code shown below uses BiometricPrompt, which is provided as a support library.

5.7.1.1 Authentication Linked with Key

We present sample code below that allows an application to use Android’s biometric authentication feature.

Points:

1. Declare the use of the USE_FINGERPRINT(Android 6.0 - Android 8.1) or USE_BIOMETRIC(Android 9.0
-) permission47.

2. Obtain an instance from the “AndroidKeyStore” Provider.

3. Notify users that biometric registration will be required to create a key.

4. When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets standards).

5. When creating (registering) keys, enable requests for user (biometric) authentication (do not specify the dura-
tion over which authentication is enabled).

6. Design your application on the assumption that the status of biometric registration will change between when
keys are created and when keys are used.

7. Restrict encrypted data to items that can be restored (replaced) by methods other than biometric authentication.

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

(continues on next page)

47 In Android 6.0 (API level 23) to Android 8.1 (API level 27) devices, for the BiometricPrompt of the support library androidx.biometric that is
used in the sample code, use of the supported USE_FINGERPRINT permission must be declared in order to use the FingerPrintManager function
and perform biometric (fingerprint) authentication. By contrast, in devices running Android 9.0 (API level 28) or higher, the BiometricPrompt
function of android.hardware.biometrics is used, and use of the USE_BIOMETRIC permission must be declared (In actuality, the use of these
permissions has already been declared in the manifest file of the support library package androidx.biometric, and so the manifest file at the app
side that uses it can run without any problems even if use was not declared).

571

https://developer.android.com/reference/androidx/biometric/package-summary


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.biometricprompt.cipher;

import androidx.appcompat.app.AlertDialog;

import androidx.biometric.BiometricPrompt;

import android.app.KeyguardManager;

import android.content.Context;

import android.content.pm.PackageManager;

import android.icu.text.SimpleDateFormat;

import android.os.Build;

import android.os.Bundle;

import android.util.Base64;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import androidx.appcompat.app.AppCompatActivity;

import java.util.Date;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

public class MainActivity extends AppCompatActivity {

private BiometricAuthentication mBiometricAuthentication;

private static final String SENSITIVE_DATA = "sensitive date";

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

if (!isBiometricEnabled(this)) {

// *** POINT 3 *** Notify users that biometric information

// registration will be required to create a key

new AlertDialog.Builder(this)

.setTitle(R.string.app_name)

.setMessage("No biometric information has been registered. \n" +

"Click \"Security\" on the Settings menu to register fingerprints.␣

→˓\n" +

"Registering biometric information allows easy authentication.")

.setPositiveButton("OK", null)

.show();

return;

}

// Callback which receives the result of biometric authentication

BiometricPrompt.AuthenticationCallback callback =

(continues on next page)

572



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

new BiometricPrompt.AuthenticationCallback() {

@Override

public void onAuthenticationError(int errorCode,

CharSequence errString) {

showMessage(errString, R.color.colorError);

}

@Override

public void onAuthenticationSucceeded(

BiometricPrompt.AuthenticationResult result) {

Cipher cipher = result.getCryptoObject().getCipher();

try {

// *** POINT 7 *** Limit encrypted data to items that can be

// restored (replaced) by methods other than fingerprint

// authentication

byte[] encrypted = cipher.doFinal(SENSITIVE_DATA.getBytes());

showEncryptedData(encrypted);

} catch (IllegalBlockSizeException | BadPaddingException e) {

}

showMessage(getString(R.string.biometric_auth_succeeded),

R.color.colorAuthenticated);

reset();

}

@Override

public void onAuthenticationFailed() {

showMessage(getString(R.string.biometric_auth_failed),

R.color.colorError);

}

};

mBiometricAuthentication =

new BiometricAuthentication(this, callback);

Button button_biometric_auth = findViewById(R.id.button_biometric_auth);

button_biometric_auth.setOnClickListener(new View.OnClickListener () {

@Override

public void onClick(View v) {

if (mBiometricAuthentication.startAuthentication()) {

showEncryptedData(null);

}

}

});

}

private Boolean isBiometricEnabled(Context con) {

return Build.VERSION.SDK_INT >= Build.VERSION_CODES.M &&

con.getSystemService(KeyguardManager.class).isKeyguardSecure() &&

con.getPackageManager()

.hasSystemFeature(PackageManager.FEATURE_FINGERPRINT);

}

private void setAuthenticationState(boolean authenticating) {

Button button = (Button) findViewById(R.id.button_biometric_auth);

button.setText(authenticating ? R.string.cancel : R.string.authenticate);

(continues on next page)

573



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

}

private void showEncryptedData(byte[] encrypted) {

TextView textView = (TextView) findViewById(R.id.encryptedData);

if (encrypted != null) {

textView.setText(Base64.encodeToString(encrypted, 0));

} else {

textView.setText("");

}

}

private String getCurrentTimeString() {

long currentTimeMillis = System.currentTimeMillis();

Date date = new Date(currentTimeMillis);

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss.SSS");

return simpleDateFormat.format(date);

}

private void showMessage(CharSequence msg, int colorId) {

TextView textView = (TextView) findViewById(R.id.textView);

textView.setText(getCurrentTimeString() + " :\n" + msg);

textView.setTextColor(getResources().getColor(colorId, null));

}

private void reset() {

setAuthenticationState(false);

}

}

BiometricAuthentication.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.biometricprompt.cipher;

import android.app.KeyguardManager;

import android.content.Context;

import android.content.DialogInterface;

import android.os.CancellationSignal;

import android.os.Handler;

import android.security.keystore.KeyGenParameterSpec;

import android.security.keystore.KeyInfo;

(continues on next page)

574



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

import android.security.keystore.KeyPermanentlyInvalidatedException;

import android.security.keystore.KeyProperties;

import androidx.biometric.BiometricPrompt;

import androidx.fragment.app.FragmentActivity;

import java.io.IOException;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.UnrecoverableKeyException;

import java.security.cert.CertificateException;

import java.security.spec.InvalidKeySpecException;

import java.util.concurrent.Executor;

import javax.crypto.Cipher;

import javax.crypto.KeyGenerator;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

public class BiometricAuthentication {

private static final String TAG = "BioAuth";

private static final String KEY_NAME = "KeyForFingerprintAuthentication";

private static final String PROVIDER_NAME = "AndroidKeyStore";

private androidx.biometric.BiometricPrompt mBiometricPrompt;

private androidx.biometric.BiometricPrompt.PromptInfo mPromptInfo;

private CancellationSignal mCancellationSignal;

private KeyStore mKeyStore;

private KeyGenerator mKeyGenerator;

private Cipher mCipher;

public BiometricAuthentication(FragmentActivity context, final androidx.

→˓biometric.BiometricPrompt.AuthenticationCallback callback) {

// Callback which receives the result of biometric authentication

androidx.biometric.BiometricPrompt.AuthenticationCallback hook =

new androidx.biometric.BiometricPrompt.AuthenticationCallback() {

@Override

public void onAuthenticationError(int errorCode,

CharSequence errString) {

android.util.Log.e(TAG, "onAuthenticationError");

if (callback != null) {

callback.onAuthenticationError(errorCode, errString);

}

reset();

}

@Override

public void onAuthenticationSucceeded(androidx.biometric.

→˓BiometricPrompt.AuthenticationResult result) {

android.util.Log.e(TAG, "onAuthenticationSuccess");

(continues on next page)

575



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

if (callback != null) {

callback.onAuthenticationSucceeded(result);

}

reset();

}

@Override

public void onAuthenticationFailed() {

android.util.Log.e(TAG, "onAuthenticationFailed");

if (callback != null) {

callback.onAuthenticationFailed();

}

}

};

final Handler mHandler = new Handler(context.getMainLooper());

final Executor mExecutor = new Executor() {

@Override

public void execute(Runnable runnable) {

mHandler.post(runnable);

}

};

mBiometricPrompt =

new androidx.biometric.BiometricPrompt(context, mExecutor, hook);

final androidx.biometric.BiometricPrompt.PromptInfo.Builder builder =

new androidx.biometric.BiometricPrompt.PromptInfo.Builder()

.setTitle("Please Authenticate")

.setNegativeButtonText("Cancel");

mPromptInfo = builder.build();

reset();

}

public boolean startAuthentication() {

if (!generateAndStoreKey())

return false;

if (!initializeCipherObject())

return false;

androidx.biometric.BiometricPrompt.CryptoObject cryptoObject =

new BiometricPrompt.CryptoObject(mCipher);

// Process biometric authentication

android.util.Log.e(TAG, "Starting authentication");

mBiometricPrompt.authenticate(mPromptInfo, cryptoObject);

return true;

}

private void reset() {

try {

// *** POINT 2 ** Obtain an instance from the

// “AndroidKeyStore” Provider.

mKeyStore = KeyStore.getInstance(PROVIDER_NAME);

mKeyGenerator =

KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES,

(continues on next page)

576



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

PROVIDER_NAME);

mCipher =

Cipher.getInstance(KeyProperties.KEY_ALGORITHM_AES

+ "/" + KeyProperties.BLOCK_MODE_CBC

+ "/" + KeyProperties.ENCRYPTION_PADDING_PKCS7);

} catch (KeyStoreException | NoSuchPaddingException

| NoSuchAlgorithmException | NoSuchProviderException e) {

throw new RuntimeException("failed to get cipher instances", e);

}

mCancellationSignal = null;

}

private boolean generateAndStoreKey() {

try {

mKeyStore.load(null);

if (mKeyStore.containsAlias(KEY_NAME))

mKeyStore.deleteEntry(KEY_NAME);

mKeyGenerator.init(

// *** POINT 4 *** When creating (registering) keys,

// use an encryption algorithm that is not vulnerable

// (meets standards)

new KeyGenParameterSpec.Builder(KEY_NAME, KeyProperties.PURPOSE_

→˓ENCRYPT)

.setBlockModes(KeyProperties.BLOCK_MODE_CBC)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)

// *** POINT 5 *** When creating (registering) keys, enable

// requests for user (fingerprint) authentication (do not

// specify the duration over which authentication is enabled)

.setUserAuthenticationRequired(true)

.build());

// Generate a key and store it to Keystore(AndroidKeyStore)

mKeyGenerator.generateKey();

return true;

} catch (IllegalStateException e) {

return false;

} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException

| CertificateException | KeyStoreException | IOException e) {

android.util.Log.e(TAG, "key generation failed: " + e.getMessage());

throw new RuntimeException("failed to generate a key", e);

}

}

private boolean initializeCipherObject() {

try {

mKeyStore.load(null);

SecretKey key = (SecretKey) mKeyStore.getKey(KEY_NAME, null);

SecretKeyFactory factory =

SecretKeyFactory.getInstance(KeyProperties.KEY_ALGORITHM_AES,

PROVIDER_NAME);

KeyInfo info = (KeyInfo) factory.getKeySpec(key, KeyInfo.class);

mCipher.init(Cipher.ENCRYPT_MODE, key);

return true;

} catch (KeyPermanentlyInvalidatedException e) {

// *** POINT 6 *** Design your application on the assumption that

// the status of fingerprint registration will change between

(continues on next page)

577



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

// when keys are created and when keys are used

return false;

} catch (KeyStoreException | CertificateException

| UnrecoverableKeyException | IOException

| NoSuchAlgorithmException | InvalidKeySpecException

| NoSuchProviderException | InvalidKeyException e) {

android.util.Log.e(TAG, "failed to init Cipher: " + e.getMessage());

throw new RuntimeException("failed to init Cipher", e);

}

}

}

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

<!-- *** POINT 1 *** Declare the use of the USE_BIOMETRIC permission -->

<uses-permission android:name="android.permission.USE_BIOMETRIC" />

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/Theme.AppCompat.Light">

<activity android:name="org.jssec.android.biometricprompt.cipher.MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

5.7.1.2 Performing User Authentication Only

The sample code for using biometric authentication when user authentication only is performed is shown below. In
this case, you do not need to pay attention to any particular security points, but the sample code is provided below
for reference.

Example using BiometricPrompt

MainActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

(continues on next page)

578



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.biometricprompt.nocipher;

import android.hardware.biometrics.BiometricPrompt;

import android.icu.text.SimpleDateFormat;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import org.jssec.android.biometric.authentication.nocipher.R;

import java.util.Date;

public class MainActivity extends AppCompatActivity {

private BiometricAuthentication mBiometricAuthentication;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mBiometricAuthentication = new BiometricAuthentication(this);

Button button_biometric_auth = findViewById(R.id.button_biometric_auth);

button_biometric_auth.setOnClickListener(new View.OnClickListener () {

@Override

public void onClick(View v) {

if (!mBiometricAuthentication.isAuthenticating()) {

authenticateByBiometric();

}

}

});

}

private boolean authenticateByBiometric () {

BiometricPrompt.AuthenticationCallback callback =

new BiometricPrompt.AuthenticationCallback() {

@Override

public void onAuthenticationError(int errorCode,

CharSequence errString) {

showMessage(errString, R.color.colorError);

}

@Override

public void onAuthenticationHelp(int helpCode,

CharSequence helpString) {

(continues on next page)

579



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

showMessage(helpString, R.color.colorHelp);

}

@Override

public void onAuthenticationSucceeded(

BiometricPrompt.AuthenticationResult result) {

showMessage(getString(R.string.biometric_auth_succeeded),

R.color.colorAuthenticated);

}

@Override

public void onAuthenticationFailed() {

showMessage(getString(R.string.biometric_auth_failed),

R.color.colorError);

}

};

if (mBiometricAuthentication.startAuthentication(callback)) {

showMessage(getString(R.string.biometric_processing),

R.color.colorNormal);

return true;

}

return false;

}

private String getCurrentTimeString() {

long currentTimeMillis = System.currentTimeMillis();

Date date = new Date(currentTimeMillis);

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss.SSS");

return simpleDateFormat.format(date);

}

private void showMessage(CharSequence msg, int colorId) {

TextView textView = (TextView) findViewById(R.id.textView);

textView.setText(getCurrentTimeString() + " :\n" + msg);

textView.setTextColor(getResources().getColor(colorId, null));

}

}

BiometricAuthentication.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

(continues on next page)

580



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

package org.jssec.android.biometricprompt.nocipher;

import android.content.Context;

import android.content.DialogInterface;

import android.hardware.biometrics.BiometricPrompt;

import android.os.CancellationSignal;

public class BiometricAuthentication {

private static final String TAG = "BioAuth";

private BiometricPrompt mBiometricPrompt;

private CancellationSignal mCancellationSignal;

private Context mContext;

// Process "Cancel" button

private DialogInterface.OnClickListener cancelListener =

new DialogInterface.OnClickListener () {

@Override

public void onClick(DialogInterface dialog, int which) {

android.util.Log.d(TAG, "cancel");

if (mCancellationSignal != null) {

if (!mCancellationSignal.isCanceled())

mCancellationSignal.cancel();

}

}

};

public BiometricAuthentication(Context context) {

mContext = context;

BiometricPrompt.Builder builder = new BiometricPrompt.Builder(context);

// Authentication prompt also provides a button for cacelling

// Cancel is handled by DialogInterface.OnClickListener

// given to setNegativeButton as the 3rd argument

mBiometricPrompt = builder

.setTitle("Please Authenticate")

.setNegativeButton("Cancel",context.getMainExecutor() ,cancelListener)

.build();

reset();

}

public boolean startAuthentication(

final BiometricPrompt.AuthenticationCallback callback) {

mCancellationSignal = new CancellationSignal();

// Callback which accepts the result of biometric authentication

BiometricPrompt.AuthenticationCallback hook =

new BiometricPrompt.AuthenticationCallback() {

@Override

public void onAuthenticationError(int errorCode,

CharSequence errString) {

android.util.Log.d(TAG, "onAuthenticationError");

if (callback != null) {

callback.onAuthenticationError(errorCode, errString);

}

(continues on next page)

581



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

reset();

}

@Override

public void onAuthenticationHelp(int helpCode,

CharSequence helpString) {

android.util.Log.d(TAG, "onAuthenticationHelp");

if (callback != null) {

callback.onAuthenticationHelp(helpCode, helpString);

}

}

@Override

public void onAuthenticationSucceeded(

BiometricPrompt.AuthenticationResult result) {

android.util.Log.d(TAG, "onAuthenticationSuccess");

if (callback != null) {

callback.onAuthenticationSucceeded(result);

}

reset();

}

@Override

public void onAuthenticationFailed() {

android.util.Log.d(TAG, "onAuthenticationFailed");

if (callback != null) {

callback.onAuthenticationFailed();

}

}

};

// Perform biomettic authentication

// BiometricPrompt has a specific API for simple authentication

// (not linked with key)

android.util.Log.d(TAG, "Starting authentication");

mBiometricPrompt.authenticate(mCancellationSignal,

mContext.getMainExecutor(),

hook);

return true;

}

public boolean isAuthenticating() {

return mCancellationSignal != null && !mCancellationSignal.isCanceled();

}

private void reset() {

mCancellationSignal = null;

}

}

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

>

(continues on next page)

582



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<!-- *** POINT 1 *** Declare the use of the USE_BIOMETRIC permission -->

<uses-permission android:name="android.permission.USE_BIOMETRIC" />

<application

android:allowBackup="true"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:roundIcon="@mipmap/ic_launcher_round"

android:supportsRtl="true"

android:theme="@style/AppTheme">

<activity android:name="org.jssec.android.biometricprompt.nocipher.MainActivity

→˓"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

5.7.2 Rule Book

Observe the following rules when using biometric authentication. There are no particular rules when using the fin-
gerprint authentication function for other applications.

1. When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets standards). (Required)

2. Restrict encrypted data to items that can be restored (replaced) by methods other than biometric authentication.
(Required)

3. Notify users that biometric information registration will be required to create a key. (Recommended)

5.7.2.1 When creating (registering) keys, use an encryption algorithm that is not vulnerable
(meets standards). (Required)

Like the password keys and public keys discussed in Section "5.6.Using Cryptography", when using biometric authen-
tication features to create keys it is necessary to use encryption algorithms that are not vulnerable---that is, algorithms
that meet certain standards adequate to prevent eavesdropping by third parties. Indeed, safe and non-vulnerable
choices must be made not only for encryption algorithms but also for encryption modes and padding.

For more information on selecting algorithms, see Section "5.6.2.2. Use Strong Algorithms (Specifically, Algorithms
that Meet the Relevant Criteria) (Required)".

5.7.2.2 Restrict encrypted data to items that can be restored (replaced) by methods other than
biometric authentication. (Required)

When an app uses biometric authentication features for the encryption of data within the app, the appmust be designed
in such a way as to allow the data to be recovered (replaced) by methods other than biometric authentication.

In general, the use of biological information entails various problems---including secrecy, the difficulty of making
modifications, and erroneous identifications---and it is thus best to avoid relying solely on biological information for
authentication.

583



Secure Coding Guide Documentation Release 2025-01-29

For example, suppose that data internal to an app is encrypted with a key generated using biometric authentication
features, but that the iometric data stored within the terminal is subsequently deleted by the user. Then the key used
to encrypt the data is not available for use, nor is it possible to copy the data. If the data cannot be recovered by some
means other than biometric-authentication functionality, there is substantial risk that the data will be made useless.

Moreover, the deletion of biometric information is not the only scenario in which keys created using biometric au-
thentication functions can become unusable. In Nexus5X, if biometric authentication features are used to create a
key and this key is then newly registered as an addition to the biometric information, keys created earlier have been
observed to become unusable.

5.7.2.3 Notify users that biometric information registration will be required to create a key. (Rec-
ommended)

In order to create a key using biometric authentication, it is necessary that a user's biometrics be registered on the
terminal. When designing apps to guide users to the Settings menu to encourage biometric registration, developers
must keep in mind that biometrics represent important personal data, and it is desirable to explain to users why it is
necessary or convenient for the app to use biometric information.

Notify users the fingerprint registration will be required.

if (!mFingerprintAuthentication.isFingerprintAuthAvailable()) {

// *** Point *** Notify users that biometric registration will be

// required to create a key.

new AlertDialog.Builder(this)

.setTitle(R.string.app_name)

.setMessage("No biometric information has been registered.\n" +

"Click \"Security\" on the Settings menu to register biometrics.\n" +

"Registering biometrics allows easy authentication.")

.setPositiveButton("OK", null)

.show();

return false;

}

5.7.3 Advanced Topics

5.7.3.1 Preconditions for the use of biometric authentication features by Android apps

The following two conditions must be satisfied in order for an app to use biometric authentication.

• User biometrics must be registered within the terminal.

• An (application-specific) key must be associated with registered biometrics.

Registering user biometrics

User biometric information can only be registered via the "Security" option in the Settingsmenu; ordinary applications
may not perform the biometric registration procedure. For this reason, if no biometrics have been registered when an
app attempts to use biometric authentication features, the app must guide the user to the Settings menu and encourage
the user to register biometrics. At this time, it is desirable for the app to offer the user some explanation of why it is
necessary and convenient to use biometric information.

In addition, as a necessary precondition for biometric registration to be possible, the terminal must be configured
with an alternative screen-locking mechanism. If the screen lock is disabled in a state in which biometric have been
registered in the terminal, the registered biometric information will be deleted.

Creating and registering keys

To associate a key with biometrics registered in a terminal, use a KeyStore instance provided by an "AndroidKeyStore"
Provider to create and register a new key or to register an existing key.

584



Secure Coding Guide Documentation Release 2025-01-29

To create a key associated with biometric information, configure the parameter settings when creating a KeyGenerator
to enable requests for user authentication.

Creating and registering a key associated with biometric information.

try {

// Obtain an instance from the "AndroidKeyStore" Provider.

KeyGenerator keyGenerator =

KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES,

"AndroidKeyStore");

keyGenerator.init(

new KeyGenParameterSpec.Builder(KEY_NAME,

KeyProperties.PURPOSE_ENCRYPT)

.setBlockModes(KeyProperties.BLOCK_MODE_CBC)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)

// Enable requests for user (biometric) authentication.

.setUserAuthenticationRequired(true)

.build());

keyGenerator.generateKey();

} catch (IllegalStateException e) {

// no biometrics have been registered in this terminal.

throw new RuntimeException("No biometric registered", e);

} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException

| CertificateException | KeyStoreException | IOException e) {

// failed to generate a key.

throw new RuntimeException("Failed to generate a key", e);

}

To associate biometric information with an existing key, register the key with a KeyStore entry to which has been
added a setting to enable user authentication requests.

Associating biometric information with an existing key.

SecretKey key = existingKey; // existing key

KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");

keyStore.load(null);

keyStore.setEntry(

"alias_for_the_key",

new KeyStore.SecretKeyEntry(key),

new KeyProtection.Builder(KeyProperties.PURPOSE_ENCRYPT)

// Enable requests for user (biometric) authentication.

.setUserAuthenticationRequired(true)

.build());

5.7.3.2 Changes to Biometric Authentication on Android 11

The following 3 points have been changed for biometric authentication on Android 11.

• Introduction of the BiometricManager.Authenticators interface

• Enhancement of data access in BiometricPrompt

• Method for end of support

BiometricManager.Authenticators interface

Authentication types supported in the BiometricManager class and BiometricPrompt class are defined on the Bio-
metricManager.Authenticators interface as follows.

585



Secure Coding Guide Documentation Release 2025-01-29

Table 5.7.1: Authenticators Interface

Authentication Type Description
BIOMETRIC_STRONG Authentication that uses hardware elements that make the strength

level Strong
BIOMETRIC_WEAK Authentication that uses hardware elements that make the strength

level Weak
DEVICE_CREDENTIAL Authentication that uses authentication information (user PIN, pat-

tern, password) of screen lock

Pass the above authentication type as an argument to the setAllowedAuthenticators() method and define which authen-
tication type the app accepts. One or more authentication types can be passed. For example, when defining to accept
strength level Strong hardware elements and screen lock authentication information, pass BIOMETRIC_STRONG |
DEVICE_CREDENTIAL as an argument.

To confirm whether or not authentication elements that apps require can be used, do so through the canAuthen-
ticate() method. At this time, if the PIN, pattern, and password have not been created by the user, call the AC-
TION_BIOMETRIC_ENROLL intent action. This intent asks the user to register authentication information of the
authentication system that the app accepts.

After user authentication, executing the getAuthenticationType() method enables confirmation of the authentication
type (device authentication information or biometric authentication information) used by the user.

Enhancement of data access in BiometricPrompt

You can provide support for auth-per-use keys within your instance of BiometricPrompt. Such a key requires the user
to present either a biometric credential or a device credential each time your app needs to access data that’s guarded
by that key. Auth-per-use keys can be useful for high-value transactions, such as making a large payment or updating
a person’s health records.

To associate a BiometricPrompt object with an auth-per-use key, add code similar to the following.

KeyGenParameterSpec authPerOpKeyGenParameterSpec =

new KeyGenParameterSpec.Builder(KEY_NAME, KeyProperties.PURPOSE_ENCRYPT)

// Accept either a biometric credential or a device credential.

.setUserAuthenticationParameters(0, KeyProperties.AUTH_BIOMETRIC_STRONG |␣

→˓KeyProperties.AUTH_DEVICE_CREDENTIAL)

.build();

Deprecated methods

Android 11 deprecates the following methods:

• The setDeviceCredentialAllowed() method.

• The setUserAuthenticationValidityDurationSeconds() method.

• The overloaded version of canAuthenticate() that takes no arguments.

586



Secure Coding Guide Documentation Release 2025-01-29

6
Difficult Problems

In Android, there are some problems that it is difficult to assure a security by application implementation due to a
specification of Android OS or a function which Android OS provides. By being abused by the malicious third party
or used by users carelessly, these functions are always holding risks that may lead to security problems like information
leakage. In this chapter, by indicating risk mitigation plans that developers can take against these functions, some
topics that needs calling attentions, are picked up as articles.

6.1 Risk of Information Leakage from Clipboard

Copy & paste are the functions which users often use in a casual manner. For example, not a few users use these
functions to store curious information or important information to remember in a mail or a web page into a notepad,
or to copy and to paste a password from a notepad in which passwords are stored in order not to forget in advance.
These are very casual actions at a glance, but actually there's a hidden risk that user handling information may be
stolen.

The risk is related to mechanism of copy & paste in Android system. The information which was copied by user or
application, is once stored in the buffer called Clipboard. The information stored in Clipboard is distributed to other
applications when it is pasted by a user or an application. So there is a risk which leads to information leakage in
this Clipboard function. It is because the entity of Clipboard is single in a system and any application can obtain the
information stored in Clipboard at any time by using ClipboardManager. It means that all the information which user
copied/cut, is leaked out to the malicious application.

Hence, application developers need to take measures to minimize the possibility of information leakage, considering
the Android OS specifications.

6.1.1 Sample Code

Roughly speaking, there are two outlooks of counter-measures to mitigate the risk of information leakage form
Clipboard.

1. Counter-measure when copying from other applications to your application.

2. Counter-measure when copying from your application to other applications.

Firstly, let us discuss the countermeasure 1 above. Supposing that a user copies character strings from other appli-
cations like note pad, Web browser or mailer application, and then paste it to EditText in your application. As it
turns out, there's no basic counter-measure to prevent from sensitive information leakage due to copy & paste, in this
scenario. Since there's no function in Android to control copy operations by the third party application.

So, regarding the countermeasure 1, there's no method other than explaining users the risk of copying & pasting
sensitive information, and just continuing to enlighten users to decrease the actions themselves continuously.

587



Secure Coding Guide Documentation Release 2025-01-29

Next discussion is the countermeasure 2 above, supposing that the scenario that a user copies sensitive information
displayed in your application. In this case, the sound counter-measure for leakage is to prohibit copying/cutting
operations from View (TextView, EditText etc.). If there are no copy/cut functions in View where the sensitive
information (like personal information) is input/output, information leakage will never happen from your application
via Clipboard.

There are several methods to prohibit copying/cutting. This section herein describes the easy and effective methods:
One method is to disable long press View and another method is to delete copy/cut items from menu when selecting
character string.

Necessary of counter-measure can be determined as per the flow of Fig. 6.1.1. Fig. 6.1.1, "Input type is fixed to
Password attribute" means, the input type is necessarily either of the followings three when application is running. In
this case, no counter-measures are required since copy/cut are prohibited as default.

• InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD

• InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_WEB_PASSWORD

• InputType.TYPE_CLASS_NUMBER | InputType.TYPE_NUMBER_VARIATION_PASSWORD

Fig. 6.1.1: Decision flow of counter-measure is required or not

The following subsections detail each countermeasure with sample codes.

6.1.1.1 Delete copy/cut from the menu when character string selection

By TextView.setCustomSelectionActionMODECallback() method, menu when character string selection, can be cus-
tomized. By using this, if copy/cut item can be deleted from menu when character string selection, user cannot
copy/cut character strings any more.

Sample code to delete copy/cut item from menu of character string selection in EditText, is shown as per below.

Points:

1. Delete android.R.id.copy from the menu of character string selection.

588



Secure Coding Guide Documentation Release 2025-01-29

2. Delete android.R.id.cut from the menu of character string selection.

UncopyableActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.clipboard.leakage;

import android.app.Activity;

import android.os.Bundle;

import androidx.core.app.NavUtils;

import android.view.ActionMode;

import android.view.Menu;

import android.view.MenuItem;

import android.widget.EditText;

public class UncopyableActivity extends Activity {

private EditText copyableEdit;

private EditText uncopyableEdit;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.uncopyable);

copyableEdit = (EditText) findViewById(R.id.copyable_edit);

uncopyableEdit = (EditText) findViewById(R.id.uncopyable_edit);

// By setCustomSelectionActionMODECallback method,

// Possible to customize menu of character string selection.

uncopyableEdit.setCustomSelectionActionModeCallback(actionModeCallback);

}

private ActionMode.Callback actionModeCallback = new ActionMode.Callback() {

public boolean onPrepareActionMode(ActionMode mode, Menu menu) {

return false;

}

public void onDestroyActionMode(ActionMode mode) {

}

public boolean onCreateActionMode(ActionMode mode, Menu menu) {

// *** POINT 1 *** Delete android.R.id.copy from the menu of

// character string selection.

MenuItem itemCopy = menu.findItem(android.R.id.copy);

if (itemCopy != null) {
(continues on next page)

589



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

menu.removeItem(android.R.id.copy);

}

// *** POINT 2 *** Delete android.R.id.cut from the menu of

// character string selection.

MenuItem itemCut = menu.findItem(android.R.id.cut);

if (itemCut != null) {

menu.removeItem(android.R.id.cut);

}

return true;

}

public boolean onActionItemClicked(ActionMode mode, MenuItem item) {

return false;

}

};

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.uncopyable, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case android.R.id.home:

NavUtils.navigateUpFromSameTask(this);

return true;

}

return super.onOptionsItemSelected(item);

}

}

6.1.1.2 Disable Long Click View

Prohibiting copying/cutting can also be realized by disabling Long Click View. Disabling Long Click View can be
specified in layout xml file.

Point:

1. Set false to android:longClickable in View to prohibit copy/cut.

unlongclickable.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical">

<TextView

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="@string/unlongclickable_description" />

(continues on next page)

590



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

<!-- EditText to prohibit copy/cut EditText -->

<!-- *** POINT 1 *** Set false to android:longClickable in View to prohibit␣

→˓copy/cut. -->

<EditText

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:longClickable="false"

android:hint="@string/unlongclickable_hint" />

</LinearLayout>

6.1.2 Rule Book

Follow the rule below when copying sensitive information from your application to other applications.

1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

6.1.2.1 Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

If there's a View which displays sensitive information in an application and besides the information is allowed to be
copied/cut like EditText in the View, the information may be leaked via Clipboard. Therefore, copy/cut must be
disabled in View where sensitive information is displayed.

There are two methods to disable copy/cut. One method is to delete items of copy/cut from menu of character string
selection, and another method is to disable Long Click View.

Please refer to "6.1.3.1. Precautions When Applying Rules".

6.1.3 Advanced Topics

6.1.3.1 Precautions When Applying Rules

In TextView, selecting character string is impossible as default, so normally no counter-measure is required, but in
some cases copying is possible depends on application's specifications. The possibility of selecting/copying character
strings can be dynamically determined by using TextView.setTextIsSelectable() method. When setting copying pos-
sible in TextView, investigate the possibility that any sensitive information is displayed in TextView, and if there are
any possibilities, it should not be set as possible to copy.

In addition, described in the decision flow of "6.1.1. Sample Code" regarding EditText which is input type (Input-
Type.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD etc.), supposing password in-
put, normally any counter-measures are not required since copying character strings are prohibited as default. How-
ever, as described in "5.1.2.2. Provide the Option to Display Password in a Plain Text (Required)", when the option to
"display password in a plain text" is prepared, in case of displaying password in a plain text, input type will change
and copy/cut is enabled. So the same counter-measure should be required. Note that, developers should also take
usability of application into consideration when applying rules. For example, in the case of View which user can in-
put text freely, if copy/cut is disabled because "there is the slight possibility that sensitive information is input", users
may feel inconvenience. Of course, the rule should unconditionally be applied to View which treats highly important
information or independent sensitive information, but in the case of View other than those, the following questions
will help developers to understand how properly to treat View.

• Prepare some other component for the exclusive use of sensitive information

• Send information with alternative methods when the pasted-to application is obvious

• Call users for cautions about inputting/outputting information

• Reconsider the necessity of View

591



Secure Coding Guide Documentation Release 2025-01-29

The root cause of the information leakage risk is that the specifications of Clipboard and ClipboardManager in An-
droid OS leave the security risk out of consideration. Application developers need to create higher quality applications
in terms of user integrity, usability, functions, and so forth.

6.1.3.2 Usage of Information Stored in Clipboard

The following content is applicable to devices that are Android 9 or earlier. Starting from Android 10, to access the
Clipboard, the app must be the default IME or have focus since Clipboard acquisition is limited due to user privacy
protections. Verify operation of the sample program on Android 9 devices and earlier1.

As described in "6.1. Risk of Information Leakage from Clipboard", ClipboardManager can be used to access in-
formation stored in the clipboard from an app. Also, because ClipboardManager does not require setting of special
permissions to use, apps can use ClipboardManager without the user’s knowledge.

The information stored in the clipboard (called ClipData) can be obtained by the ClipboardManager.getPrimaryClip()
method. ClipData can be obtained without missing any timing because, if an OnPrimaryClipChangedListener is im-
plemented and registered to the ClipboardManager using the ClipboardManager.addPrimaryClipChangedListener()
method, the listener will be called each time a copy/cut occurs by user operation or other actions. Here, the listener
is called regardless of which app performed the copy/cut.

The following is the source code for a service that obtains ClipData each time a copy/cut occurs in the device and
displays it by Toast. We hope you realize that a simple code like the following will make the information stored in
the clipboard leak out. When implementing apps, care should be taken to ensure that sensitive information is not
obtained, at least by using the following code.

ClipboardListeningService.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.clipboard;

import android.app.Service;

import android.content.ClipData;

import android.content.ClipboardManager;

import android.content.ClipboardManager.OnPrimaryClipChangedListener;

import android.content.Context;

import android.content.Intent;

import android.os.IBinder;

import android.util.Log;

import android.widget.Toast;

public class ClipboardListeningService extends Service {

private static final String TAG = "ClipboardListeningService";

private ClipboardManager mClipboardManager;

(continues on next page)

1 https://developer.android.com/about/versions/10/privacy/changes

592

https://developer.android.com/about/versions/10/privacy/changes


Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

@Override

public IBinder onBind(Intent arg0) {

return null;

}

@Override

public void onCreate() {

super.onCreate();

mClipboardManager =

(ClipboardManager) getSystemService(Context.CLIPBOARD_SERVICE);

if (mClipboardManager != null) {

mClipboardManager.addPrimaryClipChangedListener(clipListener);

} else {

Log.e(TAG, "Failed to get ClipboardService . Service is closed.");

this.stopSelf();

}

}

@Override

public void onDestroy() {

super.onDestroy();

if (mClipboardManager != null) {

mClipboardManager.removePrimaryClipChangedListener(clipListener);

}

}

private OnPrimaryClipChangedListener clipListener =

new OnPrimaryClipChangedListener() {

public void onPrimaryClipChanged() {

if (mClipboardManager != null && mClipboardManager.hasPrimaryClip()) {

ClipData data = mClipboardManager.getPrimaryClip();

ClipData.Item item = data.getItemAt(0);

Toast

.makeText(

getApplicationContext(),

"Character stirng that is copied or cut:\n"

+ item.coerceToText(getApplicationContext()),

Toast.LENGTH_SHORT)

.show();

}

}

};

}

The following shows an example of source code for an activity using the above ClipboardListeningService.

ClipboardListeningActivity.java

/*

* Copyright (C) 2012-2025 Japan Smartphone Security Association

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

593



Secure Coding Guide Documentation Release 2025-01-29

(continued from previous page)

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package org.jssec.android.clipboard;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Intent;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

public class ClipboardListeningActivity extends Activity {

private static final String TAG = "ClipboardListeningActivity";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_clipboard_listening);

}

public void onClickStartService(View view) {

if (view.getId() != R.id.start_service_button) {

Log.w(TAG, "View ID is incorrect.");

} else {

ComponentName cn =

startService(new Intent(ClipboardListeningActivity.this,

ClipboardListeningService.class));

if (cn == null) {

Log.e(TAG, "Failed to launch the service.");

}

}

}

public void onClickStopService(View view) {

if (view.getId() != R.id.stop_service_button) {

Log.w(TAG, "View ID is incorrect.");

} else {

stopService(new Intent(ClipboardListeningActivity.this,

ClipboardListeningService.class));

}

}

}

So far, we have explained how to obtain information stored in the clipboard, but it is also possible to store new
information in the clipboard using the ClipboardManager.setPrimaryClip() method.

Note, however, that setPrimaryClip() overwrites the information stored in the clipboard, and so there is a possibility
that information stored by the user previously using the copy/cut operation will be lost. If these methods are used
to provide a unique copy/cut feature, they should be designed and implemented so that the information stored in the
clipboard is not altered in a way that the user does not intend, for example, by displaying a dialog warning that the
information will be altered, if necessary.

594



Secure Coding Guide Documentation Release 2025-01-29

Also, if youwant to run an app onAndroid 13 that copies sensitive content such as passwords or credit card information
to the clipboard using setPrimaryClip(), youmust set the flag in ClipDescription before calling setPrimaryClip(). This
is a specification introduced in Android 13 to protect user privacy, and setting this flag prevents the display of sensitive
content in content previews. The differences when this flag is set or when it is not set are shown below. This shows
an app that uses setPrimaryClip() to copy a password string when the button is pressed.

Fig. 6.1.2: Without ClipDescription Flag Setting

595



Secure Coding Guide Documentation Release 2025-01-29

Fig. 6.1.3: With ClipDescription Flag Setting

The method for setting the ClipDescription flag depends on whether the SDK version is API level 33 or higher. The
sample code is as follows. When actually setting the ClipDescription flag, match it properly to the SDK version being
used from the comments in the code.

ClipData.Item item = new ClipData.Item(passwordEditText.getText().toString());

String[] mimeType = new String[1];

mimeType[0] = ClipDescription.MIMETYPE_TEXT_URILIST;

ClipData cd = new ClipData(new ClipDescription("text_data", mimeType), item);

ClipboardManager cm = (ClipboardManager) getSystemService(CLIPBOARD_SERVICE);

PersistableBundle extras = new PersistableBundle();

extras.putBoolean(ClipDescription.EXTRA_IS_SENSITIVE, true); // API level 33 or␣

→˓higher

// extras.putBoolean("android.content.extra.IS_SENSITIVE", true); // lower API␣

→˓level

cd.getDescription().setExtras(extras);

cm.setPrimaryClip(cd);

6.1.3.3 Clipboard Access Notification

From Android 12, a Toast message that notifies users that Clipboard has been accessed is displayed when data stored
in Clipboard was acquired on getPrimaryClip() by another application. The notification message is as follows.

• For Japanese

596



Secure Coding Guide Documentation Release 2025-01-29

MYAPP

• For English

MYAPP pasted from your clipboard

If getPrimaryClipDescription() is used, data is not copied, and the Toast message is not displayed. Information that
can be acquired with getPrimaryClipDescription() are truth values that determine whether or not styles have been set
for texts as well as information of the stored data itself such as classifications of text (e.g. URL).

597



Secure Coding Guide Documentation Release 2025-01-29

Revision history

2014-04-01
Initial English Edition

2014-07-01

Added new articles below

• 5.5. Handling privacy data

• 5.6. Using Cryptography

2015-06-01

We have reviewed the entire document in accordance with the following policy

• Change of development environment (Eclipse -> Android Studio)

• Responding to Android latest version Lollipop

• Change of API Level (8 or later -> 15 or later)

2016-02-01

Added new articles below

• 4.10. Using Notifications

• 5.7. Using biometric authentication features

Revised article below

• 5.2. Permission and Protection Level

2016-09-01

Revised articles below

• 2.5. Steps to Install Sample Codes into Android Studio

• 5.4. Communicating via HTTPS

• 5.6. Using Cryptography

2017-02-01

Added new articles below

• 4.6.3.5. Revised specifications in Android 7.0 (API Level 24) for accessing specific directories on
external storage media

• 5.4.3.7. Network Security Configuration

598



Secure Coding Guide Documentation Release 2025-01-29

Revised articles below

• 4.1. Creating/Using Activities

• 4.1.3.8. Blocking of Unmatched Intents

• 4.4. Creating/Using Services

• 4.5. Using SQLite

• 4.6. Handling Files

Deleted the section below

• 4.8.3.4 BuildConfig.DEBUG Should Be Used in ADT 21 or Later

We have reviewed the entire document in accordance with the following policy

• All discussions in the main text concerning Android 4.0.3 (API Level 15) and earlier versions have
been deleted or moved to footnotes.

2018-02-01

Added new articles below

• 4.1.3.7. The Autofill framework

• 5.3.3.3. Cases in which Authenticator accounts with non-matching signatures may be read in Android
8.0 (API Level 26) or later

• 5.4.3.8. (Column): Transitioning to TLS1.2/TLS1.3 for secure connections

• 5.5.3.3. Version-dependent differences in handling of Android IDs

Revised articles below

• 4.1.3.8. Blocking of Unmatched Intents

• 5.2. Permission and Protection Level

• 5.3. Add In-house Accounts to Account Manager

• 5.4. Communicating via HTTPS

• 5.5. Handling privacy data

2018-09-01

Added new articles below

• 4.9.3.4. Safe Browsing in WebView

• 4.11. Using Shared Memory

Revised articles below

• 2.5. Steps to Install Sample Codes into Android Studio

• 4.1.3.7. The Autofill framework

• 4.5.3.6. [Reference] Encrypt SQLite Database (SQLCipher for Android)

• 5.2.1.2. How to Communicate Between In-house Applications with In-house-defined Signature Per-
mission

• 5.4.1.2. Communicating via HTTPS<!– 2b8c337d –>

• 5.4.3.7. Network Security Configuration

• 5.7. Using biometric authentication features

• 5.4.3.2. Install Root Certificate of Private Certificate Authority to Android OS's Certification Store

• 5.4.3.8. (Column): Transitioning to TLS1.2/TLS1.3 for secure connections

2019-12-01

599



Secure Coding Guide Documentation Release 2025-01-29

Added new articles below

• 4.6.3.6. Storage access for Android 10 and later (internal and external storage)

• 5.5.3.4. Restriction on obtaining non-resettable device identifiers on Android 10

Revised articles below

• 4.1.3.1. Combination of Exported Attribute and Intent Filter Setting (For Activity)

• 4.4.1.2. Creating/Using Public Services

• 4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)

• 4.6.1.4. Using Eternal Memory (Read Write Public) Files

• 4.6.3.5. Revised specifications in Android 7.0 (API Level 24) for accessing specific directories on
external storage media

• 5.2.3.6. Modifications to the Permission model specifications in Android versions 6.0 and later

• 5.4.1.1. Communicating via HTTP

• 5.4.1.2. Communicating via HTTPS<!– 2b8c337d –>

• 5.4.3.8. (Column): Transitioning to TLS1.2/TLS1.3 for secure connections

• 5.5.1.2. Broad consent is granted: Applications that incorporate application privacy policy

• 5.6.2.2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)

• 5.6.3.2. Generation of random numbers

• 5.6.3.3. Measures to Protect against Vulnerabilities in Random-Number Generators

• 5.7. Using biometric authentication features

2020-11-01

Added new articles below

• 5.2.3.7. Function That Automatically Resets Unused App Permissions in Android 11.0 and Later

• 5.5.3.5. Data Access Auditing

• 5.5.3.6. Location Information Access

• 5.6.3.6. Conscrypt Module

• 5.7.3.2. Changes to Biometric Authentication on Android 11

Revised articles below

• 3.1.1.2. Function Assets of an Android Smartphone

• 5.2.3.6. Modifications to the Permission model specifications in Android versions 6.0 and later

2021-10-19

Added new articles below

• 4.2.3.7. ACTION_CLOSE_SYSTEM_DIALOGS

• 4.10.3.2. Touch to Be Passed Through Specific Window

• 4.10.3.3. Mutability of the PendingIntent Object

• 5.2.3.8. Auto-hibernation Function for Unused Applications on Android 12

• 5.2.3.9. API Return Value Change Following Specification Changes to the Package Access

• 5.5.3.7. Microphones and Cameras For Android 12

• 5.5.3.8. SameSite Cookie on WebView

• 6.1.3.3. Clipboard Access Notification

600



Secure Coding Guide Documentation Release 2025-01-29

Revised articles below

• 4.1.3.1. Combination of Exported Attribute and Intent Filter Setting (For Activity)

• 4.9.2.3. Verify That the URL Received from Others Such as Through Intent Is the Expected URL
(Required)

• 5.5.3.5. Data Access Auditing

• 5.5.3.6. Location Information Access

• 5.6.3.6. Conscrypt Module

• 6.1.3.2. Usage of Information Stored in Clipboard

2022-01-17

Revised articles below

• 2.2. Sample Code, Rule Book, Advanced Topics

2022-08-29

Added new articles below

• 4.1.3.8. Blocking of Unmatched Intents

• 4.2.3.8. Enhanced Safety of Dynamic Broadcast Receiver

• 4.10.3.4. Runtime Permissions for Notifications

• 5.2.3.10. Revoking Runtime Permissions

• 5.2.3.11. Disabling sharedUserId in Newly Installed Apps

Revised articles below

• 2.4. Literature on Android Secure Coding

• 2.5. Steps to Install Sample Codes into Android Studio

• 5.1.3.4. Disabling Screen Shot

• 5.5.3.6. Location Information Access

• 6.1.3.2. Usage of Information Stored in Clipboard

2024-2-29

Added new articles below

• 4.1.3.9. Restrictions on Implicit Intent and Pending Intent

• 4.4.3.3. Requirement for Specifying of Service Types

• 4.6.3.8. Enhanced Safety of DCL (Dynamic Code Loading)

• 4.6.3.9. Measures for Preventing Path Traversal by Zip Files

• 4.10.3.5. Change in Operation for Notifications Indicating Progress

• 5.2.3.12. Installable Minimum Target API Levels

• 5.5.3.9. Media Owner Package Names

Revised articles below

• 4.1.3.4. Root Activity

• 4.2.3.8. Enhanced Safety of Dynamic Broadcast Receiver

2025-1-29

Added new articles below

• 4.1.3.11. Expanded Intent Filter Functionality

601



Secure Coding Guide Documentation Release 2025-01-29

• 4.1.3.12. Enhanced Intent Security

• 4.1.3.13. Changes to package stopped state

• 4.3.3.1. Content URI Permission Management

• 4.4.3.4. Foreground Service Changes

• 4.6.3.6. Storage access for Android 10 and later (internal and external storage)

• 4.6.3.7. Storage access for Android 10 and later (shared storage)

• 4.6.3.10. Query the most recent user’s choice for accessing selected photos

• 4.6.3.11. Private Space

• 5.1.3.5. Integrate Credential Manager with Autofill

• 5.5.3.10. Screen Recording Detection

• 5.5.3.11. Partial Screen Sharing

• 5.5.3.12. Changes in Global State Management in DND mode

• 5.6.3.7. Countermeasures against backup data leaks

• 5.6.3.8. Hard-coded Cryptographic Secrets

Revised articles below

• 4.1.3.10. Secure Background Activity Launch

• 5.2.3.12. Installable Minimum Target API Levels

Deleted the section below

• 4.6.3.6. About specifications related to access to external storage in Android 10 (API Level 29)

• 4.6.3.7. Application of Scoped Storage in Android 11 (API Level 30)

• 4.6.3.8. Media Collection Permissions in Android 13 (API Level 33)

• 4.6.3.9. Partial Access to Images and Videos in Android 14 (API Level 34)

Note: For a detailed description of these revisions, see SectionArticles Revised from February 29, 2024 Edition.

For the release of this new edition, we have updated the contents of this Guidebook based on your comments and
suggestions.

Published by

Japan Smartphone Security Association (JSSEC), Technical Subcommittee, Secure Coding Working Group

Leader Tsutomu Miyazaki LAC Co., Ltd.
Members Ryuta Nakagami Nuligen Security Co., Ltd.

Akihiro Shiota NTT DATA Corporation
Teruaki Honma KDDI CORPORATION
Harunobu Agematsu KDDI CORPORATION

(In no particular order)

602



Secure Coding Guide Documentation Release 2025-01-29

Authors of February 29 2024 Edition

Leader

Tsutomu Miyazaki

LAC Co. ltd.

Member

Akihiro Shiota NTT DATA Corporation
Teruaki Honma KDDI CORPORATION
Harunobu Agematsu KDDI CORPORATION
Naruhiko Ogasawara SHIFT SECURITY
Yoshinori Saida NEC Corporation
Toru Aoyagi NEC Corporation

(In no particular order)

603



Secure Coding Guide Documentation Release 2025-01-29

Authors of August 29 2022 Edition

Leader

Tsutomu Miyazaki

LAC Co. ltd.

Member

Pantuhong Sorasiri LAC Co. ltd.
Akihiro Shiota NTT DATA Corporation
Teruaki Honma KDDI CORPORATION
Harunobu Agematsu KDDI CORPORATION

(In no particular order)

604



Secure Coding Guide Documentation Release 2025-01-29

Authors of January 17 2022 Edition

Leader

Tsutomu Miyazaki

LAC Co. ltd.

Member

Nao Komatsu LAC Co. ltd.
Teruaki Honma KDDI CORPORATION

(In no particular order)

605



Secure Coding Guide Documentation Release 2025-01-29

Authors of October 19 2021 Edition

Leader

Tsutomu Miyazaki

LAC Co. ltd.

Member

Nao Komatsu LAC Co. ltd.
Teruaki Honma KDDI CORPORATION

(In no particular order)

606



Secure Coding Guide Documentation Release 2025-01-29

Authors of November 1, 2020 Edition

Leader

Tsutomu Miyazaki

LAC Co. ltd.

Member

Akihiro Shiota NTT DATA Corporation
Teruaki Honma KDDI CORPORATION
Saida Yoshinori NEC Corporation

(In no particular order)

607



Secure Coding Guide Documentation Release 2025-01-29

Authors of September 1 2019 Edition

Leader

Jun Ogiso

Sony Digital Network Applications, Inc.

Member

Toshimi Sawada Software Research Associates, Inc.
Kohei Suzuki Software Research Associates, Inc.
Akihiro Shiota NTT DATA Corporation
Teruaki Honma KDDI CORPORATION
Junki Hisamoto Sony Digital Network Applications, Inc.
Nobuaki Yamaguchi Sony Digital Network Applications, Inc.
Gaku Taniguchi Tao Software, Inc.
Ito Takefumi Nihon System Kaihatsu Co., Ltd.

(In no particular order)

608



Secure Coding Guide Documentation Release 2025-01-29

Authors of September 1, 2018 Edition

Leader

Akira Ando

Sony Digital Network Applications, Inc.

Member

Toshimi Sawada Software Research Associates, Inc.
Kohei Suzuki Software Research Associates, Inc.
Teruaki Honma KDDI CORPORATION
Jun Ogiso Sony Digital Network Applications, Inc.
Junki Hisamoto Sony Digital Network Applications, Inc.
Nobuaki Yamaguchi Sony Digital Network Applications, Inc.
Shigeru Yatabe Fomalhaut Techno Solutions

(In no particular order)

609



Secure Coding Guide Documentation Release 2025-01-29

Authors of February 1, 2018 Edition

Leader

Akira Ando

Sony Digital Network Applications, Inc.

Member

Ken Okuyma Android Security Japan
Eiji Hoshimoto Software Research Associates, Inc.
Akihiro Shiota NTT DATA Corporation
Shigenori Takei NTT Software Corporation
Ikuya Fukumoto Japan Computer Emergency Response Team Coordination Center

(JPCERT/CC)
Mariko Yoshida Sony Digital Network Applications, Inc.
Nobuaki Yamaguchi Sony Digital Network Applications, Inc.
Jun Ogiso Sony Digital Network Applications, Inc.
Junki Hisamoto Sony Digital Network Applications, Inc.
Masahiro Kasahara SoftBank Corp.
Ito Takefumi Nihon System Kaihatsu Co., Ltd.
Shigeru Yatabe Fomalhaut Techno Solutions

(In no particular order)

610



Secure Coding Guide Documentation Release 2025-01-29

Authors of February 1, 2017 Edition

Leader

Ken Okuyama

Sony Digital Network Applications, Inc.

Member

Shigeharu Araki Android Security Japan
Eiji Shimano Android Security Japan
Akihiro Shiota NTT DATA Corporation
Shigenori Takei NTT Software Corporation
Ikuya Fukumoto Software Research Associates, Inc.
Tomomi Ohuchi Software Research Associates, Inc.
Yoichi Yamanoi Software Research Associates, Inc.
Hidenori Yamaji Sony Corporation
Akira Ando Sony Digital Network Applications, Inc.
Jun Ogiso Sony Digital Network Applications, Inc.
Masaru Matsunami Sony Digital Network Applications, Inc.
Tetsuya Takahashi SQUARE ENIX CO., LTD.
Gaku Taniguchi Tao Software, Inc.

(In no particular order)

611



Secure Coding Guide Documentation Release 2025-01-29

Authors of September 1, 2016 Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Shigeharu Araki Android Security Japan
Shigenori Takei NTT Software Corporation
Ikuya Fukumoto Software Research Associates, Inc.
Tomomi Ohuchi Software Research Associates, Inc.
Hidenori Yamaji Sony Corporation
Akira Ando Sony Digital Network Applications, Inc.
Jun Ogiso Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Mitake Ohtani Sony Digital Network Applications, Inc.
Daisuke Mitsuzono Nihon System Kaihatsu Co., Ltd.
Eiji Shimano Tao Software, Inc.
Gaku Taniguchi Tao Software, Inc.

(In no particular order)

612



Secure Coding Guide Documentation Release 2025-01-29

Authors of February 1, 2016 Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Masaomi Adachi Android Security Japan
Tohru Ohzono Cisco Systems, Inc.
Shigenori Takei NTT Software Corporation
Masahiro Kasahara SoftBank Mobile Corp.
Eiji Hoshimoto Software Research Associates, Inc.
Ikuya Fukumono Software Research Associates, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Mitake Ohtani Sony Digital Network Applications, Inc.
Muneaki Nishimura Sony Digital Network Applications, Inc.
Setsuko Kaji Sony Digital Network Applications, Inc.
Taeko Ito Sony Digital Network Applications, Inc.
Hidenori Yamaji Sony Mobile Communications Inc.
Eiji Shimano Tao Software, Inc.
Gaku Taniguchi Tao Software, Inc.

(In no particular order)

613



Secure Coding Guide Documentation Release 2025-01-29

Authors of June 1, 2015 Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Tohru Ohzono Cisco Systems, Inc.
Akio Kondo BRILLIANTSERVICE co., Ltd.
Kazuma Mitake BRILLIANTSERVICE co., Ltd.
Kyosuke Imanishi BRILLIANTSERVICE co., Ltd.
Masato Shintani BRILLIANTSERVICE co., Ltd.
Naohiko Shimura BRILLIANTSERVICE co., Ltd.
Ryuji Fujita BRILLIANTSERVICE co., Ltd.
Shohei Hara BRILLIANTSERVICE co., Ltd.
Tomoyuki Fujisawa BRILLIANTSERVICE co., Ltd.
Yutaka Kawahara BRILLIANTSERVICE co., Ltd.
Shigeru Yatabe Fomalhaut Techno Solutions
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigenori Takei NTT Software Corporation
Masahiro Kasahara SoftBank Mobile Corp.
Eiji Hoshimoto Software Research Associates, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Muneaki Nishimura Sony Digital Network Applications, Inc.
Eiji Shimano Tao Software, Inc.
Gaku Taniguchi Tao Software, Inc.

(In no particular order)

614



Secure Coding Guide Documentation Release 2025-01-29

Authors of July 1, 2014 English Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Tohru Ohzono Cisco Systems, Inc.
Shigeru Yatabe Fomalhaut Techno Solutions
Keisuke Takemori KDDI CORPORATION
Takamasa Isohara KDDI CORPORATION
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigenori Takei NTT Software Corporation
Masahiro Kasahara SoftBank Mobile Corp.
Eiji Hoshimoto Software Research Associates, Inc.
Tsutomu Kumazawa Software Research Associates, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Setsuko Kaji Sony Digital Network Applications, Inc.
Taeko Ito Sony Digital Network Applications, Inc.
Yoshinori Kataoka Sony Digital Network Applications, Inc.
Eiji Shimano Tao Software, Inc.
Gaku Taniguchi Tao Software, Inc.
Michiyoshi Sato Tokyo System House Co., Ltd.

(In no particular order)

615



Secure Coding Guide Documentation Release 2025-01-29

Authors of April 1, 2014 English Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Tomoyuki Hasegawa Android Security Japan
Mayumi Nishiyama BJIT Inc.
Tohru Ohzono Cisco Systems, Inc.
Masaki Kubo Japan Computer Emergency Response Team Coordination Center

(JPCERT/CC)
Daniel Burrowes Kobe Digital Labo Inc.
Zachary Mathis Kobe Digital Labo Inc.
Renta Futamura NextGen, Inc.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigenori Takei NTT Software Corporation
Ikuya Fukumono Software Research Associates, Inc.
Tsutomu Kumazawa Software Research Associates, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Hiroko Nakajima Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Satoshi Fujimura Sony Digital Network Applications, Inc.
Setsuko Kaji Sony Digital Network Applications, Inc.
Taeko Ito Sony Digital Network Applications, Inc.
Yoshinori Kataoka Sony Digital Network Applications, Inc.
Hidenori Yamaji Sony Mobile Communications Inc.
Takuya Nishibayashi Sony Mobile Communications Inc.
Koji Isoda Symantec Japan, Inc.
Gaku Taniguchi Tao Software, Inc.
Michiyoshi Sato Tokyo System House Co., Ltd.

(In no particular order)

616



Secure Coding Guide Documentation Release 2025-01-29

Authors of April 1, 2013 Japanese Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Masaomi Adachi Android Security Japan
Tomoyuki Hasegawa Android Security Japan
Yuki Abe Software Research Associates, Inc.
Tomomi Oouchi Software Research Associates, Inc.
Tsutomu Kumazawa Software Research Associates, Inc.
Toshimi Sawada Software Research Associates, Inc.
Kiyoshi Hata Software Research Associates, Inc.
Youichi Higa Software Research Associates, Inc.
Yuu Fukui Software Research Associates, Inc.
Ikuya Fukumoto Software Research Associates, Inc.
Eiji Hoshimoto Software Research Associates, Inc.
Shun Yokoi Software Research Associates, Inc.
Takakazu Yoshizawa Software Research Associates, Inc.
Takeshi Fujiwara NRI SecureTechnologies, Ltd.
Shigenori Takei NTT Software Corporation
Masaki Kubo Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Hiroshi Kumagai Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Yozo Toda Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Tohru Ohzono Cisco Systems, Inc.
Toru Asano Sony Digital Network Applications, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Ryohji Ikebe Sony Digital Network Applications, Inc.
Jun Ogiso Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Yoshinori Kataoka Sony Digital Network Applications, Inc.
Muneaki Nishimura Sony Digital Network Applications, Inc.
Koji Furusawa Sony Digital Network Applications, Inc.
Kenji Yamaoka Sony Digital Network Applications, Inc.
Gaku Taniguchi Tao Software, Inc.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigeru Yatabe Fomalhaut Techno Solutions

(In no particular order)

617



Secure Coding Guide Documentation Release 2025-01-29

Authors of November 1, 2012 Japanese Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato Android Security Japan
Nakaguchi Akihiko Android Security Japan
Tomomi Oouchi Software Research Associates, Inc.
Naoyuki Ohira Software Research Associates, Inc.
Tsutomu Kumazawa Software Research Associates, Inc.
Miki Sekikawa Software Research Associates, Inc.
Seigo Nakano Software Research Associates, Inc.
Youichi Higa Software Research Associates, Inc.
Ikuya Fukumoto Software Research Associates, Inc.
Eiji Hoshimoto Software Research Associates, Inc.
Shoichi Yasuda Software Research Associates, Inc.
Tadayuki Yahiro Software Research Associates, Inc.
Takakazu Yoshizawa Software Research Associates, Inc.
Shigenori Takei NTT Software Corporation
Keisuke Takemori KDDI CORPORATION
Masaki Kubo Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Hiroshi Kumagai Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Yozo Toda Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Tohru Ohzono Cisco Systems, Inc.
Toru Asano Sony Digital Network Applications, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Ryohji Ikebe Sony Digital Network Applications, Inc.
Shigeru Ichikawa Sony Digital Network Applications, Inc.
Mitake Ohtani Sony Digital Network Applications, Inc.
Jun Ogiso Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Yoshinori Kataoka Sony Digital Network Applications, Inc.
Ikue Sato Sony Digital Network Applications, Inc.
Muneaki Nishimura Sony Digital Network Applications, Inc.
Kazuo Yamaoka Sony Digital Network Applications, Inc.
Takeru Kikkawa Sony Digital Network Applications, Inc.
Gaku Taniguchi Tao Software, Inc.
Eiji Shimano Tao Software, Inc.
Hisao Kitamura Tao Software, Inc.
Takao Yamakawa Japan Online Game Association
Masaki Ishihara Nihon System Kaihatsu Co., Ltd.
Yasuaki Mori Nihon System Kaihatsu Co., Ltd.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigeru Yatabe Fomalhaut Techno Solutions
Shigeki Fujii UNIADEX, Ltd.

(In no particular order)

618



Secure Coding Guide Documentation Release 2025-01-29

Authors of June 1, 2012 Japanese Edition

Leader

Masaru Matsunami

Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato Android Security Japan
Tomomi Oouchi Software Research Associates, Inc.
Youichi Higa Software Research Associates, Inc.
Eiji Hoshimoto Software Research Associates, Inc.
Shigenori Takei NTT Software Corporation
Masaaki Chida GREE, Inc.
Masaki Kubo Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Hiroshi Kumagai Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Yozo Toda Japan Computer Emergency Response Team Coordination Cen-

ter(JPCERT/CC)
Tohru Ohzono Cisco Systems, Inc.
Yoichi Taguchi System House. ING Co., Ltd.
Masahiko Sakamoto Secure Sky Technology, Inc.
Akira Ando Sony Digital Network Applications, Inc.
Shigeru Ichikawa Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Shigeru Ichikawa Sony Digital Network Applications, Inc.
Ken Okuyama Sony Digital Network Applications, Inc.
Ikue Sato Sony Digital Network Applications, Inc.
Muneaki Nishimura Sony Digital Network Applications, Inc.
Kazuo Yamaoka Sony Digital Network Applications, Inc.
Gaku Taniguchi Tao Software, Inc.
Eiji Shimano Tao Software, Inc.
Hisao Kitamura Tao Software, Inc.
Michiyoshi Sato Tokyo System House Co., Ltd.
Masakazu Hattori Trend Micro Incorporated.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigeru Yatabe Fomalhaut Techno Solutions
Shigeki Fujii UNIADEX, Ltd.

(In no particular order)

619


	1 Introduction
	1.1 Building a Secure Smartphone Society
	1.2 Timely Feedback on a Regular Basis Through the Beta Version
	1.3 Usage Agreement of the Guidebook
	Articles Revised from February 29, 2024 Edition

	2 Composition of the Guidebook
	2.1 Developer’s Context
	2.2 Sample Code, Rule Book, Advanced Topics
	2.2.1 Sample Code
	2.2.2 Rule Book
	2.2.3 Advanced Topics

	2.3 The Scope of the Guidebook
	2.4 Literature on Android Secure Coding
	2.5 Steps to Install Sample Codes into Android Studio
	2.5.1 Installing the Sample Project
	2.5.1.1 Download the sample code.
	2.5.1.2 Extract the sample code.
	2.5.1.3 Designate where to deploy.
	2.5.1.4 Designate workspace by starting up Android Studio
	2.5.1.5 Open an existing Android Studio project
	2.5.1.6 Select the project
	2.5.1.7 Finish Opening

	2.5.2 Setup the debug.keystore to run and test the Sample Code
	2.5.2.1 Click on File -> Project Structure...
	2.5.2.2 Add Signing
	2.5.2.3 Select "debug.keystore" as a Store File
	2.5.2.4 Set Signing Config
	2.5.2.5 Confirm build.gradle file

	2.5.3 Setting the Trusted Location


	3 Basic Knowledge of Secure Design and Secure Coding
	3.1 Android Application Security
	3.1.1 "Asset": Object of Protection
	3.1.1.1 Information Assets of the Android Smartphone
	3.1.1.2 Function Assets of an Android Smartphone

	3.1.2 "Threats": Attacks that Threaten Assets
	3.1.2.1 Network-based Third-Party
	3.1.2.2 Threat Due to User-Installed Malware
	3.1.2.3 Threat of an Malicious File that Exploits a Vulnerability in an Application
	3.1.2.4 Threats from a Malicious Smartphone User
	3.1.2.5 Threats from Third Party in the Proximity of a Smartphone
	3.1.2.6 Summary of Threats

	3.1.3 Asset Classification and Protective Countermeasures
	3.1.4 Sensitive Information

	3.2 Handling Input Data Carefully and Securely

	4 Using Technology in a Safe Way
	4.1 Creating/Using Activities
	4.1.1 Sample Code
	4.1.1.1 Creating/Using Private Activities
	4.1.1.2 Creating/Using Public Activities
	4.1.1.3 Creating/Using Partner Activities
	4.1.1.4 Creating/Using In-house Activities

	4.1.2 Rule Book
	4.1.2.1 Activities that are Used Only Internally to the Application Must be Set Private (Required)
	4.1.2.2 Do Not Specify taskAffinity (Required)
	4.1.2.3 Do Not Specify launchMode (Required)
	4.1.2.4 Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)
	4.1.2.5 Handling the Received Intent Carefully and Securely (Required)
	4.1.2.6 Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House Application (Required)
	4.1.2.7 When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Destination Application (Required)
	4.1.2.8 Use the explicit Intents if the destination Activity is predetermined. (Required)
	4.1.2.9 Handle the Returned Data from a Requested Activity Carefully and Securely (Required)
	4.1.2.10 Verify the Destination Activity if Linking with Another Company's Application (Required)
	4.1.2.11 When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of Protection (Required)
	4.1.2.12 Sending Sensitive Information Should Be Limited as much as possible (Recommended)

	4.1.3 Advanced Topics
	4.1.3.1 Combination of Exported Attribute and Intent Filter Setting (For Activity)
	4.1.3.2 Validating the Requesting Application
	4.1.3.3 Reading Intents Sent to an Activity
	4.1.3.4 Root Activity
	4.1.3.5 Log Output When using Activities
	4.1.3.6 Protecting against Fragment Injection in PreferenceActivity
	4.1.3.7 The Autofill framework
	4.1.3.8 Blocking of Unmatched Intents
	4.1.3.9 Restrictions on Implicit Intent and Pending Intent
	4.1.3.10 Secure Background Activity Launch
	4.1.3.11 Expanded Intent Filter Functionality
	4.1.3.12 Enhanced Intent Security
	4.1.3.13 Changes to package stopped state


	4.2 Receiving/Sending Broadcasts
	4.2.1 Sample Code
	4.2.1.1 Private Broadcast Receiver - Receiving/Sending Broadcasts
	4.2.1.2 Public Broadcast Receiver - Receiving/Sending Broadcasts
	4.2.1.3 In-house Broadcast Receiver - Receiving/Sending Broadcasts

	4.2.2 Rule Book
	4.2.2.1 Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)
	4.2.2.2 Handle the Received Intent Carefully and Securely (Required)
	4.2.2.3 Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house Application (Required)
	4.2.2.4 When Returning a Result Information, Pay Attention to the Result Information Leakage from the Destination Application (Required)
	4.2.2.5 When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)
	4.2.2.6 Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)
	4.2.2.7 Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be Delivered (Required)
	4.2.2.8 Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)
	4.2.2.9 When Providing an Asset Secondarily, the Asset should be protected with the Same Protection Level (Required)

	4.2.3 Advanced Topics
	4.2.3.1 Combination of Exported Attribute and the Intent-filter setting (For Receiver)
	4.2.3.2 Receiver Won't Be Registered before Launching the Application
	4.2.3.3 Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID Application
	4.2.3.4 Types and Features of Broadcasts
	4.2.3.5 Broadcasted Information May be Output to the LogCat
	4.2.3.6 Items to Keep in Mind When Placing an App Shortcut on the Home Screen
	4.2.3.7 ACTION_CLOSE_SYSTEM_DIALOGS
	4.2.3.8 Enhanced Safety of Dynamic Broadcast Receiver


	4.3 Creating/Using Content Providers
	4.3.1 Sample Code
	4.3.1.1 Creating/Using Private Content Providers
	4.3.1.2 Creating/Using Public Content Providers
	4.3.1.3 Creating/Using Partner Content Providers
	4.3.1.4 Creating/Using In-house Content Providers
	4.3.1.5 Creating/Using Temporary permit Content Providers

	4.3.2 Rule Book
	4.3.2.1 Content Provider that Is Used Only in an Application Must Be Set as Private (Required)
	4.3.2.2 Handle the Received Request Parameter Carefully and Securely (Required)
	4.3.2.3 Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house Application (Required)
	4.3.2.4 When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Destination Application (Required)
	4.3.2.5 When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of Protection (Required)
	4.3.2.6 Handle the Returned Result Data from the Content Provider Carefully and Securely (Required)

	4.3.3 Advanced
	4.3.3.1 Content URI Permission Management


	4.4 Creating/Using Services
	4.4.1 Sample Code
	4.4.1.1 Creating/Using Private Services
	4.4.1.2 Creating/Using Public Services
	4.4.1.3 Creating/Using Partner Services
	4.4.1.4 Creating/Using In-house Services

	4.4.2 Rule Book
	4.4.2.1 Service that Is Used Only in an application, Must Be Set as Private (Required)
	4.4.2.2 Handle the Received Data Carefully and Securely (Required)
	4.4.2.3 Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house Application (Required)
	4.4.2.4 Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)
	4.4.2.5 When Returning a Result Information, Pay Attention the Result Information Leakage from the Destination Application (Required)
	4.4.2.6 Use the Explicit Intent if the Destination Service Is fixed (Required)
	4.4.2.7 Verify the Destination Service If Linking with the Other Company's Application (Required)
	4.4.2.8 When Providing an Asset Secondarily, the Asset should be protected with the Same Level Protection (Required)
	4.4.2.9 Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

	4.4.3 Advanced Topics
	4.4.3.1 Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)
	4.4.3.2 How to Implement Service
	4.4.3.3 Requirement for Specifying of Service Types
	4.4.3.4 Foreground Service Changes


	4.5 Using SQLite
	4.5.1 Sample Code
	4.5.1.1 Creating/Operating Database

	4.5.2 Rule Book
	4.5.2.1 Set DB File Location and Access Right Correctly (Required)
	4.5.2.2 Use Content Provider for Access Control When Sharing DB Data with Other Application (Required)
	4.5.2.3 Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation. (Required)

	4.5.3 Advanced Topics
	4.5.3.1 When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be Implemented
	4.5.3.2 Use External Input to SQL Command in which Place Holder Cannot Be Used
	4.5.3.3 Take a Countermeasure that Database Is Not Overwritten Unexpectedly
	4.5.3.4 Verify the Validity of Input/Output Data of DB, According to Application's Requirement
	4.5.3.5 Consideration - the Data Stored into Database
	4.5.3.6 [Reference] Encrypt SQLite Database (SQLCipher for Android)


	4.6 Handling Files
	4.6.1 Sample Code
	4.6.1.1 Using Private Files
	4.6.1.2 Using Public Read Only Files
	4.6.1.3 Using Public Read/Write Files
	4.6.1.4 Using Eternal Memory (Read Write Public) Files

	4.6.2 Rule Book
	4.6.2.1 File Must Be Created as a Private File in Principle (Required)
	4.6.2.2 Must Not Create Files that Be Allowed to Read/Write Access from Other Applications (Required)
	4.6.2.3 Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Required)
	4.6.2.4 Application Should Be Designed Considering the Scope of File (Required)

	4.6.3 Advanced Topics
	4.6.3.1 File Sharing Through File Descriptor
	4.6.3.2 Access Permission Setting for the Directory
	4.6.3.3 Access Permission Setting for Shared Preference and Database File
	4.6.3.4 Specification Change regarding External Storage Access in Android 4.4 (API Level 19) and later
	4.6.3.5 Revised specifications in Android 7.0 (API Level 24) for accessing specific directories on external storage media
	4.6.3.6 Storage access for Android 10 and later (internal and external storage)
	4.6.3.7 Storage access for Android 10 and later (shared storage)
	4.6.3.8 Enhanced Safety of DCL (Dynamic Code Loading)
	4.6.3.9 Measures for Preventing Path Traversal by Zip Files
	4.6.3.10 Query the most recent user’s choice for accessing selected photos
	4.6.3.11 Private Space


	4.7 Using Browsable Intent
	4.7.1 Sample Code
	4.7.2 Rule Book
	4.7.2.1 (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link (Required)
	4.7.2.2 Handle the URL Parameter Carefully and Securely (Required)


	4.8 Outputting Log to LogCat
	4.8.1 Sample Code
	4.8.2 Rule Book
	4.8.2.1 Sensitive Information Must Not Be Included in Operation Log Information (Required)
	4.8.2.2 Construct the Build System to Auto-delete Codes which Output Development Log Information When Build for the Release (Recommended)
	4.8.2.3 Use Log.d()/v() Method When Outputting Throwable Object (Recommended)
	4.8.2.4 Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

	4.8.3 Advanced Topics
	4.8.3.1 Two Ways of Thinking for the Log Outputting in Release version application
	4.8.3.2 Selection Standards of Log Level and Log Output Method
	4.8.3.3 DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically
	4.8.3.4 Remove Sensitive Information from Assembly
	4.8.3.5 The Contents of Intent Is Output to LogCat
	4.8.3.6 Restrain Log which Is Output to System.out/err


	4.9 Using WebView
	4.9.1 Sample Code
	4.9.1.1 Show Only Contents Stored under assets/res Directory in the APK
	4.9.1.2 Show Only Contents which Are Managed In-house
	4.9.1.3 Show Contents which Are Not Managed In-house

	4.9.2 Rule Book
	4.9.2.1 Enable JavaScript Only If Contents Are Managed In-house (Required)
	4.9.2.2 Use HTTPS to Communicate to Servers which Are Managed In-house (Required)
	4.9.2.3 Verify That the URL Received from Others Such as Through Intent Is the Expected URL (Required)
	4.9.2.4 Handle SSL Error Properly (Required)

	4.9.3 Advanced Topics
	4.9.3.1 Vulnerability caused by addJavascriptInterface() at Android versions 4.1 or earlier
	4.9.3.2 Issue caused by file scheme
	4.9.3.3 Specifying a Sender Origin When Using Web Messaging
	4.9.3.4 Safe Browsing in WebView


	4.10 Using Notifications
	4.10.1 Sample Code
	4.10.2 Rule Book
	4.10.2.1 Regardless of the Visibility setting, Notifications must not contain sensitive information (although private information is an exception) (Required)
	4.10.2.2 Notifications with Visibility=Public must not contain private information (Required)
	4.10.2.3 For Notifications that contain private information, Visibility must be explicitly set to Private or Secret (Required)
	4.10.2.4 When using Notifications with Visibility=Private, create an additional Notification with Visibility=Public for public display (Recommended)

	4.10.3 Advanced Topics
	4.10.3.1 On User-granted Permission to View Notifications
	4.10.3.2 Touch to Be Passed Through Specific Window
	4.10.3.3 Mutability of the PendingIntent Object
	4.10.3.4 Runtime Permissions for Notifications
	4.10.3.5 Change in Operation for Notifications Indicating Progress


	4.11 Using Shared Memory
	4.11.1 Overview of Android Shared Memory
	4.11.2 Sample Code
	4.11.2.1 Creating/Using Private Services
	4.11.2.2 Creating/Using Public Services
	4.11.2.3 Creating/Using Partner Services
	4.11.2.4 Creating/Using In-house Services

	4.11.3 Rule Book
	4.11.3.1 Permissions are set properly by the side providing the shared memory for allowing access by the using side (required)
	4.11.3.2 All data in the shared memory is designed assuming that it will be read by sharing applications (required)

	4.11.4 Advanced Topics
	4.11.4.1 Actual State of Shared Memory



	5 How to use Security Functions
	5.1 Creating Password Input Screens
	5.1.1 Sample Code
	5.1.2 Rule Book
	5.1.2.1 Provide the Mask Display Feature, If the Password Is Entered (Required)
	5.1.2.2 Provide the Option to Display Password in a Plain Text (Required)
	5.1.2.3 Mask the Password when Activity Is Launched (Required)
	5.1.2.4 When Displaying the Last Input Password, Dummy Password Must Be Displayed (Required)

	5.1.3 Advanced Topics
	5.1.3.1 Login Process
	5.1.3.2 Changing Password
	5.1.3.3 Regarding "Make passwords visible" Setting
	5.1.3.4 Disabling Screen Shot
	5.1.3.5 Integrate Credential Manager with Autofill


	5.2 Permission and Protection Level
	5.2.1 Sample Code
	5.2.1.1 How to Use System Permissions of Android OS
	5.2.1.2 How to Communicate Between In-house Applications with In-house-defined Signature Permission
	5.2.1.3 How to Verify the Hash Value of an Application's Certificate
	5.2.1.4 Methods for using Dangerous Permissions in Android 6.0 and later

	5.2.2 Rule Book
	5.2.2.1 System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets (Required)
	5.2.2.2 Your Own Dangerous Permission Must Not Be Used (Required)
	5.2.2.3 Your Own Signature Permission Must Only Be Defined on the Provider-side Application (Required)
	5.2.2.4 Verify If the In-house-defined Signature Permission Is Defined by an In-house Application (Required)
	5.2.2.5 Your Own Normal Permission Should Not Be Used (Recommended)
	5.2.2.6 The String for Your Own Permission Name Should Be of an Extent of the Package Name of Application (Recommended)

	5.2.3 Advanced Topics
	5.2.3.1 Characteristics of Android OS that Avoids Self-defined Signature Permission and Its Counter-measures
	5.2.3.2 Falsification of AndroidManifest.xml by a User
	5.2.3.3 Detection of APK Falsification
	5.2.3.4 Permission Re-delegation Problem
	5.2.3.5 Signature check mechanism for custom permissions (Android 5.0 and later)
	5.2.3.6 Modifications to the Permission model specifications in Android versions 6.0 and later
	5.2.3.7 Function That Automatically Resets Unused App Permissions in Android 11.0 and Later
	5.2.3.8 Auto-hibernation Function for Unused Applications on Android 12
	5.2.3.9 API Return Value Change Following Specification Changes to the Package Access
	5.2.3.10 Revoking Runtime Permissions
	5.2.3.11 Disabling sharedUserId in Newly Installed Apps
	5.2.3.12 Installable Minimum Target API Levels


	5.3 Add In-house Accounts to Account Manager
	5.3.1 Sample Code
	5.3.1.1 Creating In-house accounts
	5.3.1.2 Using In-house Accounts

	5.3.2 Rule Book
	5.3.2.1 Service that Provides Authenticator Must Be Private (Required)
	5.3.2.2 Login Screen Activity Must Be Implemented by Authenticator Application (Required)
	5.3.2.3 The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by Other Applications (Required)
	5.3.2.4 Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity (Required)
	5.3.2.5 Sensitive Information (like Account Information and Authentication Token) Must Not Be Output to the Log (Required)
	5.3.2.6 Password Should Not Be Saved in Account Manager (Recommended)
	5.3.2.7 HTTPS Should Be Used for Communication Between an Authenticator and the Online Service (Required)
	5.3.2.8 Account Process Should Be Executed after verifying if the Authenticator is the regular one (Required)

	5.3.3 Advanced Topics
	5.3.3.1 Usage of Account Manager and Permission
	5.3.3.2 Exception Occurs When Signature Keys of User Application and Authenticator Application Are Different, in Android 4.0.x
	5.3.3.3 Cases in which Authenticator accounts with non-matching signatures may be read in Android 8.0 (API Level 26) or later


	5.4 Communicating via HTTPS
	5.4.1 Sample Code
	5.4.1.1 Communicating via HTTP
	5.4.1.2 Communicating via HTTPS<!– 2b8c337d –>
	5.4.1.3 Communicating via HTTPS with private certificate

	5.4.2 Rule Book
	5.4.2.1 Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)
	5.4.2.2 Received Data over HTTP Must be Handled Carefully and Securely (Required)
	5.4.2.3 SSLException Must Be Handled Appropriately like Notification to User (Required)
	5.4.2.4 Custom TrustManager Must Not Be Created (Required)
	5.4.2.5 Custom HostnameVerifier Must Not Be Created (Required)

	5.4.3 Advanced Topics
	5.4.3.1 How to Create Private Certificate and Configure Server Settings
	5.4.3.2 Install Root Certificate of Private Certificate Authority to Android OS's Certification Store
	5.4.3.3 Risky Code that Disables Certificate Verification
	5.4.3.4 A note regarding the configuration of HTTP request headers
	5.4.3.5 Notes and sample implementations for pinning
	5.4.3.6 Strategies for addressing OpenSSL vulnerabilities using Google Play Services
	5.4.3.7 Network Security Configuration
	5.4.3.8 (Column): Transitioning to TLS1.2/TLS1.3 for secure connections


	5.5 Handling privacy data
	5.5.1 Sample Code
	5.5.1.1 Both broad consent and specific consent are granted: Applications that incorporate application privacy policy
	5.5.1.2 Broad consent is granted: Applications that incorporate application privacy policy
	5.5.1.3 Broad consent is not needed: Applications that incorporate application privacy policy
	5.5.1.4 Applications that do not incorporate an application privacy policy

	5.5.2 Rule Book
	5.5.2.1 Restrict transmissions of user data to the minimum necessary (Required)
	5.5.2.2 On first launch (or application update), obtain broad consent to transmit user data that requires particularly delicate handling or that may be difficult for users to change (Required)
	5.5.2.3 Obtain specific consent before transmitting user data that requires particularly delicate handling (Required)
	5.5.2.4 Provide methods by which the user can review the application privacy policy (Required)
	5.5.2.5 Use UUIDs or cookies for identifiers linked with user data (Do not use device-specific identifiers) (Required)
	5.5.2.6 Place a summary version of the application privacy policy in the assets folder (Recommended)
	5.5.2.7 Provide methods by which transmitted data can be deleted and transmitting data can be stopped by user operations (Recommended)
	5.5.2.8 If you will only be using user data within the device, notify the user that data will not be transmitted externally. (Recommended)

	5.5.3 Advanced Topics
	5.5.3.1 Some background and context regarding privacy policies
	5.5.3.2 Glossary of Terms
	5.5.3.3 Version-dependent differences in handling of Android IDs
	5.5.3.4 Restriction on obtaining non-resettable device identifiers on Android 10
	5.5.3.5 Data Access Auditing
	5.5.3.6 Location Information Access
	5.5.3.7 Microphones and Cameras For Android 12
	5.5.3.8 SameSite Cookie on WebView
	5.5.3.9 Media Owner Package Names
	5.5.3.10 Screen Recording Detection
	5.5.3.11 Partial Screen Sharing
	5.5.3.12 Changes in Global State Management in DND mode


	5.6 Using Cryptography
	5.6.1 Sample Code
	5.6.1.1 Encrypting and Decrypting With Password-based Keys
	5.6.1.2 Encrypting and Decrypting With Public Keys
	5.6.1.3 Encrypting and Decrypting Using Pre Shared Keys
	5.6.1.4 Using Password-based Keys to Detect Data Falsification
	5.6.1.5 Using Public Keys to Detect Data Falsification
	5.6.1.6 Using Pre Shared Keys to Detect Data Falsification

	5.6.2 Rule Book
	5.6.2.1 When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the Padding (Required)
	5.6.2.2 Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)
	5.6.2.3 When Using Password-based Encryption, Do Not Store Passwords on Device (Required)
	5.6.2.4 When Generating Keys from Passwords, Use Salt (Required)
	5.6.2.5 When Generating Key from Password, Specify Appropriate Hash Iteration Count (Required)
	5.6.2.6 Take Steps to Increase the Strengths of Passwords (Recommended)

	5.6.3 Advanced Topics
	5.6.3.1 Choosing encryption methods
	5.6.3.2 Generation of random numbers
	5.6.3.3 Measures to Protect against Vulnerabilities in Random-Number Generators
	5.6.3.4 Protecting Key
	5.6.3.5 Addressing Vulnerabilities with Security Provider from Google Play Services
	5.6.3.6 Conscrypt Module
	5.6.3.7 Countermeasures against backup data leaks
	5.6.3.8 Hard-coded Cryptographic Secrets


	5.7 Using biometric authentication features
	5.7.1 Sample Code
	5.7.1.1 Authentication Linked with Key
	5.7.1.2 Performing User Authentication Only

	5.7.2 Rule Book
	5.7.2.1 When creating (registering) keys, use an encryption algorithm that is not vulnerable (meets standards). (Required)
	5.7.2.2 Restrict encrypted data to items that can be restored (replaced) by methods other than biometric authentication. (Required)
	5.7.2.3 Notify users that biometric information registration will be required to create a key. (Recommended)

	5.7.3 Advanced Topics
	5.7.3.1 Preconditions for the use of biometric authentication features by Android apps
	5.7.3.2 Changes to Biometric Authentication on Android 11



	6 Difficult Problems
	6.1 Risk of Information Leakage from Clipboard
	6.1.1 Sample Code
	6.1.1.1 Delete copy/cut from the menu when character string selection
	6.1.1.2 Disable Long Click View

	6.1.2 Rule Book
	6.1.2.1 Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

	6.1.3 Advanced Topics
	6.1.3.1 Precautions When Applying Rules
	6.1.3.2 Usage of Information Stored in Clipboard
	6.1.3.3 Clipboard Access Notification



	Revision history
	Published by
	Authors of February 29 2024 Edition
	Authors of August 29 2022 Edition
	Authors of January 17 2022 Edition
	Authors of October 19 2021 Edition
	Authors of November 1, 2020 Edition
	Authors of September 1 2019 Edition
	Authors of September 1, 2018 Edition
	Authors of February 1, 2018 Edition
	Authors of February 1, 2017 Edition
	Authors of September 1, 2016 Edition
	Authors of February 1, 2016 Edition
	Authors of June 1, 2015 Edition
	Authors of July 1, 2014 English Edition
	Authors of April 1, 2014 English Edition
	Authors of April 1, 2013 Japanese Edition
	Authors of November 1, 2012 Japanese Edition
	Authors of June 1, 2012 Japanese Edition


