

Android Application
Secure Design/Secure Coding

Guidebook

July 1st, 2014 Edtion

Japan Smartphone Security Association (JSSEC)

Secure Coding Group

 Document control number: JSSEC-TECA-SC-GD20140701BE

 The content of this guide is up to date as of the time of publication, but standards and environments are constantly evolving.

When using sample code, make sure you are adhering to the latest coding standards and best practices.

 JSSEC and the writers of this guide are not responsible for how you use this document. Full responsibility lies with you, the user

of the information provided.

 Android™ is a trademark or a registered trademark of Google Inc.

The company names, product names and service names appearing in this document are generally the registered trademarks or

trademarks of their respective companies.

Further, the registered trademark ®, trademark (TM) and copyright © symbols are not used throughout this document.

 Parts of this document are copied from or based on content created and provided by Google, Inc. They are used here in

accordance with the provisions of the Creative Commons Attribution 3.0 License

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Android Application Secure Design/Secure Coding Guidebook
- Beta version -
July 1st, 2014

Japan Smartphone Security Association
Secure Coding Group

Index

1. Introduction .. 9
1.1. Building a Secure Smartphone Society ... 9
1.2. Timely Feedback on a Regular Basis Through the Beta Version ... 10
1.3. Usage Agreement of the Guidebook .. 11
1.4. Correction articles of April 1 2014 edtion .. 12

2. Composition of the Guidebook .. 14
2.1. Developer's Context .. 14
2.2. Sample Code, Rule Book, Advanced Topics .. 15
2.3. The Scope of the Guidebook ... 18
2.4. Literature on Android Secure Coding ... 19
2.5. Steps to Install Sample Codes into Eclipse ... 20

3. Basic Knowledge of Secure Design and Secure Coding ... 36
3.1. Android Application Security ... 36
3.2. Handling Input Data Carefully and Securely ... 49

4. Using Technology in a Safe Way ... 51
4.1. Creating/Using Activities .. 51
4.2. Receiving/Sending Broadcasts ... 96
4.3. Creating/Using Content Providers ... 129
4.4. Creating/Using Services .. 179
4.5. Using SQLite ... 223
4.6. Handling Files ... 241
4.7. Using Browsable Intent .. 268
4.8. Outputting Log to LogCat .. 272
4.9. Using WebView ... 284

5. How to use Security Functions ... 295
5.1. Creating Password Input Screens ... 295
5.2. Permission and Protection Level .. 310
5.3. Add In-house Accounts to Account Manager ... 338
5.4. Communicating via HTTPS .. 357
5.5. Handling privacy data ... 379
5.6. Using Cryptography .. 412

6. Difficult Problems ... 441

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 1

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

6.1. Risk of Information Leakage from Clipboard .. 441

2 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Revision history

Date Revised contents
2014-04-01 Initial English Edition
2014-07-01 Added new articles below

 5.5 Handling privacy data
 5.6 Using Cryptography

 New editions of the guidebook updated based on public opinions and comments.

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 3

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Published by -

Japan Smartphone Security Association
Secure Coding Group, Application Working Group, Smartphone Technology Committee

Leader Masaru Matsunami Sony Digital Network Applications, Inc.
Member Tohru Ohzono Cisco Systems, Inc.
 Shigeru Yatabe Cisco Systems, Inc
 Keisuke Takemori KDDI CORPORATION
 Takamasa Isohara KDDI CORPORATION
 Naonobu Yatsukawa Nihon Unisys, Ltd.
 Shigenori Takei NTT Software Corporation
 Masahiro Kasahara SoftBank Mobile Corp.
 Eiji Hoshimoto Software Research Associates, Inc.
 Tsutomu Kumazawa Software Research Associates, Inc.
 Akira Ando Sony Digital Network Applications, Inc.
 Ken Okuyama Sony Digital Network Applications, Inc.
 Setsuko Kaji Sony Digital Network Applications, Inc.
 Taeko Ito Sony Digital Network Applications, Inc.
 Yoshinori Kataoka Sony Digital Network Applications, Inc
 Eiji Shimano Tao Software, Inc.
 Gaku Taniguchi Tao Software, Inc.
 Michiyoshi Sato Tokyo System House Co., Ltd.
 (In no particular order)

4 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of April 1, 2014 English Edition -

Leader
Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Tomoyuki Hasegawa Android Security Japan
Mayumi Nishiyama BJIT Inc.
Tohru Ohzono Cisco Systems, Inc.
Masaki Kubo Japan Computer Emergency Response Team

Coordination Center (JPCERT/CC)
Daniel Burrowes, Zachary Mathis Kobe Digital Labo Inc.
Renta Futamura NextGen, Inc.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigenori Takei NTT Software Corporation
Ikuya FUkumono, Tsutomu Kumazawa Software Research Associates, Inc.
Akira Ando, Hiroko Nakajima, Ken
Okuyama, Satoshi Fujimura, Setsuko
Kaji, Taeko Ito, Yoshinori Kataoka

Sony Digital Network Applications, Inc.

Hidenori Yamaji, Takuya Nishibayashi Sony Mobile Communications Inc.
Koji Isoda Symantec Japan, Inc.
Gaku Taniguchi Tao Software, Inc.
Michiyoshi Sato Tokyo System House Co., Ltd.

 (In no particular order)

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 5

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of April 1, 2013 Japanese Edition -

Leader
Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Masaomi Adachi, Tomoyuki Hasegawa Android Security Japan
Yuki Abe, Tomomi Oouchi, Tsutomu
Kumazawa, Toshimi Sawada, Kiyoshi
Hata, Youichi Higa, Yuu Fukui, Ikuya
Fukumoto, Eiji Hoshimoto, Shun Yokoi,
Takakazu Yoshizawa

Software Research Associates, Inc.

Takeshi Fujiwara NRI SecureTechnologies, Ltd.
Shigenori Takei NTT Software Corporation
Masaki Kubo, Hiroshi Kumagai, Yozo
Toda

Japan Computer Emergency Response Team
Coordination Center (JPCERT/CC)

Tohru Ohzono, Shigeru Yatabe Cisco Systems, Inc.
Toru Asano, Akira Ando, Ryohji Ikebe,
Jun Ogiso, Ken Okuyama, Yoshinori
Kataoka, Muneaki Nishimura, Koji
Furusawa, Kenji Yamaoka

Sony Digital Network Applications, Inc.

Gaku Taniguchi Tao Software, Inc.
Naonobu Yatsukawa Nihon Unisys, Ltd.

 (In no particular order)

6 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of November 1, 2012 Japanese Edition -

Leader
Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato, Nakaguchi Akihiko Android Security Japan
Tomomi Oouchi, Naoyuki Ohira,
Tsutomu Kumazawa, Miki Sekikawa,
Seigo Nakano, Youichi Higa, Ikuya
Fukumoto, Eiji Hoshimoto, Shoichi
Yasuda, Tadayuki Yahiro, Takakazu
Yoshizawa

Software Research Associates, Inc.

Shigenori Takei NTT Software Corporation
Keisuke Takemori KDDI CORPORATION
Masaki Kubo, Hiroshi Kumagai, Yozo
Toda

Japan Computer Emergency Response Team
Coordination Center (JPCERT/CC)

Tohru Ohzono, Shigeru Yatabe Cisco Systems, Inc.
Toru Asano, Akira Ando, Ryohji Ikebe,
Shigeru Ichikawa, Mitake Ohtani, Jun
Ogiso, Ken Okuyama, Yoshinori
Kataoka, Ikue Sato, Muneaki Nishimura,
Kazuo Yamaoka, Takeru Kikkawa

Sony Digital Network Applications, Inc.

Gaku Taniguchi, Eiji Shimano, Hisao
Kitamura

Tao Software, Inc.

Takao Yamakawa Japan Online Game Association
Masaki Ishihara, Yasuaki Mori Nippon System Kaihatsu Co., Ltd.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Shigeki Fujii UNIADEX, Ltd.

 (In no particular order)

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 7

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

- Authors of June 1, 2012 Japanese Edition-

Leader
Masaru Matsunami Sony Digital Network Applications, Inc.

Member

Katsuhiko Sato Android Security Japan
Tomomi Oouchi, Youichi Higa, Eiji
Hoshimoto

Software Research Associates, Inc.

Shigenori Takei NTT Software Corporation
Masaki Kubo, Hiroshi Kumagai, Yozo
Toda

Japan Computer Emergency Response Team
Coordination Center (JPCERT/CC)

Tohru Ohzono, Shigeru Yatabe Cisco Systems, Inc.
Yoichi Taguchi System House. ING Co., Ltd.
Masahiko Sakamoto Secure Sky Technology, Inc.
Akira Ando, Shigeru Ichikawa, Ken
Okuyama, Ikue Sato, Muneaki
Nishimura, Kazuo Yamaoka

Sony Digital Network Applications, Inc.

Hidehira Kuranaga Daiwa Institute of Research Holdings Ltd.
Gaku Taniguchi, Eiji Shimano, Hisao
Kitamura

Tao Software, Inc.

Michiyoshi Sato Tokyo System House Co., Ltd.
Masakazu Hattori Trend Micro Incorporated.
Naonobu Yatsukawa Nihon Unisys, Ltd.
Masaaki Chida NetAgent Inc.
Shigeki Fujii UNIADEX, Ltd.

 (In no particular order)

8 All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

1. Introduction

1.1. Building a Secure Smartphone Society

This guidebook is a collection of tips concerning the know-how of secure designs and secure coding
for Android application developers. Our intent is to have as many Android application developers as
possible take advantage of this, and for that reason we are making it public.

In recent years, the smartphone market has witnessed a rapid expansion, and its momentum seems
unstoppable. Its accelerated growth is brought on due to the diverse range of applications. An
unspecified large number of key functions of mobile phones that were once not accessible due to
security restrictions on conventional mobile phones have been made open to smartphone
applications. Subsequently, the availability of varied applications that were once closed to
conventional mobile phones is what makes smartphones more attractive.

With great power that comes from smartphone applications comes great responsibility from their
developers. The default security restrictions on conventional mobile phones had made it possible to
maintain a relative level of security even for applications that were developed without security
awareness. As it has been aforementioned with regard to smartphones, since the key advantage of a
smartphone is that they are open to application developers, if the developers design or code their
applications without the knowledge of security issues then this could lead to risks of users' personal
information leakage or exploitation by malware causing financial damage such as from illicit calls to
premium-rate numbers.

Due to Android being a very open model allowing access to many functions on the smartphone, it is
believed that Android application developers need to take more care about security issues than iOS
application developers. In addition, responsibility for application security is almost solely left to the
application developers. For example, applications can be released to the public without any
screening from a marketplace such as Google Play (former Android Market), though this is not
possible for iOS applications.

In conjunction with the rapid growth of the smartphone market, there has been a sudden influx of
software engineers from different areas in the smartphone application development market. As a
result, there is an urgent call for the sharing knowledge of secure design and consolidation of secure
coding know-how for specific security issues related to mobile applications.

Due to these circumstances, Japan's Smartphone Security Association (JSSEC) has launched the
Secure Coding Group, and by collecting the know-how of secure design as well as secure coding of
Android applications, it has decided to make all of the information public with this guidebook. It is
our intention to raise the security level of many of the Android applications that are released in the
market by having many Android application developers become acquainted with the know-how of
secure design and coding. As a result, we believe we will be contributing to the creation of a more
reliable and safe smartphone society.

All rights reserved © Japan Smartphone Security Association. Building a Secure Smartphone Society 9

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

1.2. Timely Feedback on a Regular Basis Through the Beta Version

We, the JSSEC Secure Coding Group, will do our best to keep the content contained in the Guidebook
as accurate as possible, but we cannot make any guarantees. We believe it is our priority to publicize
and share the know-how in a timely fashion. Equally, we will upload and publicize what we consider
to be the latest and most accurate correct information at that particular juncture, and will update it
with more accurate information once we receive any feedback or corrections. In other words, we are
taking the beta version approach on a regular basis. We think this approach would be meaningful for
many of the Android application developers who are planning on using the Guidebook.

The latest version of the Guidebook and sample codes can be obtained from the URL below.
 http://www.jssec.org/dl/android_securecoding_en.pdf Guidebook (English)
 http://www.jssec.org/dl/android_securecoding_en.zip Sample Codes (English)

The latest Japanese version can be obtained from the URL below.
 http://www.jssec.org/dl/android_securecoding.pdf Guidebook (Japanese)
 http://www.jssec.org/dl/android_securecoding.zip Sample Codes (Japanese)

10 All rights reserved © Japan Smartphone Security Association. Timely Feedback on a Regular Basis Through the
Beta Version

http://www.jssec.org/dl/android_securecoding_en.pdf
http://www.jssec.org/dl/android_securecoding_en.zip
http://www.jssec.org/dl/android_securecoding.pdf
http://www.jssec.org/dl/android_securecoding.zip

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

1.3. Usage Agreement of the Guidebook

We need your consent for the following two precautionary statements when using the Guidebook.
1. The information contained in the Guidebook may be inaccurate. Please use the information

written here by your own discretion.
2. In case of finding any mistakes contained in the Guidebook, please send us an e-mail to the

address listed below. However, we cannot guarantee a reply or any revisions thereof.

Japan Smartphone Security Association
E-mail: sec@jssec.org
Subject: [Comment] Android Secure Coding Guidebook 20130401EN
Content: Name (optional), Affiliation (optional), E-mail (optional), Comment (required) and

Other matters (optional)

All rights reserved © Japan Smartphone Security Association. Usage Agreement of the Guidebook 11

mailto:sec@jssec.org

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

1.4. Correction articles of April 1 2014 edtion

This section provides a list of corrections and modifications for the previous edition from the
viewpoint of security, as a result of further studies.

In correcting articles, we adopted the outcomes of our studies and the valuable opinions of those
who read the former editions of this guidebook.
Especially, taking in readers' opinions is considered as a key factor in making the document highly
practical.

We recommend, for those who use a previous edition of the document as a reference, taking a look at
the list below. Note that the list does not include the following kinds of changes and error
corrections: fixes of typos, new articles added in this edition, organizational changes, and
improvements in expression.

Any comments, opinions or suggestions on this guidebook are greatly appreciated.

Correction articles list
Correction points of April 1,
2014 edtion

Correction articles of
this edtion

Correction argument

4.1.3.1. Combining Exported
Attributes and Intent Filter
Settings (For Activities)

4.1.3.1 Combining
Exported Attributes and
Intent Filter Settings
(For Activities)

If you donot set the exported attribute,
the exported (default) value is
determined depending on the presence
of intent-filter. But the (default) value is
different according to Android vesion.
Therefor, we prohibit not to set the
exported attribute.

4.2.3.1. Combinations of the
exported Attribute and the
Intent-filter setting (For
Receiver)

4.2.3.1 Combinations
of the exported
Attribute and the
Intent-filter setting (For
Receiver)

Same as above

4.4.3.1. Combination of
Exported Attribute and
Intent-filter Setting (In the
Case of Service)

4.4.3.1 Combination of
Exported Attribute and
Intent-filter Setting (In
the Case of Service)

Same as above

5.2.2.3. Your Own Signature
Permission Must Only Be
Defined on the Provider-side
Application (Required)
5.2.2.4. Verify If the

5.2.2.3 Your Own
Signature Permission
Must Only Be Defined on
the Provider-side
Application

The mentioned for the
SignatureOrSystem Permission.

12 All rights reserved © Japan Smartphone Security Association. Correction articles of April 1 2014 edtion

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

In-house-defined Signature
Permission Is Defined by an
In-house Application
 (Required)

 (Required)
5.2.2.4 Verify If the
In-house-defined
Signature Permission Is
Defined by an In-house
Application
 (Required)

5.4.2.2. Received Data over
HTTP Must be Handled
Carefully and Securely
 (Required)

5.4.2.2 Received Data
over HTTP Must be
Handled Carefully and
Securely
 (Required)

We added that the input validation is
necessity during HTTPS communication.

All rights reserved © Japan Smartphone Security Association. Correction articles of April 1 2014 edtion 13

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2. Composition of the Guidebook

2.1. Developer's Context

Many guidebooks that have been written on secure coding include warnings about harmful coding
practices and their suggested revisions. Although this approach can be useful at the time of
reviewing the source code that has already been coded, it can be confusing for developers that are
about to start coding, as they do not know which article to refer to.

The Guidebook has focused on the developer's context of "What is a developer trying to do at this
moment?" Equally, we have taken steps to prepare articles that are aligned with the developer's
context. For example, we have divided articles into project units by presuming that a developer will
be involved in operations such as [Creating/Using Activities], [Using SQLite], etc.

We believe that by publishing articles that support the developer's context, developers will be able to
easily locate necessary articles that will be instantly useful in their projects.

14 All rights reserved © Japan Smartphone Security Association. Developer's Context

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2.2. Sample Code, Rule Book, Advanced Topics

Each article is comprised of three sections: Sample Code, Rule Book, and Advanced Topics. If you are
in a hurry, please look up the Sample Code and Rule Book sections. The content is provided in a way
where it can be reused to a certain degree. For those who have issues that go beyond these, please
refer the Advanced Topics section. We have given descriptions that will be helpful in finding solutions
for individual cases.

Unless it is specifically noted, our focus of development will be targeted to platforms concerning
Android 2.2 (API Level 8) and later. Since we have not verified the operational capability of any
versions pertaining to Android 2.1 (API Level 7) or prior, the measures described may prove
ineffective on these older systems. In addition, even for versions that are covered under the scope of
focus, it is important to verify their operational capability by testing them on your own environment
before releasing them publically.

2.2.1. Sample Code

Sample code that serves as the basic model within the developer's context and functions as the
theme of an article is published in the Sample Code section. If there are multiple patterns, we have
provided source code for the different patterns and classified them accordingly. We have strived to
make our commentaries as simple as possible. For example, when we want to direct the reader's
attention to a security issue that requires attention, a bullet-point number will appear next to "Point"
in the article. We will also comment on the sample code that corresponds to the bullet-point number
by writing "*** Point (Number) ***." Please note that a single point may correspond to multiple
pieces of sample code. There are sections throughout the entire source code, albeit very little
compared to the entire code, that requires our attention for security. In order to be able to survey the
sections that call for scrutiny, we try to post the entire class unit of sample code.

Please note that only a portion of sample code is posted in the Guidebook. A compressed file, which
contains the entire sample code, is made public in the URL listed below. It is made public by the
Apache License, Version 2.0; therefore, please feel free to copy and paste it. Please note that we have
minimized the code for error processing in the sample code to prevent it from becoming too long.

 http://www.jssec.org/dl/android_securecoding_en.zip Sample Codes Archive

The projects/keystore file that is attached in the sample code is the keystore file that contains the
developer key for the signature of the APK. The password is "android." Please use it when singing the
APK in the In-house sample code.

We have provided the keystore file, debug.keystore, for debugging purposes. When using Eclipse for
development, it is convenient for verifying the operational capability of the In-house sample code if a
file path is set in the In-house defined debug keystore of [Android]-[Build] of [Preferences] in
advance. In addition, for sample code that is comprised of multiple APKs, it is necessary to match the
android:debuggable setting contained inside each AndroidManifest.xml in order to verify the

All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics 15

http://www.jssec.org/dl/android_securecoding_en.zip

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

cooperation between each APK. If the android:debuggable setting is not explicit set when installing
the APK from Eclipse, it will automatically become android:debuggable= "true."

For embedding the sample code as well as keystore file into Eclipse, please refer to "2.5 Steps to
Install Sample Codes into Eclipse."

2.2.2. Rule Book

Rules and matters that need to be considered regarding security within the developer's context will
be published in the Rule Book section. Rules to be handled in that section will be listed in a table
format at the beginning and will be divided into two levels: "Required" and "Recommended." The
rules will consist of two types of affirmative and negative statements. For example, an affirmative
statement that expresses that a rule is required will say "Required." An affirmative statement that
expresses a recommendation will say "Recommended." For a negative statement that expresses the
requisite nature of the rule would say, "Definitely not do." For a negative sentence that expresses a
recommendation would say, "Not recommended." Since these differentiations of levels are based on
the subjective viewpoint of the author, it should only be used as a point of reference.

Sample code that is posted in the Sample Code section reflect these rules and matters that need to be
considered, and a detailed explanation on them is available in the Rule Book section. Furthermore,
rules and matters that need to be considered that are not dealt with in the Sample Code section are
handled in the Rule Book section.

2.2.3. Advanced Topics
Items that require our attention, but that could not be covered in the Sample Code and Rule Book
sections within the developer's context will be published in the Advanced Topics section. The
Advanced Topics section can be utilized to explore ways to solve separate issues that could not be
solved in the Sample Code or Rule Book sections. For example, subject matters that contain personal
opinions as well as topics on the limitations of Android OS in relation the developer's context will be
covered in the Advanced Topics section.

Developers are always busy. Many developers are asked to have basic knowledge of security and
produce as many Android applications as quickly as possible in a somewhat safe manner than to
really understand the deep security matters. However, there are certain applications out there that
require a high level of security design and implementation from the beginning. For developers of
such applications, it is necessary for them to have a deep understanding concerning the security of
Android OS.

In order to benefit both developers who emphasize development speed and also those who
emphasize security, all articles of the Guidebook are divided into the three sections of Sample Code,
Rule Book, and Advanced Topics. The aim of the Sample Code and Rule Book sections is to provide
generalizations about security that anyone can benefit from and source code that will work with a
minimal amount of customization and hopefully by just copying and pasting. In the Advanced Topics
section, we offer materials that will help developers think in a certain way when they are facing

16 All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

specific problems. It is the aim of the Advanced Topics section to help developers examine optimal
secure design and coding when they are involved in building individual applications.

All rights reserved © Japan Smartphone Security Association. Sample Code, Rule Book, Advanced Topics 17

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2.3. The Scope of the Guidebook

The purpose of the Guidebook is to collect security best practices that are necessary for general
Android application developers. Consequently, our scope is focused mainly on security tips (The
"Application Security" section in figure below) for the development of Android applications that are
distributed primarily in a public market.

Figure 2.3-1

Security regarding the implementation of components in the Device Security of the above figure is
outside the scope of this guidebook. There are differences in the viewpoint of security between
general applications that are installed by users and pre-installed applications by device
manufacturers. The Guidebook only handles the former and does not deal with the latter. In the
current version, tips only on the implementation by Java are posted, but in future versions, we plan
on posting tips on JNI implementations as well.

Also as of now we do not handle threats that results from an attacker obtaining root privileges. We
will assume the premise of a secure Android device in which it is not possible to obtain root privileges
and base our security advice on utilizing the Android OS security model. For handling of assets and
threats, we have provided a detailed description on "3.1.3 Asset Classification and Protective
Countermeasures."

Application
Security

Device
Security

18 All rights reserved © Japan Smartphone Security Association. The Scope of the Guidebook

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2.4. Literature on Android Secure Coding

Since we are not able to discuss all of Android's secure coding in the Guidebook, we recommend that
you read the literature mentioned below in conjunction with the Guidebook.

 Android Security: Anzenna Application Wo Sakusei Surutameni (Secured Programming in

Android)
Author: Taosoftware Co., Ltd. ISBN: 978-4-8443-3134-6
http://www.amazon.co.jp/dp/4844331345/

 The CERT Oracle Secure Coding Standard for Java
Authors: Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, David Svoboda
http://www.amazon.com/dp/0321803957

All rights reserved © Japan Smartphone Security Association. Literature on Android Secure Coding 19

http://www.amazon.co.jp/dp/4844331345/
http://www.amazon.com/dp/0321803957

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2.5. Steps to Install Sample Codes into Eclipse

This section explains how to install sample code into Eclipse. Sample code is divided into multiple
projects depending on the purpose. Installing all of the sample code at once is described in, "2.5.1
Installing the Sample Project" and how to selectively install the sample code is described in, "2.5.2
Install by Selecting Individual Projects of the Sample." After the installation is completed, please refer
to "2.5.3 Setup the Sample Code Validator debug.keystore" and install the debug.keystore file into
Eclipse. We have verified the following steps in the following environment:

 OS

 Windows 7 Ultimate SP1
 Android Developer Tool

 Build: v22.3.0-887826
 Android SDK

 Android 2.2(API 8)
 For any sample projects that do not require any attention can be built through Android

2.2 (API 8). However, depending on the sample, some may require SDK Platform that
comes later than Android 2.3.3 (API 10).

2.5.1. Installing the Sample Project

1. Download the sample code.

Acquire the sample code from the URL shown in "2.2.1 Sample Code"

2. Extract the sample code.
Right click on the sample code that has been compressed into zip file, and click on "Extract All"
as shown below.

Figure 2.5-1

3. Designate where to deploy.

Create a workspace under the name "C:¥android_securecoding" by designating "C:¥" and
clicking on the "Extract" button.

20 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 2.5-2

After clicking on the "Extract" button, right underneath "C:¥" a folder called
"android_securecoding" will be created.

Figure 2.5-3

The sample code is contained in the"android_securecoding" folder. For example, when you want
to refer to the sample code within "4.1.1.3 Creating/Using Partner Activities" of "4.1
Creating/Using Activities" please look below.

android_securecoding
 ┗Create Use Activity
 ┗Activity PartnerActivity

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 21

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

In this way, the sample code project will be located under the chapter title in the
"android_securecoding" folder.

4. Designate workspace by starting up Eclipse
Launch Eclipse from the start menu or from a desktop icon. From the displayed selected dialogue,
designate "C:¥android_securecoding" the workspace that was deployed in the previous step. If
the selected dialogue is not displayed, click on "File->Switch Workspace->Other..." from the
menu.

Figure 2.5-4

C:¥android_securecoding

22 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5. Display the workbench
Close the Android IDE pane after Eclipse has been launched.

Figure 2.5-5

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 23

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

6. Start importing
Right click on the package explorer and click "Import".

Figure 2.5-6

7. Import existing projects into workspace

Click on "Existing Projects into Workspace" and then click "Next"

Figure 2.5-7

24 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

8. Select the project
Click on "Browse" next to the "Select root directory"

Figure 2.5-8

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 25

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

9. Select the extracted folder "android_securecoding"

Figure 2.5-9

26 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

10. Finish importing
Click "Finish" to import all of the projects. If "Copy project into workspace" is checked, the folder
hierarchy of each project will become flat. Please be aware that some projects may refer to the
"Shared/JSSEC Shared" folder which can lead to a compilation error if the folder hierarchy is
changed. In the case of installing only a portion of a project, please refer to, "2.5.2 Install by
Selecting Individual Projects of the Sample."

Figure 2.5-10

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 27

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

11. All projects are imported

Figure 2.5-11

28 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2.5.2. Install by Selecting Individual Projects of the Sample Project

Please refer to "2.5.1 Installing the Sample Project" and follow the steps until "10. Finishing
importing".

Figure 2.5-12

Select only necessary projects
and import

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 29

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Some projects may refer to the "JSSEC Shared" folder. In that case, if the "JSSEC Shared" is not
imported, it will look like the figure below. Please import "JSSEC Shared" if you need it

Figure 2.5-13

30 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Select "JSSEC Shared" and import it as shown below.

Figure 2.5-14

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 31

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2.5.3. Setup the Sample Code Validator debug.keystore

A signature is needed in order to activate a sample-code-generated application onto an Android
device or emulator. Install the debugging key file "debug.keystore" that will be used for the signature
into Eclipse.

1. Click on Window->Preferences

Figure 2.5-15

32 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

2. Click "Browse" after selecting Android->Build

Figure 2.5-16

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 33

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3. Click on and open "debug.keystore"
Debug.keystore is contained in the sample code (underneath the android_securecoding folder)

Figure 2.5-17

34 All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4. Click "OK" and apply the setting
Finally, after verifying that the path of debug.keystore, click on "OK" to finish as shown below.

Figure 2.5-18

All rights reserved © Japan Smartphone Security Association. Steps to Install Sample Codes into Eclipse 35

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3. Basic Knowledge of Secure Design and Secure Coding

Although the Guidebook is a collection of security advice concerning Android application
development, this chapter will deal with the basic knowledge on general secure design and secure
coding of Android smartphones and tablets. Since we will be referring to secure design and coding
concepts in the later chapters we recommend that you familiarize yourself with the content contained
in this chapter first.

3.1. Android Application Security

There is a commonly accepted way of thinking when examining security issues concerning systems
or applications. First, we need to have a grasp over the objects we want to protect. We will call these
assets. Next, we want to gain an understanding over the possible attacks that can take place on an
asset. We will call these threats. Finally, we will examine and implement measures to protect assets
from the various threats. We will call these countermeasures.

What we mean by countermeasures here is secure design and secure coding, and will deal with these
subjects after Chapter 4. In this section, we will focus on explaining assets and threats.

3.1.1. Asset: Object of Protection

There are two types of objects of protection within a system or an application: information and
functions. We will call these information assets and function assets. An information asset refers to
the type of information that can be referred to or changed only by people who have permission. It is
a type of information that cannot be referred to or changed by anyone who does not have the
permission. A function asset refers to a function that can be used only by people who have
permission and no one else.

Below, we will introduce types of information assets and functional assets that exist in Android
smartphones and tablets. We would like you to use the following as a point of reference to deliberate
on matters with regard to assets when developing a system that utilizes Android applications or
Android smartphones/tablets. For the sake of simplicity, we will collectively call Android
smartphones/tablets as Android smartphones.

3.1.1.1. Information Asset of an Android Smartphone

Table 3.1-1 and Table 3.1-2 represent examples of information contained on an Android
smartphone. Appropriate protection is necessary since this information is equivalent to personal
information, confidential information or information that belongs to both.

36 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Table 3.1-1 Examples of Information Managed by an Android Smartphone
Information Remarks
Phone number Telephone number of the smartphone itself
Call history Time and date of incoming and outgoing calls as well as phone numbers
IMEI Device ID of the smartphone
IMSI Subscriber ID
Sensor information GPS, geomagnetic, rate of acceleration, etc.
Various setup
information

Wi-Fi setting value, etc...

Account information Various account information, authentication information, etc.
Media data Pictures, videos, music, recording, etc...
...

Table 3.1-2 Examples of Information Managed by an Application

Information Remarks
Contacts Contacts of acquaintances
E-mail address User's e-mail address
E-mail mail box Content of incoming and outgoing e-mail, attachments, etc.
Web bookmarks Bookmarks
Web browsing history Browsing history
Calendar Plans, to-do list, events, etc.
Facebook SNS content, etc.
Twitter SNS content, etc.
...

The type of information seen in Table 3.1-1 is mainly the type of information that is stored on the
Android smartphone itself or on an SD card. Similarly, the type of information seen in Table 3.1-2 is
primarily managed by an application. In particular, the type of information seen in Table 3.1-2 grows
in proportion to the number of applications installed on the device.

Table 3.1-3 is the amount of information contained in one entry case of contacts. The information
here is not of the smartphone user's, but of the smartphone user's friends. In other words, we must
be aware that a smartphone not only contains information on the user, but of other people too.

Table 3.1-3 Examples of Information Contained in One Contact Entry
Information Content
Phone number Home phone number, mobile phone number, FAX, MMS, etc.
E-mail address Home e-mail, work e-mail, mobile phone e-mail, etc.
Photo Thumbnail image, large image, etc.
IM address AIM, MSN, Yahoo, Skype, QQ, Google Talk, ICQ, Jabber, Net meeting, etc.
Nicknames Acronyms, initials, maiden names, nicknames, etc.
Address Country, postal code, region, area, town, street name, etc.
Group membership Favorites, family, friends, coworkers, etc.
Website Blogs, profile site, homepage, FTP server, home, office, etc.
Events Birthdays, anniversaries, others, etc.

All rights reserved © Japan Smartphone Security Association. Android Application Security 37

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Relation Spouse, children, father, mother, manager, assistants, domestic partner,
partners, etc.

SIP address Home, work, other, etc.
... ...

Until now, we have primarily focused on information about smartphone users, however, application
possesses other important information as well. Figure 3.1-1 displays a typical view of the
information inside an application divided into the program portion and data portion. The program
portion mainly consists of information about the application developer, and the data portion mostly
pertains to user information. Since there could be information that an application developer may not
want a user to have access to, it is important to provide protective countermeasures to prohibit a user
from referring to or making changes to such information.

Figure 3.1-1 Information Contained in an Application

When creating an Android application, it is important to employ appropriate protective
countermeasures for information that an application manages itself, such as shown in Figure 3.1-1.
However, it is equally important to have robust security measure in place for information contained in
the Android smartphone itself as well as for information that has been gained from other
applications such as shown in Table 3.1-1, Table 3.1-2, and Table 3.1-3.

3.1.1.2. Function Assets of an Android Smartphone

Table 3.1-4 shows examples of features that an Android OS provides to an application. When these
features are exploited by a malware, etc., damages in the form of unexpected charges or loss of
privacy may be incurred by a user. Therefore, appropriate protective counter-measures that are
equal the one extended to information asset should be set in place.

/data/app/com.sonydna.picturemanager.apk
│ AndroidManifest.xml
│ classes.dex Java Code (Binary)
│ resources.arsc Resources (e.g. Strings)
│ …
├─assets
│ AppAbout_en.html Bundled Data
│ …
└─res

│ …
├─drawable-hdpi
│ broken_image.png Image Files
│ …
├─layout
│ about.xml Layout Information
│ …
└─xml

setting.xml XML Files

Program
/data/data/com.sonydna.picturemanager
├─cache
│ └─webviewCache Cache of WebView
│
├─databases
│ label.db DB for Application
│ metadata.db
│ webview.db DB for WebView
│ webviewCache.db DB for WebView Cache
│
├─files
│ MediaList1.dat Application Data Files
│
├─lib
│
└─shared_prefs Preference File

com.sonydna.picturemanager_preferences.xml

Data

Picture Manager User’s InformationApplication Vendor’s Information

38 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Table 3.1-4 Examples of Features an Android OS Provides to an Application
Function Function
Sending and receiving SMS messages Camera
Calling Volume
Network communication Reading the Contract List and Status of the

Mobile Phone
GPS SD card
Bluetooth communication Change system setup
NFC communication Reading Log Data
Internet communication (SIP) Obtaining Information of a Running Application

... ...

In addition to the functions that the Android OS provides to an application, the inter-application
communication components of Android applications are included as part of the function assets as
well. Android applications can allow other applications to utilize features by accessing their internal
components. We call this inter-application communication. This is a convenient feature, however,
there have been instances where access to functions that should only be used inside a particular
application are mistakenly given to other applications due the lack of knowledge regarding secure
coding on the part of the developer. There are functions provided by the application that could be
exploited by malware that resides locally on the device. Therefore, it is necessary to have appropriate
protective countermeasures to only allow legitimate applications to access these functions.

3.1.2. Threats: Attacks that Threaten Assets

In the previous section, we talked about the assets of an Android smartphone. In this section, we will
explain about attacks that can threaten an asset. Put simply, a threat to an asset is when a third party
who should not have permission, accesses, changes, deletes or creates an information asset or
illicitly uses a function asset. The act of directly or indirectly attacking such assets is called a "threat."
Furthermore, the malicious person or applications that commit these acts are referred to as the
source of the threats. Malicious attackers and malware are the sources of threats but are not the
threats themselves. The relationship between our definitions of assets, threats, threat sources,
vulnerabilities, and damage are shown below in Figure 3.1-2.

All rights reserved © Japan Smartphone Security Association. Android Application Security 39

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 3.1-2 Relation between Asset, Threat, Threat Source, Vulnerability, and Damage

Figure 3.1-3 shows a typical environment that an Android application behaves in. From now on, in
order to expand on the explanation concerning the type of threats an Android application faces by
using this figure as a base, we will first learn how to view this figure.

 Figure 3.1-3 Typical Environment an Android Application Behaves in

The figure above depicts the smartphone on the left and server on the right. The smartphone and
server communicate through the Internet over 3G/4G/Wi-Fi. Although multiple applications exist
within a smartphone, we are only showing a single application in the figure in order to explain the
threats clearly. Smartphone-based applications mainly handle user information, but the
server-based web services collectively manage information of all of its users. Consequently, there is
no change the importance of server security as usual. We will not touch upon issues relating to server
security as it falls outside of the scope of the Guidebook.

Threat(Attack)

Threat(Attack)

Vulnerability

Assets

Impact

Threat Source

Application

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

3G/4G/Wi-Fi

Web
Service

Application

All users
information

One user
Information

40 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

We will use the following figure to describe the type of threats that exist towards Android
applications.

3.1.2.1. Network-based Third-Party

Figure 3.1-4 Network-Based Malicious Third Party Attacking an Application

Generally, a smartphone application manages user information on a server so the information assets
will move between the networks connecting them. As indicated in Figure 3.1-4, a network-based
malicious third party may access (sniff) any information during this communication or try to change
information (data manipulation). The malicious attacker in the middle (also referred to as "Man in The
Middle") can also pretend to be the real server tricking the application. Without saying,
network-based malicious third parties will usually try to attack the server as well.

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

3G/4G/Wi-Fi

Web
Service

Malicious attacker on network

Attack Attack

App

Information
of all users

All rights reserved © Japan Smartphone Security Association. Android Application Security 41

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3.1.2.2. Threat Due to User-Installed Malware

Figure 3.1-5 Malware Installed by a User Attacks an Application

The biggest selling point of a smartphone is in its ability to acquire numerous applications from the
market in order to expand on its features. The downside to users being able to freely install many
applications is that they will sometimes mistakenly install malware. As shown in Figure 3.1-5,
malware may exploit the inter-application communication functions or a vulnerability in the
application in order to gain access to information or function assets.

3.1.2.3. Threat of an Malicious File that Exploits a Vulnerability in an Application

Figure 3.1-6 Attack from Malicious Files that Exploit a Vulnerability in an Application

Various types of files such as music, images, videos and documents are widely available on the

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Mal-
ware

Attack

Careless
user

Web
Service

Market
App

Information
of all users

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Careless
user

Web
Service

SD

Attack
file

Passive
attack

App

Information
of all users

42 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Internet and typically users will download many files to their SD card in order to use them on their
smartphone. Furthermore, it is also common to download attached files sent in an e-mail. These files
are later opened by a viewing or editing application.

If there is any vulnerability in the function of an application that processes these files, an attacker can
use a malicious file to exploit it and gain access to information or function assets of the application.
In particular, vulnerabilities are often present in processing a file format with a complex data
structure. The attacker can fulfill many different goals when exploiting an application in this way.

As shown in Figure 3.1-6, an attack file stays dormant until it is opened by a vulnerable application.
Once it is opened, it will start causing havoc by taking advantage of an application's vulnerability. In
comparison to an active attack, we call this attack method a "Passive Attack."

3.1.2.4. Threats from a Malicious Smartphone User

Figure 3.1-7 Attacks from a Malicious Smartphone User

With regard to application development for an Android smartphone, the environment as well as
features that help to develop and analyze an application are openly provided to the general user.
Among the features that are provided, the useful ADB debugging feature can be accessed by anyone
without registration or screening. This feature allows an Android smartphone user to easily perform
OS or application analysis.

As it is shown in Figure 3.1-7, a smartphone user with malicious intent can analyze an application by
taking advantage of the debugging feature of ADB and try to gain access to information or function
assets of an application. If the actual asset contained in the application belongs to the user, it poses
no problem, but if the asset belongs to someone other than the user, such as the application
developer, then it will become a concern. Accordingly, we need to be aware that the legitimate
smartphone user can maliciously target the assets within an application.

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

adb
debug

Smartphone
malicious userUSB

Attack

Web
ServiceApp

Information
of all users

All rights reserved © Japan Smartphone Security Association. Android Application Security 43

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3.1.2.5. Threats from Third Party in the Proximity of a Smartphone

Figure 3.1-8 Attacks from a Malicious Third Party in the Proximity of a Smartphone

Due to face that most smartphones possess a variety of near-field communication mechanisms, such
as NFC, Bluetooth and Wifi, we must not forget that attacks can occur from a malicious attacker who
is in physical proximity of a smartphone. An attacker can shoulder surf a password while peeping
over a user who is inputting it in. Or, as indicated in Figure 3.1-8, an attacker can be more
sophisticated and attack the Bluetooth functionality of an application from a remote distance. There
is also the threat that a malicious person could steal the smartphone creating a risk of data leakage
or even destroy the smartphone causing a loss of critical information. Developers need to take these
risks into consideration as well as early as the design stage.

3.1.2.6. Summary of Threats

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Web
Service

BT

Malicious attacker
standing by smartphone

Attack

App

Attack

Information
of all users

Smartphone Security Area (Conventional) Server Security Area

Smartphone Server

Mal-
ware

adb
debug

USB

Attack

Attack

Careless
user

3G/4G/Wi-Fi

Web
Service

Malicious attacker on the network

Attack Attack

BT

Malicious attacker
standing by smartphone

SD

Attack
file

Passive
attack

Market

Attack

App

Attack

Information
of all users

Smartphone
malicious user

44 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 3.1-9 Summary of the Various Attacks on Smartphone Applications

Figure 3.1-9 summarizes the main types of threats explained in the previous sections. Smartphones
are surrounded by a wide variety of threats and the figure above does not include all of them.
Through our daily information gathering, we need to spread the awareness concerning the various
threats that surround an Android application and be aware of them during the application's secure
design and coding. The following literature that was created by Japan's Smartphone Security
Association (JSSEC) contains other valuable information on the threats to smartphone security.

 Security Guidebook for Using Smartphones and Tablets [Version 1]

http://www.jssec.org/dl/Guidebook2011_v1.1.pdf (Japanese)
http://www.jssec.org/dl/Guidebook2012Enew_v1.0.pdf (English)

 Implementation Guidebook for Smartphone Network Security[Version 1]
http://www.jssec.org/dl/NetworkSecurityGuide1.pdf (Japanese)

 Cloud Usage Guidebook for Business Purposes of Smartphones [Beta Version]
http://www.jssec.org/dl/cloudguide2012_beta.pdf (Japanese)

 Guidebook for Reviewing the Implementation/Operation of MDM [Version1]
http://www.jssec.org/dl/MDMGuideV1.pdf (Japanese)

All rights reserved © Japan Smartphone Security Association. Android Application Security 45

http://www.jssec.org/dl/guidelines2011_v1.1.pdf
http://www.jssec.org/dl/guidelines2012Enew_v1.0.pdf
http://www.jssec.org/dl/NetworkSecurityGuide1.pdf
http://www.jssec.org/dl/cloudguide2012_beta.pdf
http://www.jssec.org/dl/MDMGuideV1.pdf

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3.1.3. Asset Classification and Protective Countermeasures

As was discussed in the previous sections, Android smartphones are surrounded by a variety of
threats. Protecting every asset in an application from such threats could prove to be very difficult
given the time it takes for development and due to technical limitations. Consequently, Android
application developers should examine feasible countermeasures for their assets. This should be
done according to priority level based on the developer's judgement criteria. This is a subjective
matter that is based on how the importance of an asset is viewed and what the accepted level of
damage is.

In order to help decide on the protective countermeasures for each asset, we will classify them and
stipulate the level of protective countermeasures for each group. This will be achieved by examining
the legal basis, pertaining to the level of importance regarding the impact of any damages that can
occur and the social responsibility of the developer (or organization). These will prove to be the
judgement criteria when deciding on how to handle each asset and the implementation of the type of
countermeasures. Since this will become a standard for application developers and organizations on
determining how to handle an asset and provide protective countermeasures, it is necessary to
specify the classification methods and pertaining countermeasures in accordance the application
developer's (or organization's) circumstances.

Asset classification and protective countermeasure levels that are adopted in the Guidebook are
shown below for reference:

46 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Table 3.1-5 Asset Classification and Protective Countermeasure Levels

Asset
Classification

Asset Level Level of Protective
Counter-Measures

High The amount of damage the asset
causes is fatal and catastrophic to
the organization or an individual's
activity.
i.e.) When an asset at this level is

damaged, the organization
will not be able to continue its
business.

 Provide protection against
sophisticated attacks that break
through the Android OS security
model and prevent root privilege
compromises and attacks that alter
the dex portion of an APK.
 Ensure security takes priority over

other elements such as user
experience, etc.

Medium The amount of damage the asset
causes has a substantial impact
the organization or an individual's
activity.
i.e.) When an asset at this level is

damaged, the organization's
profit level deteriorates,
adversely affecting its
business.

 Utilize the Android OS security
model. It will provide protection
covered under its scope.
 Ensure security takes priority over

other elements such as user
experience, etc.

Low The amount of damage the asset
causes has a limited impact on
the organization or an individual's
activity.
I.e.) When an asset at this level is

damaged, the organization's
profit level will be affected
but is able to compensate its
losses from other resources.

 Utilize the Android OS security
model. It will provide protection
covered under its scope.
 Compare security countermeasures

with other elements such as user
experience, etc. At this level, it is
possible for non-security issues to
take precedence over security
issues.

Asset classification and protective countermeasures described in the Guidebook are proposed under
the premise of a secure Android device where root privilege has not been compromised. Furthermore,
it is based on the security measures that utilize the security model of Android OS. Specifically, we are
hypothetically devising protective countermeasures by utilizing the Android OS security model on the
premise of a functioning Android OS security model against assets that are classified lower than or
equal to the medium level asset. On the other hand, we also believe in the necessity of protecting
high level assets from attacks that are caused due the breaching of the Android OS security model.
Such attacks include the compromise of root privileges and attacks that analyze or alter the APK
binary. To protect these types of assets, we need to design sophisticated defensive countermeasures
against such threats through the combination of multiple methods such as encryption, obfuscation,
hardware support and server support. As the collection of know-how regarding these defenses
cannot be easily written in this guidebook, and since appropriate defensive design differ in
accordance to individual circumstances, we have deemed them to be outside of the Guidebook's
scope. We recommend that you consult with a security specialist who is well versed in tamper
resistant designs of Android if your device requires protection from sophisticated attacks that
include attacks resulting from the compromise of root privileges or attacks caused by the analysis or
alteration of an APK file.

This Guidebook’s Scope of Foucs

All rights reserved © Japan Smartphone Security Association. Android Application Security 47

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3.1.4. Sensitive Information

The term "sensitive information", instead of information asset, will be used from now on in the
Guidebook. As it has been aforementioned in the previous section, we have to determine the asset
level and the level of protective countermeasures for each information asset that an application
handles.

48 All rights reserved © Japan Smartphone Security Association. Android Application Security

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3.2. Handling Input Data Carefully and Securely

Validating input data is the easiest and yet most effective secure coding method. All data that is
inputted into the application either directly or indirectly by an outside source needs to be properly
validated. To illustrate best practices of input data validation, the following is an example of an
Activity as used in a program that receives data from Intent.

It is possible that an Activity can receive data from an Intent that was tampered by an attacker. By
sending data with a format or a value that a programmer is not expecting, the attacker can induce a
malfunction in the application that leads to some sort of security incident. We must not forget that a
user can become an attacker as well.

Intents are configured by action, data and extras, and we must be careful when accepting all forms of
data that can be controlled by an attacker. We always need to validate the following items in any code
that handles data from an untrusted source.

(a) Does the received data match the format that was expected by the programmer and does the

value fall in the expected scope?
(b) Even if you have received the expected format and value, can you guarantee that the code which

handles that data will not behave unexpectedly?

The next example is a simple sample where HTML is acquired from a remote web page in a
designated URL and the code is displayed in TextView. However, there is a bug.

Sample Code that Displays HTML of a Remote Web page in TextView
TextView tv = (TextView) findViewById(R.id.textview);
InputStreamReader isr = null;
char[] text = new char[1024];
int read;
try {
 String urlstr = getIntent().getStringExtra("WEBPAGE_URL");
 URL url = new URL(urlstr);
 isr = new InputStreamReader(url.openConnection().getInputStream());
 while ((read=isr.read(text)) != -1) {
 tv.append(new String(text, 0, read));
 }
} catch (MalformedURLException e) { ...

From the viewpoint of (a), "urlstr is the correct URL", verified through the non-occurrence of a
MalformedURLException by a new URL(). However, this is not sufficient. Furthermore, when a
"file://..." formatted URL is designated by urlstr, the file of the internal file system is opened and is
displayed in TextView rather than the remote web page. This does not fulfill the viewpoint of (b),
since it does not guarantee the behavior which was expected by the programmer.

The next example shows a revision to fix the security bugs. Through the viewpoint of (a), the input
data is validated by checking that "urlstr is a legitimate URL and the protocol is limited to http or
https." As a result, even by the viewpoint of (b), the acquisition of an Internet-routed InputStream is
guaranteed through url.openConnection().getInputStream().

All rights reserved © Japan Smartphone Security Association. Handling Input Data Carefully and Securely 49

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Revised sample code that displays HTML of Internet-based Web page in TextView
TextView tv = (TextView) findViewById(R.id.textview);
InputStreamReader isr = null;
char[] text = new char[1024];
int read;
try {
 String urlstr = getIntent().getStringExtra("WEBPAGE_URL");
 URL url = new URL(urlstr);
 String prot = url.getProtocol();
 if (!"http".equals(prot) && !"https".equals(prot)) {
 throw new MalformedURLException("invalid protocol");
 }
 isr = new InputStreamReader(url.openConnection().getInputStream());
 while ((read=isr.read(text)) != -1) {
 tv.append(new String(text, 0, read));
 }
} catch (MalformedURLException e) { ...

Validating the safety of input data is called "Input Validation" and it is a fundamental secure coding
method. Surmising from the sense of the word of Input Validation, it is quite often the case where the
viewpoint of (a) is heeded but the viewpoint of (b) is forgotten. It is important to remember that
damage does not take place when data enters the program but when the program uses that data in
an incorrect way. We hope that you will refer the URLs listed below.

 The CERT Oracle Secure Coding Standard for Java

https://www.securecoding.cert.org/confluence/x/Ux (English)

 Application of CERT Oracle Secure Coding Standard for Android Application Development
https://www.securecoding.cert.org/confluence/x/C4AiBw (English)

 Rules Applicable Only to the Android Platform (DRD)
https://www.securecoding.cert.org/confluence/x/H4ClBg (English)

 IPA "Secure Programming Course"

http://www.ipa.go.jp/security/awareness/vendor/programmingv2/clanguage.html (Japanese)

50 All rights reserved © Japan Smartphone Security Association. Handling Input Data Carefully and Securely

https://www.securecoding.cert.org/confluence/x/Ux
https://www.securecoding.cert.org/confluence/x/C4AiBw
https://www.securecoding.cert.org/confluence/x/H4ClBg
http://www.ipa.go.jp/security/awareness/vendor/programmingv2/clanguage.html

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4. Using Technology in a Safe Way

In Android, there are many specific security related issues that pertain only to certain technologies
such as Activities or SQLite. If a developer does not have enough knowledge about each of the
different security issues regarding each technology when designing and coding, then unexpected
vulnerabilities may arise. This chapter will explain about the different scenarios that developers will
need to know when using their application components.

4.1. Creating/Using Activities

4.1.1. Sample Code

The risks and countermeasures of using Activities differ depending on how that Activity is being used.
In this section, we have classified 4 types of Activities based on how the Activity is being used. You
can find out which type of activity you are supposed to create through the following chart shown
below. Since the secure coding best practice varies according to how the activity is used, we will also
explain about the implementation of the Activity as well.

Table 4.1-1 Definition of Activity Types

Type Definition
Private Activity An activity that cannot be launched by another application, and

therefore is the safest activity
Public Activity An activity that is supposed to be used by an unspecified large

number of applications.
Partner Activity An activity that can only be used by specific applications made by a

trusted partner company.
In-house Activity An activity that can only be used by other in-house applications.

Figure 4.1-1

Start

Use only in
the same application?

In-house ActivityPrivate Activity Partner ActivityPublic Activity

Allow unspecified number
applications to use?

Allow specified company’s
applications to use

Yes No

Yes No

Yes No

Use only

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 51

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.1. Creating/Using Private Activities

Private Activities are Activities which cannot be launched by the other applications and therefore it is
the safest Activity.

When using Activities that are only used within the application (Private Activity), as long as you use
explicit Intents to the class then you do not have to worry about accidently sending it to any other
application. However, there is a risk that a third party application can read an Intent that is used to
start the Activity. Therefore it is necessary to make sure that if you are putting sensitive information
inside an Intent used to start an Activity that you take countermeasures to make sure that it cannot
be read by a malicious third party.

Sample code of how to create a Private Activity is shown below.

Points (Creating an Activity):
1. Do not specify taskAffinity.
2. Do not specify launchMode.
3. Explicitly set the exported attribute to false.
4. Handle the received intent carefully and securely, even though the intent was sent from the same

application.
5. Sensitive information can be sent since it is sending and receiving all within the same application.

To make the Activity private, set the "exported" attribute of the Activity element in the
AndroidManifest.xml to false.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.privateactivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Private activity -->
 <!-- *** POINT 1 *** Do not specify taskAffinity -->
 <!-- *** POINT 2 *** Do not specify launchMode -->
 <!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->
 <activity
 android:name=".PrivateActivity"
 android:label="@string/app_name"
 android:exported="false" />

 <!-- Public activity launched by launcher -->
 <activity
 android:name=".PrivateUserActivity"
 android:label="@string/app_name"

52 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

PrivateActivity.java
package org.jssec.android.activity.privateactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.private_activity);

 // *** POINT 4 *** Handle the received Intent carefully and securely, even though the Intent was sent from the
 same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = getIntent().getStringExtra("PARAM");
 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();
 }

 public void onReturnResultClick(View view) {

 // *** POINT 5 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
 Intent intent = new Intent();
 intent.putExtra("RESULT", "Sensitive Info");
 setResult(RESULT_OK, intent);
 finish();
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 53

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next, we show the sample code for how to use the Private Activity.

Point (Using an Activity):
6. Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.
7. Use the explicit Intents with the class specified to call an activity in the same application.
8. Sensitive information can be sent only by putExtra() since the destination activity is in the same

application.1
9. Handle the received result data carefully and securely, even though the data comes from an

activity within the same application.

PrivateUserActivity.java
package org.jssec.android.activity.privateactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateUserActivity extends Activity {

 private static final int REQUEST_CODE = 1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user_activity);
 }

 public void onUseActivityClick(View view) {

 // *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for intents to start an activity.
 // *** POINT 7 *** Use the explicit Intents with the class specified to call an activity in the same applicati
on.
 Intent intent = new Intent(this, PrivateActivity.class);

 // *** POINT 8 *** Sensitive information can be sent only by putExtra() since the destination activity is in t
he same application.
 intent.putExtra("PARAM", "Sensitive Info");

 startActivityForResult(intent, REQUEST_CODE);
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {
 case REQUEST_CODE:

1 Caution: Unless points 1, 2 and 6 are abided by, there is a risk that Intents may be read by a third party.
 Please refer to sections 4.1.2.2 and 4.1.2.3 for more details.

54 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 String result = data.getStringExtra("RESULT");

 // *** POINT 9 *** Handle the received data carefully and securely,
 // even though the data comes from an activity within the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
 break;
 }
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 55

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.2. Creating/Using Public Activities

Public Activities are Activities which are supposed to be used by an unspecified large number of
applications. It is necessary to be aware that Public Activities may receive Intents sent from malware.
In addition, when using Public Activities, it is necessary to be aware of the fact that malware can also
receive or read the Intents sent to them.

The sample code to create a Public Activity is shown below.

Points (Creating an Activity):
1. Explicitly set the exported attribute to true.
2. Handle the received intent carefully and securely.
3. When returning a result, do not include sensitive information.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.publicactivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Public Activity -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->
 <activity
 android:name=".PublicActivity"
 android:label="@string/app_name"
 android:exported="true">

 <!-- Define intent filter to receive an implicit intent for a specified action -->
 <intent-filter>
 <action android:name="org.jssec.android.activity.MY_ACTION" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>
</manifest>

PublicActivity.java
package org.jssec.android.activity.publicactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PublicActivity extends Activity {

56 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // *** POINT 2 *** Handle the received intent carefully and securely.
 // Since this is a public activity, it is possible that the sending application may be malware.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = getIntent().getStringExtra("PARAM");
 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();
 }

 public void onReturnResultClick(View view) {

 // *** POINT 3 *** When returning a result, do not include sensitive information.
 // Since this is a public activity, it is possible that the receiving application may be malware.
 // If there is no problem if the data gets received by malware, then it can be returned as a result.
 Intent intent = new Intent();
 intent.putExtra("RESULT", "Not Sensitive Info");
 setResult(RESULT_OK, intent);
 finish();
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 57

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next, Herein after sample code of Public Activity user side.

Points (Using an Activity):
4. Do not send sensitive information.
5. When receiving a result, handle the data carefully and securely.

PublicUserActivity.java
package org.jssec.android.activity.publicuser;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PublicUserActivity extends Activity {

 private static final int REQUEST_CODE = 1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onUseActivityClick(View view) {

 try {
 // *** POINT 4 *** Do not send sensitive information.
 Intent intent = new Intent("org.jssec.android.activity.MY_ACTION");
 intent.putExtra("PARAM", "Not Sensitive Info");
 startActivityForResult(intent, REQUEST_CODE);
 } catch (ActivityNotFoundException e) {
 Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 // *** POINT 5 *** When receiving a result, handle the data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (resultCode != RESULT_OK) return;
 switch (requestCode) {
 case REQUEST_CODE:
 String result = data.getStringExtra("RESULT");
 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
 break;
 }
 }
}

58 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.3. Creating/Using Partner Activities

Partner activities are Activities that can only be used by specific applications. They are used between
cooperating partner companies that want to securely share information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.
Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent
used to start an Activity that you take countermeasures to make sure that it cannot be read by a
malicious third party

Sample code for creating a Partner Activity is shown below.

Points (Creating an Activity):
1. Do not specify taskAffinity.
2. Do not specify launchMode.
3. Do not define the intent filter and explicitly set the exported attribute to true.
4. Verify the requesting application's certificate through a predefined whitelist.
5. Handle the received intent carefully and securely, even though the intent was sent from a partner

application.
6. Only return Information that is granted to be disclosed to a partner application.

Plesese refer to "4.1.3.2 Validating the Requesting Application" for how to validate an application by
a white list. Also, please refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate"
for how to verify the certificate hash value of a destination application which is specified in the
whitelist.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.partneractivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Partner activity -->
 <!-- *** POINT 1 *** Do not specify taskAffinity -->
 <!-- *** POINT 2 *** Do not specify launchMode -->
 <!-- *** POINT 3 *** Do not define the intent filter and explicitly set the exported attribute to true -->
 <activity
 android:name=".PartnerActivity"
 android:exported="true" />

 </application>
</manifest>

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 59

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

PartnerActivity.java
package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PartnerActivity extends Activity {

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
 private static PkgCertWhitelists sWhitelists = null;
 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.activity.partneruser.
 sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
 // Certificate hash value of "partner key" in the keystore.
 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register the other partner applications in the same way.
 }
 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
 if (!checkPartner(this, getCallingActivity().getPackageName())) {
 Toast.makeText(this,
 "Requesting application is not a partner application.",
 Toast.LENGTH_LONG).show();
 finish();
 return;
 }

 // *** POINT 5 *** Handle the received intent carefully and securely, even though the intent was sent from a p
artner application.
 // Omitted, since this is a sample. Refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();
 }

 public void onReturnResultClick(View view) {

 // *** POINT 6 *** Only return Information that is granted to be disclosed to a partner application.

60 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 Intent intent = new Intent();
 intent.putExtra("RESULT", "Information for partner applications");
 setResult(RESULT_OK, intent);
 finish();
 }
}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {
 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 61

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

62 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Sample code for using a Partner Activity is described below.

Points (Using an Activity):
7. Verify if the certificate of the target application has been registered in a whitelist.
8. Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.
9. Only send information that is granted to be disclosed to a Partner Activity only by putExtra().
10. Use explicit intent to call a Partner Activity.
11. Use startActivityForResult() to call a Partner Activity.
12. Handle the received result data carefully and securely, even though the data comes from a

partner application.

Refer to "4.1.3.2 Validating the Requesting Application" for how to validate applications by white list.
Also please refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate" for how to
verify the certificate hash value of a destination application which is to be specified in a white list.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.partneruser"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <activity
 android:name="org.jssec.android.activity.partneruser.PartnerUserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

PartnerUserActivity.java
package org.jssec.android.activity.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 63

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

public class PartnerUserActivity extends Activity {

 // *** POINT 7 *** Verify if the certificate of a target application has been registered in a white list.
 private static PkgCertWhitelists sWhitelists = null;
 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register the certificate hash value of partner application org.jssec.android.activity.partneractivity.
 sWhitelists.add("org.jssec.android.activity.partneractivity", isdebug ?
 // The certificate hash value of "androiddebugkey" is in debug.keystore.
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
 // The certificate hash value of "my company key" is in the keystore.
 "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA");

 // Register the other partner applications in the same way.
 }
 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }

 private static final int REQUEST_CODE = 1;

 // Information related the target partner activity
 private static final String TARGET_PACKAGE = "org.jssec.android.activity.partneractivity";
 private static final String TARGET_ACTIVITY = "org.jssec.android.activity.partneractivity.PartnerActivity";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onUseActivityClick(View view) {

 // *** POINT 7 *** Verify if the certificate of the target application has been registered in the own white li
st.
 if (!checkPartner(this, TARGET_PACKAGE)) {
 Toast.makeText(this, "Target application is not a partner application.", Toast.LENGTH_LONG).show();
 return;
 }

 try {
 // *** POINT 8 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent that start an activity.
 Intent intent = new Intent();

 // *** POINT 9 *** Only send information that is granted to be disclosed to a Partner Activity only by put
Extra().
 intent.putExtra("PARAM", "Info for Partner Apps");

 // *** POINT 10 *** Use explicit intent to call a Partner Activity.
 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);

 // *** POINT 11 *** Use startActivityForResult() to call a Partner Activity.
 startActivityForResult(intent, REQUEST_CODE);
 }
 catch (ActivityNotFoundException e) {
 Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();

64 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {
 case REQUEST_CODE:
 String result = data.getStringExtra("RESULT");

 // *** POINT 12 *** Handle the received data carefully and securely,
 // even though the data comes from a partner application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(this,
 String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
 break;
 }
 }
}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {
 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 65

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

66 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.1.4. Creating/Using In-house Activities

In-house activities are the Activities which are prohibited to be used by applications other than other
in-house applications. They are used in applications developed internally that want to securely share
information and functionality.

There is a risk that a third party application can read an Intent that is used to start the Activity.
Therefore it is necessary to make sure that if you are putting sensitive information inside an Intent
used to start an Activity that you take countermeasures to make sure that it cannot be read by a
malicious third party.

Sample code for creating an In-house Activity is shown below.

Points (Creating an Activity):
1. Define an in-house signature permission.
2. Do not specify taskAffinity.
3. Do not specify launchMode.
4. Require the in-house signature permission.
5. Do not define an intent filter and explicitly set the exported attribute to true.
6. Verify that the in-house signature permission is defined by an in-house application.
7. Handle the received intent carefully and securely, even though the intent was sent from an

in-house application.
8. Sensitive information can be returned since the requesting application is in-house.
9. When exporting an APK from Eclipse, sign the APK with the same developer key as the

destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.inhouseactivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 1 *** Define an in-house signature permission -->
 <permission
 android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION"
 android:protectionLevel="signature" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- In-house Activity -->
 <!-- *** POINT 2 *** Do not specify taskAffinity -->
 <!-- *** POINT 3 *** Do not specify launchMode -->
 <!-- *** POINT 4 *** Require the in-house signature permission -->
 <!-- *** POINT 5 *** Do not define the intent filter and explicitly set the exported attribute to true -->
 <activity
 android:name="org.jssec.android.activity.inhouseactivity.InhouseActivity"

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 67

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 android:exported="true"
 android:permission="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />
 </application>
</manifest>

InhouseActivity.java
package org.jssec.android.activity.inhouseactivity;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class InhouseActivity extends Activity {

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" in the keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // *** POINT 6 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",
 Toast.LENGTH_LONG).show();
 finish();
 return;
 }

 // *** POINT 7 *** Handle the received intent carefully and securely, even though the intent was sent from an
in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = getIntent().getStringExtra("PARAM");
 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();
 }

68 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onReturnResultClick(View view) {

 // *** POINT 8 *** Sensitive information can be returned since the requesting application is in-house.
 Intent intent = new Intent();
 intent.putExtra("RESULT", "Sensitive Info");
 setResult(RESULT_OK, intent);
 finish();
 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 69

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

70 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point9 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
destination application.

Figure 4.1-2

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 71

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Sample code for using an In-house Activity is described below.

Points (Using an activity):
10. Declare that you want to use the in-house signature permission.
11. Verify that the in-house signature permission is defined by an in-house application.
12. Verify that the destination application is signed with the in-house certificate.
13. Sensitive information can be sent only by putExtra() since the destination application is in-house.
14. Use explicit intents to call an In-house Activity.
15. Handle the received data carefully and securely, even though the data came from an in-house

application.
16. When exporting an APK from Eclipse, sign the APK with the same developer key as the

destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.inhouseuser"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 10 *** Declare to use the in-house signature permission -->
 <uses-permission
 android:name="org.jssec.android.activity.inhouseactivity.MY_PERMISSION" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <activity
 android:name="org.jssec.android.activity.inhouseuser.InhouseUserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

InhouseUserActivity.java
package org.jssec.android.activity.inhouseuser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;

72 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.view.View;
import android.widget.Toast;

public class InhouseUserActivity extends Activity {

 // Target Activity information
 private static final String TARGET_PACKAGE = "org.jssec.android.activity.inhouseactivity";
 private static final String TARGET_ACTIVITY = "org.jssec.android.activity.inhouseactivity.InhouseActivity";

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.activity.inhouseactivity.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" in the keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 private static final int REQUEST_CODE = 1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onUseActivityClick(View view) {

 // *** POINT 11 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",
 Toast.LENGTH_LONG).show();
 return;
 }

 // ** POINT 12 *** Verify that the destination application is signed with the in-house certificate.
 if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
 Toast.makeText(this, "Target application is not an in-house application.", Toast.LENGTH_LONG).show();
 return;
 }

 try {
 Intent intent = new Intent();

 // *** POINT 13 *** Sensitive information can be sent only by putExtra() since the destination application
 is in-house.
 intent.putExtra("PARAM", "Sensitive Info");

 // *** POINT 14 *** Use explicit intents to call an In-house Activity.
 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
 startActivityForResult(intent, REQUEST_CODE);

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 73

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 catch (ActivityNotFoundException e) {
 Toast.makeText(this, "Target activity not found.", Toast.LENGTH_LONG).show();
 }
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {
 case REQUEST_CODE:
 String result = data.getStringExtra("RESULT");

 // *** POINT 15 *** Handle the received data carefully and securely,
 // even though the data came from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
 break;
 }
 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;

74 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 75

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 18 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
destination application.

Figure 4.1-3

76 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.2. Rule Book

Be sure to follow the rules below when creating or sending an Intent to an activity.

1. Activities that are Used Only Internally to the Application Must be Set Private (Required)
2. Do Not Specify taskAffinity (Required)
3. Do Not Specify launchMode (Required)
4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)
5. Handling the Received Intent Carefully and Securely (Required)
6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House

Application (Required)
7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)
8. Use the explicit Intents if the destination Activity is predetermined. (Required)
9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)
10. Verify the Destination Activity if Linking with Another Company's Application

 (Required)
11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of

Protection (Required)
12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

4.1.2.1. Activities that are Used Only Internally to the Application Must be Set Private (Required)

Activities which are only used in a single application are not required to be able to receive any Intents
from other applications. Developers often assume that Activities intended to be private will not be
attacked but it is necessary to explicitly make these Activities private in order to stop malicious
Intents from being received.

AndroidManifest.xml
 <!-- Private activity -->
 <!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->
 <activity
 android:name=".PrivateActivity"
 android:label="@string/app_name"
 android:exported="false" />

Intent filters should not be set on activities that are only used in a single application. Due to the
characteristics of Intent filters, Due to the characteristics of how Intent filters work, even if you intend
to send an Intent to a Private Activity internally, if you send the Intent through an Intent filter than you
may unintentionally start another Activity. Please see Advanced Topics "4.1.3.1Combining Exported
Attributes and Intent Filter Settings (For Activities)" for more details.

AndroidManifest.xml(Not recommended)
 <!-- Private activity -->
 <!-- *** POINT 3 *** Explicitly set the exported attribute to false. -->
 <activity

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 77

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 android:name=".PictureActivity"
 android:label="@string/picture_name"
 android:exported="false" >
 <intent-filter>
 <action android:name="org.jssec.android.activity.OPEN />
 </intent-filter>
 </activity>

4.1.2.2. Do Not Specify taskAffinity (Required)

In Android OS, Activities are managed by tasks. Task names are determined by the affinity that the
root Activity has. On the other hand, for Activities other than root Activities, the task to which the
Activity belongs is not determined by the Affinity only, but also depends on the Activity's launch
mode. Please refer to "4.1.3.4 Root Activity" for more details.

In the default setting, each Activity uses its package name as its affinity. As a result, tasks are
allocated according to application, so all Activities in a single application will belong to the same task.
To change the task allocation, you can make an explicit declaration for the affinity in the
AndroidManifest.xml file or you can set a flag in an Intent sent to an Activity. However, if you change
task allocations, there is a risk that another application could read the Intents sent to Activities
belonging to another task.

Be sure not to specify android:taskAffinity in the AndroidManifest.xml file and use the default setting
keeping the affinity as the package name in order to prevent sensitive information inside sent or
received Intents from being read by another application.

Below is an example AndroidManifest.xml file for creating and using Private Activities.

AndroidManifest.xml
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Private activity -->
 <!-- *** POINT 1 *** Do not specify taskAffinity -->
 <activity
 android:name=".PrivateActivity"
 android:label="@string/app_name"
 android:exported="false" />
 </application>

Please refer to the "Google Android Programming guide"2, the Google Developers's API Guide "Tasks
and Back Stack"3, "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity" for more

2 Author Egawa, Fujii, Asano, Fujita, Yamada, Yamaoka, Sano, Takebata, “Google Android
Proguramming Guide”, ASCII Media Works, July 2009
3 http://developer.android.com/guide/components/tasks-and-back-stack.html

78 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

details about tasks and affinities.

4.1.2.3. Do Not Specify launchMode (Required)

The Activity launch mode is used to control the settings for creating new tasks and Activity instances
when starting an Activity. By default it is set to "standard". In the "standard" setting, new instances
are always created when starting an Activity, tasks follow the tasks belonging to the calling Activity,
and it is not possible to create a new task. When a new task is created, it is possible for other
applications to read the contents of the calling Intent so it is required to use the "standard" Activity
launch mode setting when sensitive information is included in an Intent.

The Activity launch mode can be explicitly set in the android:launchMode attribute in the
AndroidManifest.xml file, but because of the reason explained above, this should not be set in the
Activity declaration and the value should be kept as the default "standard".

AndroidManifest.xml
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Private activity -->
 <!-- *** POINT 2 *** Do not specify launchMode -->
 <activity
 android:name=".PrivateActivity"
 android:label="@string/app_name"
 android:exported="false" />
 </application>

Please refer to "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity."

4.1.2.4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity(Required)

The launch mode of an Activity can be changed when executing startActivity() or
startActivityForResult() and in some cases a new task may be generated. Therefore it is necessary to
not change the launch mode of Activity during execution.

To change the Activity launch mode, set the Intent flags by using setFlags() or addFlags() and use that
Intent as an argument to startActivity() or startActivityForResult(). FLAG_ACTIVITY_NEW_TASK is the
flag used to create a new task. When the FLAG_ACTIVITY_NEW_TASK is set, a new task will be created
if the called Activity does not exist in the background or foreground.
The FLAG_ACTIVITY_MULTIPLE_TASK flag can be set simultaneously with FLAG_ACTIVITY_NEW_TASK.
In this case, a new task will always be created. New tasks may be created with either setting so these
should not be set with Intents that handle sensitive information.

Example of sending an intent
 // *** POINT 6 *** Do not set the FLAG_ACTIVITY_NEW_TASK flag for the intent to start an activity.
 Intent intent = new Intent(this, PrivateActivity.class);
 intent.putExtra("PARAM", "Sensitive Info");

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 79

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 startActivityForResult(intent, REQUEST_CODE);

In addition, you may think that there is a way to prevent the contents of an Intent from being read
even if a new task was created by explicitly setting the FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS
flag. However, even by using this method, the contents can be read by a third party so you should
avoid any usage of FLAG_ACTIVITY_NEW_TASK.

Please refer to "4.1.3.1Combining Exported Attributes and Intent Filter Settings (For Activities)"
"4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity."

4.1.2.5. Handling the Received Intent Carefully and Securely (Required)

Risks differ depending on the types of Activity, but when processing a received Intent data, the first
thing you should do is input validation.

Since Public Activities can receive Intents from untrusted sources, they can be attacked by malware.
On the other hand, Private Activities will never receive any Intents from other applications directly,
but it is possible that a Public Activity in the targeted application may forward a malicious Intent to a
Private Activity so you should not assume that Private Activities cannot receive any malicious input.
Since Partner Activities and In-house Activities also have the risk of a malicious intent being
forwarded to them as well, it is necessary to perform input validation on these Intents as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.1.2.6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House
Application (Required)

Make sure to protect your in-house Activities by defining an in-house signature permission when
creating the Activity. Since defining a permission in the AndroidManifest.xml file or declaring a
permission request does not provide adequate security, please be sure to refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission."

4.1.2.7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)

When you use setResult() to return data, the reliability of the destination application will depend on
the Activity type. When Public Activities are used to return data, the destination may turn out to be
malware in which case that information could be used in a malicious way. For Private and In-house
Activities, there is not much need to worry about data being returned to be used maliciously because
they are being returned to an application you control. Partner Activities are somewhat in the middle.

As above, when returning data from Activities, you need to pay attention to information leakage from

80 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

the destination application.

Example of returning data.
 public void onReturnResultClick(View view) {

 // *** POINT 6 *** Information that is granted to be disclosed to a partner application can be return
ed.
 Intent intent = new Intent();
 intent.putExtra("RESULT", "Sensitive Info");
 setResult(RESULT_OK, intent);
 finish();
 }

4.1.2.8. Use the explicit Intents if the destination Activity is predetermined. (Required)

When using an Activity by implicit Intents, the Activity in which the Intent gets sent to is determined
by the Android OS. If the Intent is mistakenly sent to malware then Information leakage can occur. On
the other hand, when using an Activity by explicit Intents, only the intended Activity will receive the
Intent so this is much safer.

Unless it is absolutely necessary for the user to determine which application's Activity the intent
should be sent to, you should use explicit intents and specify the destination in advance.

Using an Activity in the same application by an explicit Intent
 Intent intent = new Intent(this, PictureActivity.class);
 intent.putExtra("BARCODE", barcode);
 startActivity(intent);

Using other applicaion's Public Activity by an explicit Intent

 Intent intent = new Intent();
 intent.setClassName(
 "org.jssec.android.activity.publicactivity",
 "org.jssec.android.activity.publicactivity.PublicActivity");
 startActivity(intent);

However, even when using another application's Public Activity by explicit Intents, it is possible that
the destination Activity could be malware. This is because even if you limit the destination by
package name, it is still possible that a malicious application can fake the same package name as the
real application. To eliminate this type of risk, it is necessary to consider using a Partner or In-house.

Please refer to "4.1.3.1Combining Exported Attributes and Intent Filter Settings (For Activities)"

4.1.2.9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)

While the risks differ slightly according to what type of Activity you accessing, when processing Intent
data received as a returned value, you always need to perform input validation on the received data.
All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 81

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Public Activities have to accept returned Intents from untrusted sources so when accessing a Public
Activity it is possible that, the returned Intents are actually sent by malware. It is often mistakenly
thought that all returned Intents from a Private Activity are safe because they are originating from the
same application. However, since it is possible that an intent received from an untrusted source is
indirectly forwarded, you should not blindly trust the contents of that Intent. Partner and In-house
Activities have a risk somewhat in the middle of Private and Public Activities. Be sure to input validate
these Activities as well.

Please refer to "3.2 Handling Input Data Carefully and Securely" for more information.

4.1.2.10. Verify the Destination Activity if Linking with Another Company's Application
 (Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by
saving a copy of the company's certificate hash inside your application and checking it with the
certificate hash of the destination application. This will prevent a malicious application from being
able to spoof Intents. Please refer to sample code section "4.1.1.3 Creating/Using Partner Activities"
for the concrete implementation method. For technical details, please refer to "4.1.3.2 Validating the
Requesting Application."

82 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.2.11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of
Protection (Required)

When an information or function asset, that is protected by a permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole
because an application with permissions to an asset can act as a proxy and allow access to an
unprivileged application. Substantially this is the same as redelegating a permission so it is referred
to as the "Permission Redelegation" problem. Please refer to "5.2.3.4 Permission Re-delegation
Problem."

4.1.2.12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

You should not send sensitive information to untrusted parties. Even when you are linking with a
specific application, there is still a chance that you unintentionally send an Intent to a different
application or that a malicious third party can steal your Intents. Please refer to "4.1.3.5 Log Output
When using Activities."

You need to consider the risk of information leakage when sending sensitive information to an
Activity. You must assume that all data in Intents sent to a Public Activity can be obtained by a
malicious third party. In addition, there is a variety of risks of information leakage when sending
Intents to Partner or In-house Activities as well depending on the implementation. Even when
sending data to Private Activities, there is a risk that the data in the Intent could be leaked through
LogCat. Information in the extras part of the Intent is not output to LogCat so it is best to store
sensitive information there.

However, not sending sensitive data in the first place is the only perfect solution to prevent
information leakage therefore you should limit the amount of sensitive information being sent as
much as possible. When it is necessary to send sensitive information, the best practice is to only send
to a trusted Activity and to make sure the information cannot be leaked through LogCat.

In addition, sensitive information should never be sent to the root Activity. Root Activities are
Activities that are called first when a task is created. For example, the Activity which is launched from
launcher is always the root Activity.

Please refer to "4.1.3.3 Reading Intents Sent to an Activity" and "4.1.3.4 Root Activity" for more
details on root Activities.

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 83

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.3. Advanced Topics

4.1.3.1. Combining Exported Attributes and Intent Filter Settings (For Activities)

We have explained how to implement the four types of Activities in this guidebook: Private Activities,
Public Activities, Partner Activities, and In-house Activities. The various combinations of permitted
settings for each type of exported attribute defined in the AndroidManifest.xml file and the
intent-filter elements are defined in the table below. Please verify the compatibility of the exported
attribute and intent-filter element with the Activity you are trying to create.

Table 4.1-2
 Value of exported attribute

true False Not specified
Intent Filter defined Public (Do not Use) (Do not Use)
Intent Filter Not
Defined

Public, Partner,
In- house

AndroidManifest.xml (Do not Use)

The reason why an undefined intent filter and an exported attribute of false should not be used is
that there is a loophole in Android's behavior, and because of how Intent filters work, other
application's Activities can be called unexpectedly. The following two figures below show this
explanation. Figure 4.1-4 is an example of normal behavior in which a Private Activity (Application A)
can be called by an implicit Intent only from the same application. The Intent filter (action = "X") is
defined to work only inside Application A, so this is the expected behavior.

Figure 4.1-4

Figure 4.1-5 below shows a scenario in which the same Intent filter (action="X") is defined in
Application B as well as Application A. Application A is trying to call a Private Activity in the same
application by sending an implicit Intent, but this time a dialogue box asking the user which
application to select is displayed, and the Public Activity B-1 in Application B called by mistake due to

Android device

Application A
Call an activity with
the implicit intent

Private Activity A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Call the activity with
the implicit intent

Intent(“X”)

Since the activity A-1 is private one,
it can be called only by the application A.

84 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

the user selection. Due to this loophole, it is possible that sensitive information can be sent to other
applications or application may receive an unexpected retuned value.

Figure 4.1-5

As shown above, using Intent filters to send implicit Intents to Private Activities may result in
unexpected behavior so it is best to avoid this setting. In addition, we have verified that this behavior
does not depend on the installation order of Application A and Application B.

4.1.3.2. Validating the Requesting Application

Here we explain the technical information about how to implement a Partner Activity. Partner
applications permit that only particular applications which are registered in a whitelist are allowed
access and all other applications are denied. Because applications other than in-house applications
also need access permission, we cannot use signature permissions for access control.

Simply speaking, we want to validate the application trying to use the Partner Activity by checking if it
is registered in a predefined whitelist and allow access if it is and deny access if it is not. Application
validation is done by obtaining the certificate from the application requesting access and comparing
its hash with the one in the whitelist.

Some developers may think that it is sufficient to just compare the package name without obtaining
the certificate, however, it is easy to spoof the package name of a legitimate application so this is not
a good method to check for authenticity. Arbitrarily assignable values should not be used for
authentication. On the other hand, because only the application developer has the developer key for
signing its certificate, this is a better method for identification. Since the certificate cannot be easily

Android device

Application A
Call an activity with
the implicit intent

Private Activity A-1
exported=“false”

action=“X”

When the activity B-1 that has the
same action exists, OS display the
selector dialog, and public activity B-1is
called depends on user selection.

Application B

Public Activity B-1
exported=“true”

action=“X”

Intent(“X”)

Application
selector

A-1

B-1

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 85

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

spoofed, unless a malicious third party can steal the developer key, there is a very small chance that
malicious application will be trusted. While it is possible to store the entire certificate in the whitelist,
it is sufficient to only store the SHA-256 hash value in order to minimize the file size.

There are two restrictions for using this method.

 The requesting application has to use startActivityForResult() instead of startActivity().
 The requesting application can only call from an Activity.

The second restriction is the restriction imposed as a result of the first restriction, so technically
there is only a single restriction.
This restriction occurs due to the restriction of Activity.getCallingPackage() which gets the package
name of the calling application. Activity.getCallingPackage() returns the package name of source
(requesting) application only in case it is called by startActivityForResult(), but unfortunately, when it
is called by startActivity(), it only returns null. Because of this, when using the method explained here,
the source (requesting) application needs to use startActivityForResult() even if it does not need to
obtain a return value. In addition, startActivityForResult() can be used only in Activity classes, so the
source (requester) is limited to Activities.

PartnerActivity.java
package org.jssec.android.activity.partneractivity;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PartnerActivity extends Activity {

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
 private static PkgCertWhitelists sWhitelists = null;
 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.activity.partneruser.
 sWhitelists.add("org.jssec.android.activity.partneruser", isdebug ?
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
 // Certificate hash value of "partner key" in the keystore.
 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register the other partner applications in the same way.
 }
 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }

86 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // *** POINT 4 *** Verify the requesting application's certificate through a predefined whitelist.
 if (!checkPartner(this, getCallingActivity().getPackageName())) {
 Toast.makeText(this,
 "Requesting application is not a partner application.",
 Toast.LENGTH_LONG).show();
 finish();
 return;
 }

 // *** POINT 5 *** Handle the received intent carefully and securely, even though the intent was sent from a p
artner application.
 // Omitted, since this is a sample. Refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(this, "Accessed by Partner App", Toast.LENGTH_LONG).show();
 }

 public void onReturnResultClick(View view) {

 // *** POINT 6 *** Only return Information that is granted to be disclosed to a partner application.
 Intent intent = new Intent();
 intent.putExtra("RESULT", "Information for partner applications");
 setResult(RESULT_OK, intent);
 finish();
 }
}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {
 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 87

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

88 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.1.3.3. Reading Intents Sent to an Activity

Intents that are sent to the task's root Activity are added to the task history. A root Activity is the first
Activity started in a task. It is possible for any application to read the Intents added to the task history
by using the ActivityManager class.

Sample code for reading the task history from an application is shown below. To browse the task
history, specify the GET_TASKS permission in the AndroidManifest.xml file.

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.intent.maliciousactivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MaliciousActivity"
 android:label="@string/title_activity_main"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <!-- Use GET_TASKS Permission -->
 <uses-permission android:name="android.permission.GET_TASKS" />
</manifest>

MaliciousActivity.java
package org.jssec.android.intent.maliciousactivity;

import java.util.List;
import java.util.Set;

import android.app.Activity;
import android.app.ActivityManager;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;

public class MaliciousActivity extends Activity {

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 89

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.malicious_activity);

 // Get am ActivityManager instance.
 ActivityManager activityManager = (ActivityManager) getSystemService(ACTIVITY_SERVICE);
 // Get 100 recent task info.
 List<ActivityManager.RecentTaskInfo> list = activityManager
 .getRecentTasks(100, ActivityManager.RECENT_WITH_EXCLUDED);
 for (ActivityManager.RecentTaskInfo r : list) {
 // Get Intent sent to root Activity and Log it.
 Intent intent = r.baseIntent;
 Log.v("baseIntent", intent.toString());
 Log.v(" action:", intent.getAction());
 Log.v(" data:", intent.getDataString());
 if (r.origActivity != null) {
 Log.v(" pkg:", r.origActivity.getPackageName() + r.origActivity.getClassName());
 }
 Bundle extras = intent.getExtras();
 if (extras != null) {
 Set<String> keys = extras.keySet();
 for(String key : keys) {
 Log.v(" extras:", key + "=" + extras.get(key).toString());
 }
 }
 }
 }
}

You can obtain specified entries of the task history by using the getRecentTasks() function of the
AcitivityManager class. Information about each task is stored in an instance of the
ActivityManager.RecentTaskInfo class, but Intents that were sent to the task's root Activity are stored
in its member variable baseIntent. Since the root Activity is the Activity which was started when the
task was created, please be sure to fulfill the following two conditions when calling an Activity.

 A new task is created when the Activity is called.
 The called Activity is the task's root Activity which already exists in the background or

foreground.

4.1.3.4. Root Activity

The root Activity is the Activity which is the starting point of a task. In other words, this is the Activity
which was launched when task was created. For example, when the default Activity is launched by
launcher, this Activity will be the root Activity. According to the Android specifications, the contents
of Intents sent to the root Activity can be read from arbitrary applications. So, it is necessary to take
countermeasures not to send sensitive information to the root Activity. In this guidebook, the
following three rules have been made to avoid a called Activity to become root Activity.

 taskAffinity should not be specified.
 launchMode should not be specified.
90 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 The FLAG_ACTIVITY_NEW_TASK flag should not be set in an Intent sent to an Activity.

We consider the situations that an Activity can become the root Activity below. A called Activity
becoming a root Activity depends on the following.

 The launch mode of the called Activity
 The task of a called Activity and its launch mode

First of all, let me explain the "Launch mode of called Activity." Launch mode of Activity can be set by
writing android:launchMode in AndroidManifest.xml. When it's not written, it's considered as
"standard". In addition, launch mode can be also changed by a flag to set to Intent. Flag
"FLAG_ACTIVITY_NEW_TASK" launches Activity by "singleTask" mode.

The launch modes that can be specified are as per below. I'll explain about the relation with the root
activity, mainly.

standard

Activity which is called by this mode won't be root, and it belongs to the caller side task. Every
time it's called, Instance of Activity is to be generated.

singleTop
This launch mode is the same as "standard", except for that the instance is not generated when
launching an Activity which is displayed in most front side of foreground task.

singleTask
This launch mode determines the task to which the activity would be belonging by Affinity value.
When task which is matched with Activity's affinity doesn't exist either in background or in
foreground, a new task is generated along with Activity's instance. When task exists, neither of
them is to be generated. In the former one, the launched Activity's Instance becomes root.

singleInstance
Same as "singleTask", but following point is different. Only root Activity can belongs to the newly
generated task. So instance of Activity which was launched by this mode is always root activity.
Now, we need to pay attention to the case that the class name of called Activity and the class
name of Activity which is included in a task are different although the task which has the same
name of called Activity's affinity already exists.

From as above, we can get to know that Activity which was launched by "singleTask" or
"singleInstance" has the possibility to become root. In order to secure the application's safety, it
should not be launched by these modes.

Next, I'll explain about "Task of the called Activity and its launch mode". Even if Activity is called by
"standard" mode, it becomes root Activity in some cases depends on the task state to which Activity
belongs.

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 91

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

For example, think about the case that called Activity's task has being run already in background.
The problem here is the case that Activity Instance of the task is launched by singleInstance". When
the affinity of Activity which was called by "standard" is same with the task, new task is to be
generated by the restriction of existing "singleInstance" Activity. However, when class name of each
Activity is same, task is not generated and existing activity Instance is to be used. In any cases, that
called Activity becomes root Activity.

As per above, the conditions that root Activity is called are complicated, for example it depends on
the state of execution. So when developing applications, it's better to contrive that Activity is called
by "standard".

As an example of that Intent which is sent to Private Activity is read out form other application, the
sample code shows the case that caller side Activity of private Activity is launched by "singleInstance"
mode. In this sample code, private activity is launched by "standard" mode, but this private Activity
becomes root Activity of new task due the "singleInstance" condition of caller side Activity. At this
moment, sensitive information that is sent to Private Activity is recorded task history, so it can be
read out from other applications. FYI, both caller side Activity and Private Activity have the same
affinity.

AndroidManifest.xml(Not recommended)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.activity.singleinstanceactivity"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Set the launchMode of the root Activity to "singleInstance". -->
 <!-- Do not use taskAffinity -->
 <activity
 android:name="org.jssec.android.activity.singleinstanceactivity.PrivateUserActivity"
 android:label="@string/app_name"
 android:launchMode="singleInstance"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Private activity -->
 <!-- Set the launchMode to "standard." -->
 <!-- Do not use taskAffinity -->
 <activity
 android:name="org.jssec.android.activity.singleinstanceactivity.PrivateActivity"
 android:label="@string/app_name"
 android:exported="false" />

92 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 </application>
</manifest>

Private Activity only returns the results to the received Intent.

PrivateActivity.java
package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.private_activity);

 // Handle intent securely, even though the intent sent from the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = getIntent().getStringExtra("PARAM");
 Toast.makeText(this, String.format("Received param: ¥"%s¥"", param), Toast.LENGTH_LONG).show();
 }

 public void onReturnResultClick(View view) {
 Intent intent = new Intent();
 intent.putExtra("RESULT", "Sensitive Info");
 setResult(RESULT_OK, intent);
 finish();
 }
}

In caller side of Private Activity, Private Activity is launched by "standard" mode without setting flag to
Intent.

PrivateUserActivity.java
package org.jssec.android.activity.singleinstanceactivity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PrivateUserActivity extends Activity {

 private static final int REQUEST_CODE = 1;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user_activity);

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 93

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 public void onUseActivityClick(View view) {

 // Start the Private Activity with "standard" lanchMode.
 Intent intent = new Intent(this, PrivateActivity.class);
 intent.putExtra("PARAM", "Sensitive Info");

 startActivityForResult(intent, REQUEST_CODE);
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode != RESULT_OK) return;

 switch (requestCode) {
 case REQUEST_CODE:
 String result = data.getStringExtra("RESULT");

 // Handle received result data carefully and securely,
 // even though the data came from the Activity in the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(this, String.format("Received result: ¥"%s¥"", result), Toast.LENGTH_LONG).show();
 break;
 }
 }
}

4.1.3.5. Log Output When using Activities

When using an activity, the contents of intent are output to LogCat by ActivityManager. The following
contents are to be output to LogCat, so in this case, sensitive information should not be included
here.

 Destination Package name
 Destination Class name
 URI which is set by Intent#setData()

For example, when an application sent mails, the mail address is unfortunately outputted to LogCat if
the application would specify the mail address to URI. So, better to send by setting Extras.

When sending a mail as below, mail address is shown to the logCat.

MainActivity.java
 // URI is output to the LogCat.
 Uri uri = Uri.parse("mailtoest@gmail.com");
 Intent intent = new Intent(Intent.ACTION_SENDTO, uri);
 startActivity(intent);

When using Extras, mail address is no more shown to the logCat.

94 All rights reserved © Japan Smartphone Security Association. Creating/Using Activities

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

MainActivity.java
 // Contents which was set to Extra, is not output to the LogCat.
 Uri uri = Uri.parse("mailto:");
 Intent intent = new Intent(Intent.ACTION_SENDTO, uri);
 intent.putExtra(Intent.EXTRA_EMAIL, new String[] {"test@gmail.com"});
 startActivity(intent);

However, there are cases where other applications can read the Extras data of intent using
ActivityManager#getRecentTasks(). Please refer to “4.1.2.2 Do Not Specify taskAffinity (Required)“,
“4.1.2.3 Do Not Specify launchMode (Required)“ and “4.1.2.4 Do Not Set the
FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)“.

All rights reserved © Japan Smartphone Security Association. Creating/Using Activities 95

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2. Receiving/Sending Broadcasts

4.2.1. Sample Code

Creating Broadcast Receiver is required to receive Broadcast. Risks and countermeasures of using
Broadcast Receiver differ depending on the type of the received Broadcast.
You can find your Broadcast Receiver in the following judgment flow. The receiving applications
cannot check the package names of Broadcast-sending applications that are necessary for linking
with the partners. As a result, Broadcast Receiver for the partners cannot be created.

Table 4.2-1 Definition of broadcast receiver types

Type Definition
Private broadcast
receiver

A broadcast receiver that can receive broadcasts only from the same
application, therefore is the safest broadcast receiver

Public broadcast
receiver

A broadcast receiver that can receive broadcasts from an
unspecified large number of applications

In-house
broadcast receiver

A broadcast receiver that can receive broadcasts only from other
In-house applications

Figure 4.2-1

In addition, Broadcast Receiver can be divided into 2 types based on the definition methods, Static
Broadcast Receiver and Dynamic Broadcast Receiver. The differences between them can be found in
the following figure. In the sample code, an implementation method for each type is shown. The
implementation method for sending applications is also described because the countermeasure for
sending information is determined depending on the receivers.

Start

Receive broadcasts only
from the same application?

In-house Broadcast ReceiverPrivate Broadcast Receiver Public Broadcast Receiver

Receive broadcasts only
from unspecified number

application?

Yes No

Yes No

96 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Table 4.2-2
 Definition method Characteristic
Static Broadcast
Receiver

Define by writing
<receiver> elements in
AndroidManifest.xml

 There is a restriction that some Broadcasts
(e.g. ACTION_BATTERY_CHANGED) sent by
system cannot be received.

 Broadcast can be received from
application's initial boot till uninstallation.

Dynamic Broadcast
Receiver

By calling
registerReceiver() and
unregisterReceiver() in a
program,
register/unregister
Broadcast Receiver
dynamically.

 Broadcasts which cannot be received by
static Broadcast Receiver can be received.

 The period of receiving Broadcasts can be
controlled by the program. For example,
Broadcasts can be received only while
Activity is on the front side.

 Private Broadcast Receiver cannot be
created.

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 97

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.1. Private Broadcast Receiver - Receiving/Sending Broadcasts

Private Broadcast Receiver is the safest Broadcast Receiver because only Broadcasts sent from within
the application can be received. Dynamic Broadcast Receiver cannot be registered as Private, so
Private Broadcast Receiver consists of only Static Broadcast Receivers.

Points (Receiving Broadcasts):
1. Explicitly set the exported attribute to false.
2. Handle the received intent carefully and securely, even though the intent was sent from within

the same application.
3. Sensitive information can be sent as the returned results since the requests come from within the

same application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.broadcast.privatereceiver"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Private Broadcast Receiver -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->
 <receiver
 android:name=".PrivateReceiver"
 android:exported="false" />

 <activity
 android:name=".PrivateSenderActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

PrivateReceiver.java
package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class PrivateReceiver extends BroadcastReceiver {

98 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 public void onReceive(Context context, Intent intent) {

 // *** POINT 2 *** Handle the received intent carefully and securely,
 // even though the intent was sent from within the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = intent.getStringExtra("PARAM");
 Toast.makeText(context,
 String.format("Received param: ¥"%s¥"", param),
 Toast.LENGTH_SHORT).show();

 // *** POINT 3 *** Sensitive information can be sent as the returned results since the requests come from with
in the same application.
 setResultCode(Activity.RESULT_OK);
 setResultData("Sensitive Info from Receiver");
 abortBroadcast();
 }
}

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 99

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

The sample code for sending Broadcasts to private Broadcast Receiver is shown below. Please pay
attention that Sticky cannot be used here though the method of sending Broadcasts to private
Broadcast Receiver is said to be safe from the security point of view.

Points (Sending Broadcasts):
4. Use the explicit Intent with class specified to call a receiver within the same application.
5. Sensitive information can be sent since the destination Receiver is within the same application.
6. Handle the received result data carefully and securely, even though the data came from the

Receiver within the same application.

PrivateSenderActivity.java
package org.jssec.android.broadcast.privatereceiver;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PrivateSenderActivity extends Activity {

 public void onSendNormalClick(View view) {
 // *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same application
.
 Intent intent = new Intent(this, PrivateReceiver.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applica
tion.
 intent.putExtra("PARAM", "Sensitive Info from Sender");
 sendBroadcast(intent);
 }

 public void onSendOrderedClick(View view) {
 // *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same application
.
 Intent intent = new Intent(this, PrivateReceiver.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applica
tion.
 intent.putExtra("PARAM", "Sensitive Info from Sender");
 sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);
 }

 private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 // *** POINT 6 *** Handle the received result data carefully and securely,
 // even though the data came from the Receiver within the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String data = getResultData();
 PrivateSenderActivity.this.logLine(
 String.format("Received result: ¥"%s¥"", data));
 }

100 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 };

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 101

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.2. Public Broadcast Receiver - Receiving/Sending Broadcasts

Public Broadcast Receiver is the Broadcast Receiver that can receive Broadcasts from unspecified
large number of applications, so it's necessary to pay attention that it may receive Broadcasts from
malware.

Points (Receiving Broadcasts):
1. Explicitly set the exported attribute to true.
2. Handle the received Intent carefully and securely.
3. When returning a result, do not include sensitive information..

Public Receiver which is the sample code for public Broadcast Receiver can be used both in static
Broadcast Receiver and Dynamic Broadcast Receiver.

PublicReceiver.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class PublicReceiver extends BroadcastReceiver {

 private static final String MY_BROADCAST_PUBLIC =
 "org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

 public boolean isDynamic = false;
 private String getName() {
 return isDynamic ? "Public Dynamic Broadcast Receiver" : "Public Static Broadcast Receiver";
 }

 @Override
 public void onReceive(Context context, Intent intent) {

 // *** POINT 2 *** Handle the received Intent carefully and securely.
 // Since this is a public broadcast receiver, the requesting application may be malware.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (MY_BROADCAST_PUBLIC.equals(intent.getAction())) {
 String param = intent.getStringExtra("PARAM");
 Toast.makeText(context,
 String.format("%s:¥nReceived param: ¥"%s¥"", getName(), param),
 Toast.LENGTH_SHORT).show();
 }

 // *** POINT 3 *** When returning a result, do not include sensitive information.
 // Since this is a public broadcast receiver, the requesting application may be malware.
 // If no problem when the information is taken by malware, it can be returned as result.
 setResultCode(Activity.RESULT_OK);
 setResultData(String.format("Not Sensitive Info from %s", getName()));
 abortBroadcast();
 }
}

102 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Static Broadcast Receive is defined in AndroidManifest.xm.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.broadcast.publicreceiver"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Public Static Broadcast Receiver -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->
 <receiver
 android:name=".PublicReceiver"
 android:exported="true" >
 <intent-filter>
 <action android:name="org.jssec.android.broadcast.MY_BROADCAST_PUBLIC" />
 </intent-filter>
 </receiver>

 <service
 android:name=".DynamicReceiverService"
 android:exported="false" />

 <activity
 android:name=".PublicReceiverActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

In Dynamic Broadcast Receiver, registration/unregistration is executed by calling registerReceiver()
or unregisterReceiver() in the program. In order to execute registration/unregistration by button
operations, the button is allocated on PublicReceiverActivity. Since the scope of Dynamic Broadcast
Receiver Instance is longer than PublicReceiverActivity, it cannot be kept as the member variable of
PublicReceiverActivity. In this case, keep the Dynamic Broadcast Receiver Instance as the member
variable of DynamicReceiverService, and then start/end DynamicReceiverService from
PublicReceiverActivity to register/unregister Dynamic Broadcast Receiver indirectly.

DynamicReceiverService.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Service;

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 103

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.Intent;
import android.content.IntentFilter;
import android.os.IBinder;
import android.widget.Toast;

public class DynamicReceiverService extends Service {

 private static final String MY_BROADCAST_PUBLIC =
 "org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

 private PublicReceiver mReceiver;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();

 // Register Public Dynamic Broadcast Receiver.
 mReceiver = new PublicReceiver();
 mReceiver.isDynamic = true;
 IntentFilter filter = new IntentFilter();
 filter.addAction(MY_BROADCAST_PUBLIC);
 filter.setPriority(1); // Prioritize Dynamic Broadcast Receiver, rather than Static Broadcast Receiver.
 registerReceiver(mReceiver, filter);
 Toast.makeText(this,
 "Registered Dynamic Broadcast Receiver.",
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 // Unregister Public Dynamic Broadcast Receiver.
 unregisterReceiver(mReceiver);
 mReceiver = null;
 Toast.makeText(this,
 "Unregistered Dynamic Broadcast Receiver.",
 Toast.LENGTH_SHORT).show();
 }
}

PublicReceiverActivity.java
package org.jssec.android.broadcast.publicreceiver;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PublicReceiverActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {

104 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onRegisterReceiverClick(View view) {
 Intent intent = new Intent(this, DynamicReceiverService.class);
 startService(intent);
 }

 public void onUnregisterReceiverClick(View view) {
 Intent intent = new Intent(this, DynamicReceiverService.class);
 stopService(intent);
 }
}

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 105

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next, the sample code for sending Broadcasts to public Broadcast Receiver is shown. When sending
Broadcasts to public Broadcast Receiver, it's necessary to pay attention that Broadcasts can be
received by malware.

Points (Sending Broadcasts):
4. Do not send sensitive information.
5. When receiving a result, handle the result data carefully and securely.

PublicSenderActivity.java
package org.jssec.android.broadcast.publicsender;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PublicSenderActivity extends Activity {

 private static final String MY_BROADCAST_PUBLIC =
 "org.jssec.android.broadcast.MY_BROADCAST_PUBLIC";

 public void onSendNormalClick(View view) {
 // *** POINT 4 *** Do not send sensitive information.
 Intent intent = new Intent(MY_BROADCAST_PUBLIC);
 intent.putExtra("PARAM", "Not Sensitive Info from Sender");
 sendBroadcast(intent);
 }

 public void onSendOrderedClick(View view) {
 // *** POINT 4 *** Do not send sensitive information.
 Intent intent = new Intent(MY_BROADCAST_PUBLIC);
 intent.putExtra("PARAM", "Not Sensitive Info from Sender");
 sendOrderedBroadcast(intent, null, mResultReceiver, null, 0, null, null);
 }

 public void onSendStickyClick(View view) {
 // *** POINT 4 *** Do not send sensitive information.
 Intent intent = new Intent(MY_BROADCAST_PUBLIC);
 intent.putExtra("PARAM", "Not Sensitive Info from Sender");
 sendStickyBroadcast(intent);
 }

 public void onSendStickyOrderedClick(View view) {
 // *** POINT 4 *** Do not send sensitive information.
 Intent intent = new Intent(MY_BROADCAST_PUBLIC);
 intent.putExtra("PARAM", "Not Sensitive Info from Sender");
 sendStickyOrderedBroadcast(intent, mResultReceiver, null, 0, null, null);
 }

 public void onRemoveStickyClick(View view) {
 Intent intent = new Intent(MY_BROADCAST_PUBLIC);
 removeStickyBroadcast(intent);
 }

106 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String data = getResultData();
 PublicSenderActivity.this.logLine(
 String.format("Received result: ¥"%s¥"", data));
 }
 };

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 107

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.3. In-house Broadcast Receiver - Receiving/Sending Broadcasts

In-house Broadcast Receiver is the Broadcast Receiver that will never receive any Broadcasts sent
from other than in-house applications. It consists of several in-house applications, and it's used to
protect the information or functions that in-house application handles.

Points (Receiving Broadcasts):
1. Define an in-house signature permission to receive Broadcasts.
2. Declare to use the in-house signature permission to receive results.
3. Explicitly set the exported attribute to true.
4. Require the in-house signature permission by the Static Broadcast Receiver definition.
5. Require the in-house signature permission to register Dynamic Broadcast Receiver.
6. Verify that the in-house signature permission is defined by an in-house application.
7. Handle the received intent carefully and securely, even though the Broadcast was sent from an

in-house application.
8. Sensitive information can be returned since the requesting application is in-house.
9. When Exporting an APK from Eclipse, sign the APK with the same developer key as the sending

application.

In-house Receiver which is a sample code of in-house Broadcast Receiver is to be used both in Static
Broadcast Receiver and Dynamic Broadcast Receiver.

InhouseReceiver.java
package org.jssec.android.broadcast.inhousereceiver;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class InhouseReceiver extends BroadcastReceiver {

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" in the keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;

108 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 private static final String MY_BROADCAST_INHOUSE =
 "org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

 public boolean isDynamic = false;
 private String getName() {
 return isDynamic ? "In-house Dynamic Broadcast Receiver" : "In-house Static Broadcast Receiver";
 }

 @Override
 public void onReceive(Context context, Intent intent) {

 // *** POINT 6 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(context, MY_PERMISSION, myCertHash(context))) {
 Toast.makeText(context, "The in-house signature permission is not declared by in-house application.",
 Toast.LENGTH_LONG).show();
 return;
 }

 // *** POINT 7 *** Handle the received intent carefully and securely,
 // even though the Broadcast was sent from an in-house application..
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (MY_BROADCAST_INHOUSE.equals(intent.getAction())) {
 String param = intent.getStringExtra("PARAM");
 Toast.makeText(context,
 String.format("%s:¥nReceived param: ¥"%s¥"", getName(), param),
 Toast.LENGTH_SHORT).show();
 }

 // *** POINT 8 *** Sensitive information can be returned since the requesting application is in-house.
 setResultCode(Activity.RESULT_OK);
 setResultData(String.format("Sensitive Info from %s", getName()));
 abortBroadcast();
 }
}

Static Broadcast Receiver is to be defined in AndroidManifest.xml.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.broadcast.inhousereceiver"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 1 *** Define an in-house signature permission to receive Broadcasts -->
 <permission
 android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION"
 android:protectionLevel="signature" />

 <!-- *** POINT 2 *** Declare to use the in-house signature permission to receive results. -->
 <uses-permission
 android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION" />

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 109

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- *** POINT 3 *** Explicitly set the exported attribute to true. -->
 <!-- *** POINT 4 *** Require the in-house signature permission by the Static Broadcast Receiver definition. -
->
 <receiver
 android:name=".InhouseReceiver"
 android:permission="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION"
 android:exported="true">
 <intent-filter>
 <action android:name="org.jssec.android.broadcast.MY_BROADCAST_INHOUSE" />
 </intent-filter>
 </receiver>

 <service
 android:name=".DynamicReceiverService"
 android:exported="false" />

 <activity
 android:name=".InhouseReceiverActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Dynamic Broadcast Receiver executes registration/unregistration by calling registerReceiver() or
unregisterReceiver() in the program. In order to execute registration/unregistration by the button
operations, the button is arranged on InhouseReceiverActivity. Since the scope of Dynamic Broadcast
Receiver Instance is longer than InhouseReceiverActivity, it cannot be kept as the member variable of
InhouseReceiverActivity. So, keep Dynamic Broadcast Receiver Instance as the member variable of
DynamicReceiverService, and then start/end DynamicReceiverService from InhouseReceiverActivity
to register/unregister Dynamic Broadcast Receiver indirectly.

InhouseReceiverActivity.java
package org.jssec.android.broadcast.inhousereceiver;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class InhouseReceiverActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

110 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onRegisterReceiverClick(View view) {
 Intent intent = new Intent(this, DynamicReceiverService.class);
 startService(intent);
 }

 public void onUnregisterReceiverClick(View view) {
 Intent intent = new Intent(this, DynamicReceiverService.class);
 stopService(intent);
 }}

DynamicReceiverService.java
package org.jssec.android.broadcast.inhousereceiver;

import android.app.Service;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.IBinder;
import android.widget.Toast;

public class DynamicReceiverService extends Service {

 private static final String MY_BROADCAST_INHOUSE =
 "org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

 private InhouseReceiver mReceiver;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();

 mReceiver = new InhouseReceiver();
 mReceiver.isDynamic = true;
 IntentFilter filter = new IntentFilter();
 filter.addAction(MY_BROADCAST_INHOUSE);
 filter.setPriority(1); // Prioritize Dynamic Broadcast Receiver, rather than Static Broadcast Receiver.

 // *** POINT 5 *** When registering a dynamic broadcast receiver, require the in-house signature permission.
 registerReceiver(mReceiver, filter, "org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION", null);

 Toast.makeText(this,
 "Registered Dynamic Broadcast Receiver.",
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 unregisterReceiver(mReceiver);
 mReceiver = null;
 Toast.makeText(this,
 "Unregistered Dynamic Broadcast Receiver.",
 Toast.LENGTH_SHORT).show();

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 111

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");

112 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 113

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 9 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
sending application.

Figure 4.2-2

114 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next, the sample code for sending Broadcasts to in-house Broadcast Receiver is shown. When
sending Broadcasts to in-house Broadcast Receiver, it's necessary to require In-house-defined
Signature Permission of Broadcast Receiver side. So it's necessary to pay attention that there is a
restriction that Sticky cannot be used.

Points (Sending Broadcasts):
10. Define an in-house signature permission to receive results.
11. Declare to use the in-house signature permission to receive Broadcasts.
12. Verify that the in-house signature permission is defined by an in-house application.
13. Sensitive information can be returned since the requesting application is the in-house one.
14. Require the in-house signature permission of Receivers.
15. Handle the received result data carefully and securely.
16. When exporting an APK from Eclipse, sign the APK with the same developer key as the

destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.broadcast.inhousesender"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />
 <uses-permission android:name="android.permission.BROADCAST_STICKY"/>

 <!-- *** POINT 10 *** Define an in-house signature permission to receive results. -->
 <permission
 android:name="org.jssec.android.broadcast.inhousesender.MY_PERMISSION"
 android:protectionLevel="signature" />

 <!-- *** POINT 11 *** Declare to use the in-house signature permission to receive Broadcasts. -->
 <uses-permission
 android:name="org.jssec.android.broadcast.inhousereceiver.MY_PERMISSION" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name="org.jssec.android.broadcast.inhousesender.InhouseSenderActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

InhouseSenderActivity.java
package org.jssec.android.broadcast.inhousesender;

import org.jssec.android.shared.SigPerm;

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 115

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

public class InhouseSenderActivity extends Activity {

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.broadcast.inhousesender.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" in the keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 private static final String MY_BROADCAST_INHOUSE =
 "org.jssec.android.broadcast.MY_BROADCAST_INHOUSE";

 public void onSendNormalClick(View view) {

 // *** POINT 12 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",
 Toast.LENGTH_LONG).show();
 return;
 }

 // *** POINT 13 *** Sensitive information can be returned since the requesting application is in-house.
 Intent intent = new Intent(MY_BROADCAST_INHOUSE);
 intent.putExtra("PARAM", "Sensitive Info from Sender");

 // *** POINT 14 *** Require the in-house signature permission to limit receivers.
 sendBroadcast(intent, "org.jssec.android.broadcast.inhousesender.MY_PERMISSION");
 }

 public void onSendOrderedClick(View view) {

 // *** POINT 12 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "The in-house signature permission is not declared by in-house application.",
 Toast.LENGTH_LONG).show();
 return;
 }

116 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 13 *** Sensitive information can be returned since the requesting application is in-house.
 Intent intent = new Intent(MY_BROADCAST_INHOUSE);
 intent.putExtra("PARAM", "Sensitive Info from Sender");

 // *** POINT 14 *** Require the in-house signature permission to limit receivers.
 sendOrderedBroadcast(intent, "org.jssec.android.broadcast.inhousesender.MY_PERMISSION",
 mResultReceiver, null, 0, null, null);
 }

 private BroadcastReceiver mResultReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 // *** POINT 15 *** Handle the received result data carefully and securely,
 // even though the data came from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String data = getResultData();
 InhouseSenderActivity.this.logLine(String.format("Received result: ¥"%s¥"", data));
 }
 };

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 117

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

118 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

*** Point 15 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
destination application.

Figure 4.2-3

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 119

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.2. Rule Book

Follow the rules below to Send or receive Broadcasts.

1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)
2. Handle the Received Intent Carefully and Securely (Required)
3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house

Application (Required)
4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the

Destination Application (Required)
5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)
6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)
7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be

Delivered (Required)
8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)
9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection

Level (Required)

4.2.2.1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)

Broadcast Receiver which is used only in the application should be set as private to avoid from
receiving any Broadcasts from other applications unexpectedly. It will prevent the application
function abuse or the abnormal behaviors.

Receiver used only within the same application should not be designed with setting Intent-filter.
Because of the Intent-filter characteristics, a public Receiver of other application may be called
unexpectedly by calling through Intent-filter even though a private Receiver within the same
application is to be called.

AndroidManifest.xml(Not recommended)
 <!-- Private Broadcast Receiver -->
 <!-- *** POINT 1 *** Set the exported attribute to false explicitly. -->
 <receiver
 android:name=".PrivateReceiver"
 android:exported="false" >
 <intent-filter>
 <action android:name="org.jssec.android.broadcast.MY_ACTION" />
 </intent-filter>
 </receiver>

Please refer to "4.2.3.1 Combinations of the exported Attribute and the Intent-filter setting (For
Receiver)."

4.2.2.2. Handle the Received Intent Carefully and Securely (Required)

Though risks are different depending on the types of the Broadcast Receiver, firstly verify the safety

120 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

of Intent when processing received Intent data.

Since Public Broadcast Receiver receives the Intents from unspecified large number of applications, it
may receive malware's attacking Intents. Private Broadcast Receiver will never receive any Intent from
other applications directly, but Intent data which a public Component received from other
applications may be forwarded to Private Broadcast Receiver. So don't think that the received Intent is
totally safe without any qualification. In-house Broadcast Receivers have some degree of the risks, so
it also needs to verify the safety of the received Intents.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.2.2.3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house
Application (Required)

In-house Broadcast Receiver which receives only Broadcasts sent by an In-house application should
be protected by in-house-defined Signature Permission. Permission definition/Permission request
declarations in AndroidManifest.xml are not enough to protecting, so please refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission." ending
Broadcasts by specifying in-house-defined Signature Permission to receiverPermission parameter
requires verification in the same way.

4.2.2.4. When Returning a Result Information, Pay Attention to the Result Information Leakage from
the Destination Application (Required)

The Reliability of the application which returns result information by setResult() varies depending on
the types of the Broadcast Receiver. In case of Public Broadcast Receiver, the destination application
may be malware, and there may be a risk that the result information is used maliciously. In case of
Private Broadcast Receiver and In-house Broadcast Receiver, the result destination is In-house
developed application, so no need to mind the result information handling.

Need to pay attention to the result information leakage from the destination application when result
information is returned from Broadcast Receivers as above.

4.2.2.5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver
 (Required)

Broadcast is the created system to broadcast information to unspecified large number of applications
or notify them of the timing at once. So, broadcasting sensitive information requires the careful
designing for preventing the illicit obtainment of the information by malware.

For broadcasting sensitive information, only reliable Broadcast Receiver can receive it, and other
Broadcast Receivers cannot. The following are some examples of Broadcast sending methods.

 The method is to fix the address by Broadcast-sending with an explicit Intent for sending
All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 121

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Broadcasts to the intended reliable Broadcast Receivers only. There are 2 patterns in this method.
 When it's addressed to a Broadcast Receiver within the same application, specify the address

by Intent#setClass(Context, Class). Refer to sample code section "4.2.1.1 Private Broadcast
Receiver - Receiving/Sending Broadcast" for the concrete code.

 When it's addressed to a Broadcast Receiver in other applications, specify the address by
Intent#setClassName(String, String). Confirm the permitted application by comparing the
developer key of the APK signature in the destination package with the white list to send
Broadcasts. Actually the following method of using implicit Intents is more practical.

 The Method is to send Broadcasts by specifying in-house-defined Signature Permission to
receiverPermission parameter and make the reliable Broadcast Receiver declare to use this
Signature Permission. Refer to the sample code section "4.2.1.3 In-house Broadcast Receiver -
Receiving/Sending Broadcast" for the concrete code. In addition, implementing this
Broadcast-sending method needs to apply the rule "4.2.2.3 Use the In-house Defined Signature
Permission after Verifying that it's Defined by an In-house Application (Required)."

4.2.2.6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)

Usually, the Broadcasts will be disappeared when they are processed to be received by the available
Broadcast Receivers. On the other hand, Sticky Broadcasts (hereafter, Sticky Broadcasts including
Sticky Ordered Broadcasts), will not be disappeared from the system even when they processed to be
received by the available Broadcast Receivers and will be able to be received by registerReceiver().
When Sticky Broadcast becomes unnecessary, it can be deleted anytime arbitrarily with
removeStickyBroadcast().

As it's presupposed that Sticky Broadcast is used by the implicit Intent. Broadcasts with specified
receiverPermission Parameter cannot be sent. So information sent by Sticky Broadcast may be taken
by unspecified large number of applications including malware. As a result, sensitive information
should not be sent by Sticky Broadcast.

4.2.2.7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not
Be Delivered (Required)

Ordered Broadcast without specified receiverPermission Parameter can be received by unspecified
large number of applications including malware. Ordered Broadcast is used to receive the returned
information from Receiver, and to make several Receivers execute processing one by one. Broadcasts
are sent to the Receivers in order of priority. So if the high- priority malware receives Broadcast first
and executes abortBroadcast(), Broadcasts won't be delivered to the following Receivers.

4.2.2.8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely
 (Required)

Basically the result data should be processed safely considering the possibility that received results
may be the attacking data though the risks vary depending on the types of the Broadcast Receiver
122 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

which has returned the result data.
When sender (source) Broadcast Receiver is public Broadcast Receiver, it receives the returned data
from unspecified large number of applications. So it may also receive malware's attacking data. When
sender (source) Broadcast Receiver is private Broadcast Receiver, it seems no risk. However the data
received by other applications may be forwarded as result data indirectly. So the result data should
not be considered as safe without any qualification. When sender (source) Broadcast Receiver is
In-house Broadcast Receiver, it has some degree of the risks. So it should be processed in a safe way
considering the possibility that the result data may be an attacking data.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.2.2.9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection
Level (Required)

When information or function assets protected by Permission are provided to other applications
secondarily, it's necessary to keep the protection standard by claiming the same Permission of the
destination application. In the Android Permission security models, privileges are managed only for
the direct access to the protected assets from applications. Because of the characteristics, acquired
assets may be provided to other applications without claiming Permission which is necessary for
protection. This is actually same as re-delegating Permission, as it is called, Permission
re-delegation problem. Please refer to "5.2.3.4 Permission Re-delegation Problem."

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 123

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.3. Advanced Topics

4.2.3.1. Combinations of the exported Attribute and the Intent-filter setting (For Receiver)

Table 4.2 2 represents the permitted combination of export settings and Intent-filter elements when
implementing Receivers. The reason why the usage of exported="false" with Intent-filter definition is
principally prohibited, is described below.

Table 4.2-3 Usable or not; Combination of exported attribute and intent-filter elements
 Value of exported attribute

true false Not specified
Intent-filter defined OK (Do not Use) (Do not Use)
Intent Filter Not
Defined

OK OK (Do not Use)

Public Receivers in other applications may be called unexpectedly even though Broadcasts are sent to
the private Receivers within the same applications. This is the reason why specifying
exported="false" with Intent-filter definition is prohibited. The following 2 figures show how the
unexpected calls occur.

Figure 4.2-4 is an example of the normal behaviors which a private Receiver (application A) can be
called by implicit Intent only within the same application. Intent-filter (in the figure, action="X") is
defined only in application A, so this is the expected behavior.

Figure 4.2-4

Figure 4.2-5 is an example that Intent-filter (see action="X" in the figure) is defined in the
application B as well as in the application A. First of all, when another application (application C)
sends Broadcasts by implicit Intent, they are not received by a private Receiver (A-1) side. So there
won't be any security problem. (See the orange arrow marks in the Figure.)

Android device

Application A
Send a broadcast with
the implicit intent

Private Receiver A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Send a broadcast with
the implicit intent

Intent(“X”)

Since the receiver A-1 is private one,
it can receive broadcasts only from the
application A.

124 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

From security point of view, the problem is application A's call to the private Receiver within the same
application. When the application A broadcasts implicit Intent, not only private Receiver within the
same application, but also public Receiver (B-1) with the same Intent-filter definition can also receive
the Intent. (Red arrow marks in the Figure). In this case, sensitive information may be sent from the
application A to B. When the application B is malware, it will cause the leakage of sensitive
information. When the Broadcast is Ordered Broadcast, it may receive the unexpected result
information.

Figure 4.2-5

However, exported="false" with Intent-filter definition should be used when Broadcast Receiver to
receive only Broadcast Intent sent by the system is implemented. Other combination should not be
used. This is based on the fact that Broadcast Intent sent by the system can be received by
exported="false". If other applications send Intent which has same ACTION with Broadcast Intent
sent by system, it may cause an unexpected behavior by receiving it. However, this can be prevented
by specifying exported="false".

4.2.3.2. Receiver Won't Be Registered before Launching the Application in Android 3.1 or later

In Android 3.1 or later, it's necessary to pay attention that Broadcast Receiver which is statically
defined in AndroidManifest.xml won't be enable by just installing. By launching an application once,
then it will be able to receive Broadcasts. After installing, processes cannot be launched by receiving
Broadcasts as a trigger. By setting Intent to Intent.FLAG_INCLUDE_STOPPED_PACKAGES in Broadcast
sender side, the application can receive the Broadcasts even though the application has never been
launched.

Android device

Application A
Send a broadcast with
the implicit intent

Private Receiver A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Send a broadcast with
the implicit intent

Intent(“X”)

When several applications that have
the receiver defining the same action
(intent-filter) are installed, intents
are sent to all receivers.

Application B

Public Receiver B-1
exported=“true”

action=“X”

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 125

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.3.3. Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID

Application

Same UID can be provided to several applications. Even if it's private Broadcast Receiver, the
Broadcasts sent from the same UID application can be received.

However, it won't be a security problem. Since it's guaranteed that applications with the same UID
have the consistent developer keys for signing APK. It means that what private Broadcast Receiver
receives is only the Broadcast sent from In-house applications.

4.2.3.4. Types and Features of Broadcasts

Regarding Broadcasts, there are 4 types based on the combination of whether it's Ordered or not, and
Sticky or not. Based on Broadcast sending methods, a type of Broadcast to send is determined.

Table 4.2-4
Type of Broadcast Method for sending Ordered? Sticky?

Normal Broadcast sendBroadcast() No No
Ordered Broadcast sendOrderedBroadcast() Yes No
Sticky Broadcast sendStickyBroadcast() No Yes
Sticky Ordered Broadcast sendStickyOrderedBroadcast() Yes Yes

The feature of each Broad cast is described.

Table 4.2-5
Type of Broadcast Features for each type of Broadcast

Normal Broadcast Normal Broadcast disappears when it is sent to receivable Broadcast
Receiver. Broadcasts are received by several Broadcast Receivers
simultaneously. This is a difference from Ordered Broadcast.
Broadcasts are allowed to be received by the particular Broadcast
Receivers.

Ordered Broadcast Ordered Broadcast is characterized by receiving Broadcasts one by
one in order with receivable Broadcast Receivers. The
higher-priority Broadcast Receiver receives earlier. Broadcasts will
disappear when Broadcasts are delivered to all Broadcast Receivers
or a Broadcast Receiver in the process calls abortBroadcast().
Broadcasts are allowed to be received by the Broadcast Receivers
which declare the specified Permission. In addition, the result
information sent from Broadcast Receiver can be received by the
sender with Ordered Broadcasts. The Broadcast of SMS-receiving
notice (SMS_RECEIVED) is a representative example of Ordered
Broadcast.

126 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Sticky Broadcast Sticky Broadcast does not disappear and remains in the system, and
then the application that calls registerReceiver() can receive Sticky
Broadcast later. Since Sticky Broadcast is different from other
Broadcasts, it will never disappear automatically. So when Sticky
Broadcast is not necessary, calling removeStickyBroadcast()
explicitly is required to delete Sticky Broadcast. Also, Broadcasts
cannot be received by the limited Broadcast Receivers with
particular Permission. The Broadcast of changing battery-state
notice (ACTION_BATTERY_CHANGED) is the representative example
of Sticky Broadcast.

Sticky Ordered Broadcast This is the Broadcast which has both characteristics of Ordered
Broadcast and Sticky Broadcast. Same as Sticky Broadcast, it cannot
allow only Broadcast Receivers with the particular Permission to
receive the Broadcast.

From the Broadcast characteristic behavior point of view, above table is conversely arranged in the
following one.

Table 4.2-6
Characteristic behavior of
Broadcast

Normal
Broadcast

Ordered
Broadcast

Sticky
Broadcast

Sticky Ordered
Broadcast

Limit Broadcast Receivers
which can receive Broadcast,
by Permission

OK OK - -

Get the results of process from
Broadcast Receiver

- OK - OK

Make Broadcast Receivers
process Broadcasts in order

- OK - OK

Receive Broadcasts later, which
have been already sent

- - OK OK

4.2.3.5. Broadcasted Information May be Output to the LogCat

Basically sending/receiving Broadcasts is not output to LogCat. However, the error log will be output
when lacking Permission causes errors in receiver/sender side. Intent information sent by Broadcast
is included in the error log, so after an error occurs it's necessary to pay attention that Intent
information is displayed in LogCat when Broadcast is sent.

Erorr of lacking Permission in sender side
W/ActivityManager(266): Permission Denial: broadcasting Intent { act=org.jssec.android.broadcastreceiver.creating.ac
tion.MY_ACTION } from org.jssec.android.broadcast.sending (pid=4685, uid=10058) requires org.jssec.android.permissio
n.MY_PERMISSION due to receiver org.jssec.android.broadcastreceiver.creating/org.jssec.android.broadcastreceiver.cre
ating.CreatingType3Receiver

All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts 127

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Erorr of lacking Permission in receiver side
W/ActivityManager(275): Permission Denial: receiving Intent { act=org.jssec.android.broadcastreceiver.creating.actio
n.MY_ACTION } to org.jssec.android.broadcastreceiver.creating requires org.jssec.android.permission.MY_PERMISSION du
e to sender org.jssec.android.broadcast.sending (uid 10158)

128 All rights reserved © Japan Smartphone Security Association. Receiving/Sending Broadcasts

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3. Creating/Using Content Providers

Since the interface of ContentResolver and SQLiteDatabase are so much alike, it's often
misunderstood that Content Provider is so closely related to SQLiteDatabase. However, actually
Content Provider simply provides the interface of inter-application data sharing, so it's necessary to
pay attention that it does not interfere each data saving format. To save data in Content Provider,
SQLiteDatabase can be used, and other saving formats, such as an XML file format, also can be used.
Any data saving process is not included in the following sample code, so please add it if needed.

4.3.1. Sample Code

The risks and countermeasures of using Content Provider differ depending on how that Content
Provider is being used. In this section, we have classified 5 types of Content Provider based on how
the Content Provider is being used. You can find out which type of Content Provider you are
supposed to create through the following chart shown below.

Table 4.3-1 Definition of content provider types

Type Definition
Private Content
Provider

A content provider that cannot be used by another application, and
therefore is the safest content provider

Public Content
Provider

A content provider that is supposed to be used by an unspecified
large number of applications

Partner Content
Provider

A content provider that can be used by specific applications made
by a trusted partner company.

In-house Content
Provider

A content provider that can only be used by other in-house
applications

Temporary permit
Content Provider

A content provider that is basically private content provider, but
permits specific applications to access the particular URI.

Figure 4.3-1

Start

Use only in
the same application?

In-house Content ProviderPrivate Content Provider Partner Content ProviderPublic Content Provider

Allow unspecified number
applications to use?

Allow specified company’s
applications to use

Yes No

Yes No

Yes No

Provide services always?
NoYes

Temporary
Content Provider

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 129

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.1. Creating/Using Private Content Providers

Private Content Provider is the Content Provider which is used only in the single application, and the
safest Content Provider. However, it's necessary to pay attention that private setting for Content
Provider does not work in Android 2.2 (API Level 8) or earlier.

Sample code of how to implement a private Content Provider is shown below.

Points (Creating a Content Provider):
1. Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.
2. Explicitly set the exported attribute to false.
3. Handle the received request data carefully and securely, even though the data comes from the

same application.
4. Sensitive information can be sent since it is sending and receiving all within the same application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.provider.privateprovider"
 android:versionCode="1"
 android:versionName="1.0" >

 <!-- *** POINT 1 *** Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.
-->
 <uses-sdk android:minSdkVersion="9" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".PrivateUserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- *** POINT 2 *** Explicitly set the exported attribute to false. -->
 <provider
 android:name=".PrivateProvider"
 android:authorities="org.jssec.android.provider.privateprovider"
 android:exported="false" />
 </application>
</manifest>

PrivateProvider.java
package org.jssec.android.provider.privateprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;

130 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.UriMatcher;
import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;

public class PrivateProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.privateprovider";
 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";
 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.
 public interface Download {
 public static final String PATH = "downloads";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }
 public interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 // UriMatcher
 private static final int DOWNLOADS_CODE = 1;
 private static final int DOWNLOADS_ID_CODE = 2;
 private static final int ADDRESSES_CODE = 3;
 private static final int ADDRESSES_ID_CODE = 4;
 private static UriMatcher sUriMatcher;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);
 }

 // Since this is a sample program,
 // query method returns the following fixed result always without using database.
 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
 static {
 sAddressCursor.addRow(new String[] { "1", "New York" });
 sAddressCursor.addRow(new String[] { "2", "Longon" });
 sAddressCursor.addRow(new String[] { "3", "Paris" });
 }
 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
 static {
 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
 }

 @Override
 public boolean onCreate() {
 return true;
 }

 @Override
 public String getType(Uri uri) {
 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from the same application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 131

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
 // However, the result of getType rarely has the sensitive meaning.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case ADDRESSES_CODE:
 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:
 case ADDRESSES_ID_CODE:
 return CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from the same application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
 // It depends on application whether the query result has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case DOWNLOADS_ID_CODE:
 return sDownloadCursor;

 case ADDRESSES_CODE:
 case ADDRESSES_ID_CODE:
 return sAddressCursor;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from the same application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
 // It depends on application whether the issued ID has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:

132 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:
 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from the same application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
 // It depends on application whether the number of updated records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 15;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from the same application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Sensitive information can be sent since it is sending and receiving all within the same app
lication.
 // It depends on application whether the number of deleted records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:
 return 1;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 133

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 case ADDRESSES_CODE:
 return 20;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }
}

134 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is an example of Activity which uses Private Content Provider.

Points (Using a Content Provider):
5. Sensitive information can be sent since the destination provider is in the same application.
6. Handle received result data carefully and securely, even though the data comes from the same

application.

PrivateUserActivity.java
package org.jssec.android.provider.privateprovider;

import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PrivateUserActivity extends Activity {

 public void onQueryClick(View view) {

 logLine("[Query]");

 Cursor cursor = null;
 try {
 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same applica
tion.
 cursor = getContentResolver().query(
 PrivateProvider.Download.CONTENT_URI, null, null, null, null);

 // *** POINT 6 *** Handle received result data carefully and securely,
 // even though the data comes from the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (cursor == null) {
 logLine(" null cursor");
 } else {
 boolean moved = cursor.moveToFirst();
 while (moved) {
 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));
 moved = cursor.moveToNext();
 }
 }
 }
 finally {
 if (cursor != null) cursor.close();
 }
 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application
.
 Uri uri = getContentResolver().insert(PrivateProvider.Download.CONTENT_URI, null);

 // *** POINT 6 *** Handle received result data carefully and securely,

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 135

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // even though the data comes from the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(" uri:" + uri);
 }

 public void onUpdateClick(View view) {

 logLine("[Update]");

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application
.
 int count = getContentResolver().update(PrivateProvider.Download.CONTENT_URI, null, null, null);

 // *** POINT 6 *** Handle received result data carefully and securely,
 // even though the data comes from the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records updated", count));
 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 // *** POINT 5 *** Sensitive information can be sent since the destination provider is in the same application
.
 int count = getContentResolver().delete(
 PrivateProvider.Download.CONTENT_URI, null, null);

 // *** POINT 6 *** Handle received result data carefully and securely,
 // even though the data comes from the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records deleted", count));
 }

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

136 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.2. Creating/Using Public Content Providers

Public Content Provider is the Content Provider which is supposed to be used by unspecified large
number of applications. It's necessary to pay attention that since this doesn't specify clients, it may
be attacked and tampered by Malware. For example, a saved data may be taken by select(), a data
may be changed by update(), or a fake data may be inserted/deleted by insert()/delete().

In addition, when using a custom Public Content Provider which is not provided by Android OS, it's
necessary to pay attention that request parameter may be received by Malware which masquerades
as the custom Public Content Provider, and also the attack result data may be sent. Contacts and
MediaStore provided by Android OS are also Public Content Providers, but Malware cannot
masquerades as them.

Sample code to implement a Public Content Provider is shown below.

Points (Creating a Content Provider):
1. Explicitly set the exported attribute to true.
2. Handle the received request data carefully and securely.
3. When returning a result, do not include sensitive information.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.provider.publicprovider"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->
 <provider
 android:name=".PublicProvider"
 android:authorities="org.jssec.android.provider.publicprovider"
 android:exported="true" />
 </application>
</manifest>

PublicProvider.java
package org.jssec.android.provider.publicprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 137

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

public class PublicProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.publicprovider";
 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";
 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.
 public interface Download {
 public static final String PATH = "downloads";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }
 public interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 // UriMatcher
 private static final int DOWNLOADS_CODE = 1;
 private static final int DOWNLOADS_ID_CODE = 2;
 private static final int ADDRESSES_CODE = 3;
 private static final int ADDRESSES_ID_CODE = 4;
 private static UriMatcher sUriMatcher;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);
 }

 // Since this is a sample program,
 // query method returns the following fixed result always without using database.
 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
 static {
 sAddressCursor.addRow(new String[] { "1", "New York" });
 sAddressCursor.addRow(new String[] { "2", "London" });
 sAddressCursor.addRow(new String[] { "3", "Paris" });
 }
 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
 static {
 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
 }

 @Override
 public boolean onCreate() {
 return true;
 }

 @Override
 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case ADDRESSES_CODE:
 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:
 case ADDRESSES_ID_CODE:

138 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // *** POINT 2 *** Handle the received request data carefully and securely.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.
 // It depends on application whether the query result has sensitive meaning or not.
 // If no problem when the information is taken by malware, it can be returned as result.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case DOWNLOADS_ID_CODE:
 return sDownloadCursor;

 case ADDRESSES_CODE:
 case ADDRESSES_ID_CODE:
 return sAddressCursor;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 2 *** Handle the received request data carefully and securely.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.
 // It depends on application whether the issued ID has sensitive meaning or not.
 // If no problem when the information is taken by malware, it can be returned as result.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:
 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 139

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 2 *** Handle the received request data carefully and securely.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.
 // It depends on application whether the number of updated records has sensitive meaning or not.
 // If no problem when the information is taken by malware, it can be returned as result.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 15;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 2 *** Handle the received request data carefully and securely.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 3 *** When returning a result, do not include sensitive information.
 // It depends on application whether the number of deleted records has sensitive meaning or not.
 // If no problem when the information is taken by malware, it can be returned as result.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 20;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }
}

140 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is an example of Activity which uses Public Content Provider.

Points (Using a Content Provider):
4. Do not send sensitive information.
5. When receiving a result, handle the result data carefully and securely.

PublicUserActivity.java
package org.jssec.android.provider.publicuser;

import android.app.Activity;
import android.content.ContentValues;
import android.content.pm.ProviderInfo;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PublicUserActivity extends Activity {

 // Target Content Provider Information
 private static final String AUTHORITY = "org.jssec.android.provider.publicprovider";
 private interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 public void onQueryClick(View view) {

 logLine("[Query]");

 if (!providerExists(Address.CONTENT_URI)) {
 logLine(" Content Provider doesn't exist.");
 return;
 }

 Cursor cursor = null;
 try {
 // *** POINT 4 *** Do not send sensitive information.
 // since the target Content Provider may be malware.
 // If no problem when the information is taken by malware, it can be included in the request.
 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (cursor == null) {
 logLine(" null cursor");
 } else {
 boolean moved = cursor.moveToFirst();
 while (moved) {
 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));
 moved = cursor.moveToNext();
 }
 }
 }
 finally {
 if (cursor != null) cursor.close();
 }

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 141

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 if (!providerExists(Address.CONTENT_URI)) {
 logLine(" Content Provider doesn't exist.");
 return;
 }

 // *** POINT 4 *** Do not send sensitive information.
 // since the target Content Provider may be malware.
 // If no problem when the information is taken by malware, it can be included in the request.
 ContentValues values = new ContentValues();
 values.put("city", "Tokyo");
 Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(" uri:" + uri);
 }

 public void onUpdateClick(View view) {

 logLine("[Update]");

 if (!providerExists(Address.CONTENT_URI)) {
 logLine(" Content Provider doesn't exist.");
 return;
 }

 // *** POINT 4 *** Do not send sensitive information.
 // since the target Content Provider may be malware.
 // If no problem when the information is taken by malware, it can be included in the request.
 ContentValues values = new ContentValues();
 values.put("city", "Tokyo");
 String where = "_id = ?";
 String[] args = { "4" };
 int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records updated", count));
 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 if (!providerExists(Address.CONTENT_URI)) {
 logLine(" Content Provider doesn't exist.");
 return;
 }

 // *** POINT 4 *** Do not send sensitive information.
 // since the target Content Provider may be malware.
 // If no problem when the information is taken by malware, it can be included in the request.
 int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

142 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records deleted", count));
 }

 private boolean providerExists(Uri uri) {
 ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);
 return (pi != null);
 }

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 143

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.3. Creating/Using Partner Content Providers

Partner Content Provider is the Content Provider which can be used only by the particular applications.
The system consists of a partner company's application and In-house application, and it is used to
protect the information and features which are handled between a partner application and an
In-house application.

Sample code to implement a partner-only Content Provider is shown below.

Points (Creating a Content Provider):
1. Explicitly set the exported attribute to true.
2. Verify if the certificate of a requesting application has been registered in the own white list.
3. Handle the received request data carefully and securely, even though the data comes from a

partner application.
4. Information that is granted to disclose to partner applications can be returned.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.provider.partnerprovider"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->
 <provider
 android:name=".PartnerProvider"
 android:authorities="org.jssec.android.provider.partnerprovider"
 android:exported="true" />
 </application>
</manifest>

PartnerProvider.java
package org.jssec.android.provider.partnerprovider;

import java.util.List;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.ActivityManager;
import android.app.ActivityManager.RunningAppProcessInfo;
import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;

144 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;
import android.os.Binder;

public class PartnerProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.partnerprovider";
 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";
 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.
 public interface Download {
 public static final String PATH = "downloads";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }
 public interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 // UriMatcher
 private static final int DOWNLOADS_CODE = 1;
 private static final int DOWNLOADS_ID_CODE = 2;
 private static final int ADDRESSES_CODE = 3;
 private static final int ADDRESSES_ID_CODE = 4;
 private static UriMatcher sUriMatcher;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);
 }

 // Since this is a sample program,
 // query method returns the following fixed result always without using database.
 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
 static {
 sAddressCursor.addRow(new String[] { "1", "New York" });
 sAddressCursor.addRow(new String[] { "2", "London" });
 sAddressCursor.addRow(new String[] { "3", "Paris" });
 }
 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
 static {
 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
 }

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white lis
t.
 private static PkgCertWhitelists sWhitelists = null;
 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.provider.partneruser.
 sWhitelists.add("org.jssec.android.provider.partneruser", isdebug ?
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 145

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Certificate hash value of "partner key" in the keystore.
 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register following other partner applications in the same way.
 }
 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }
 // Get the package name of the calling application.
 private String getCallingPackage(Context context) {
 String pkgname = null;
 ActivityManager am = (ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE);
 List<RunningAppProcessInfo> procList = am.getRunningAppProcesses();
 int callingPid = Binder.getCallingPid();
 if (procList != null) {
 for (RunningAppProcessInfo proc : procList) {
 if (proc.pid == callingPid) {
 pkgname = proc.pkgList[proc.pkgList.length - 1];
 break;
 }
 }
 }
 return pkgname;
 }

 @Override
 public boolean onCreate() {
 return true;
 }

 @Override
 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case ADDRESSES_CODE:
 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:
 case ADDRESSES_ID_CODE:
 return CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
 throw new SecurityException("Calling application is not a partner application.");
 }

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from a partner application.

146 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
 // It depends on application whether the query result can be disclosed or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case DOWNLOADS_ID_CODE:
 return sDownloadCursor;

 case ADDRESSES_CODE:
 case ADDRESSES_ID_CODE:
 return sAddressCursor;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
 throw new SecurityException("Calling application is not a partner application.");
 }

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from a partner application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
 // It depends on application whether the issued ID has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:
 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
 throw new SecurityException("Calling application is not a partner application.");
 }

 // *** POINT 3 *** Handle the received request data carefully and securely,

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 147

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // even though the data comes from a partner application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
 // It depends on application whether the number of updated records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 15;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 2 *** Verify if the certificate of a requesting application has been registered in the own white
list.
 if (!checkPartner(getContext(), getCallingPackage(getContext()))) {
 throw new SecurityException("Calling application is not a partner application.");
 }

 // *** POINT 3 *** Handle the received request data carefully and securely,
 // even though the data comes from a partner application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 4 *** Information that is granted to disclose to partner applications can be returned.
 // It depends on application whether the number of deleted records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 20;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }
}

148 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 149

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is an example of Activity which use partner only Content Provider.

Points (Using a Content Provider):
5. Verify if the certificate of the target application has been registered in the own white list.
6. Information that is granted to disclose to partner applications can be sent.
7. Handle the received result data carefully and securely, even though the data comes from a

partner application.

PartnerActivity.java
package org.jssec.android.provider.partneruser;

import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ContentValues;
import android.content.Context;
import android.content.pm.ProviderInfo;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PartnerUserActivity extends Activity {

 // Target Content Provider Information
 private static final String AUTHORITY = "org.jssec.android.provider.partnerprovider";
 private interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white list.
 private static PkgCertWhitelists sWhitelists = null;
 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application org.jssec.android.provider.partnerprovider.
 sWhitelists.add("org.jssec.android.provider.partnerprovider", isdebug ?
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
 // Certificate hash value of "partner key" in the keystore.
 "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA");

 // Register following other partner applications in the same way.
 }
 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }

 // Get package name of target content provider.
 private String providerPkgname(Uri uri) {
 String pkgname = null;
 ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);

150 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (pi != null) pkgname = pi.packageName;
 return pkgname;
 }

 public void onQueryClick(View view) {

 logLine("[Query]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li
st.
 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
 logLine(" The target content provider is not served by partner applications.");
 return;
 }

 Cursor cursor = null;
 try {
 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 6 *** Handle the received result data carefully and securely,
 // even though the data comes from a partner application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (cursor == null) {
 logLine(" null cursor");
 } else {
 boolean moved = cursor.moveToFirst();
 while (moved) {
 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));
 moved = cursor.moveToNext();
 }
 }
 }
 finally {
 if (cursor != null) cursor.close();
 }
 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li
st.
 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
 logLine(" The target content provider is not served by partner applications.");
 return;
 }

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
 ContentValues values = new ContentValues();
 values.put("city", "Tokyo");
 Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

 // *** POINT 6 *** Handle the received result data carefully and securely,
 // even though the data comes from a partner application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(" uri:" + uri);
 }

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 151

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onUpdateClick(View view) {

 logLine("[Update]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li
st.
 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
 logLine(" The target content provider is not served by partner applications.");
 return;
 }

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
 ContentValues values = new ContentValues();
 values.put("city", "Tokyo");
 String where = "_id = ?";
 String[] args = { "4" };
 int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

 // *** POINT 6 *** Handle the received result data carefully and securely,
 // even though the data comes from a partner application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records updated", count));
 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 // *** POINT 4 *** Verify if the certificate of the target application has been registered in the own white li
st.
 if (!checkPartner(this, providerPkgname(Address.CONTENT_URI))) {
 logLine(" The target content provider is not served by partner applications.");
 return;
 }

 // *** POINT 5 *** Information that is granted to disclose to partner applications can be sent.
 int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

 // *** POINT 6 *** Handle the received result data carefully and securely,
 // even though the data comes from a partner application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records deleted", count));
 }

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

152 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {
 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 153

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

154 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.4. Creating/Using In-house Content Providers

In-house Content Provider is the Content Provider which prohibits to be used by applications other
than In house only applications.

Sample code of how to implement an In house only Content Provider is shown below.

Points (Creating a Content Provider):
1. Define an in-house signature permission.
2. Require the in-house signature permission.
3. Explicitly set the exported attribute to true.
4. Verify if the in-house signature permission is defined by an in-house application.
5. Verify the safety of the parameter even if it's a request from In house only application.
6. Sensitive information can be returned since the requesting application is in-house.
7. When exporting an APK from Eclipse, sign the APK with the same developer key as that of the

requesting application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.provider.inhouseprovider"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 1 *** Define an in-house signature permission -->
 <permission
 android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION"
 android:protectionLevel="signature" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- *** POINT 2 *** Require the in-house signature permission -->
 <!-- *** POINT 3 *** Explicitly set the exported attribute to true. -->
 <provider
 android:name=".InhouseProvider"
 android:authorities="org.jssec.android.provider.inhouseprovider"
 android:permission="org.jssec.android.provider.inhouseprovider.MY_PERMISSION"
 android:exported="true" />
 </application>
</manifest>

InhouseProvider.java
package org.jssec.android.provider.inhouseprovider;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.content.ContentProvider;

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 155

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;

public class InhouseProvider extends ContentProvider {

 public static final String AUTHORITY = "org.jssec.android.provider.inhouseprovider";
 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";
 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.
 public interface Download {
 public static final String PATH = "downloads";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }
 public interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 // UriMatcher
 private static final int DOWNLOADS_CODE = 1;
 private static final int DOWNLOADS_ID_CODE = 2;
 private static final int ADDRESSES_CODE = 3;
 private static final int ADDRESSES_ID_CODE = 4;
 private static UriMatcher sUriMatcher;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, Download.PATH, DOWNLOADS_CODE);
 sUriMatcher.addURI(AUTHORITY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH, ADDRESSES_CODE);
 sUriMatcher.addURI(AUTHORITY, Address.PATH + "/#", ADDRESSES_ID_CODE);
 }

 // Since this is a sample program,
 // query method returns the following fixed result always without using database.
 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
 static {
 sAddressCursor.addRow(new String[] { "1", "New York" });
 sAddressCursor.addRow(new String[] { "2", "London" });
 sAddressCursor.addRow(new String[] { "3", "Paris" });
 }
 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
 static {
 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
 }

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {

156 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" in the keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 @Override
 public boolean onCreate() {
 return true;
 }

 @Override
 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case ADDRESSES_CODE:
 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:
 case ADDRESSES_ID_CODE:
 return CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
 throw new SecurityException("The in-house signature permission is not declared by in-house application.")
;
 }

 // *** POINT 5 *** Handle the received request data carefully and securely,
 // even though the data came from an in-house application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
 // It depends on application whether the query result has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case DOWNLOADS_ID_CODE:
 return sDownloadCursor;

 case ADDRESSES_CODE:
 case ADDRESSES_ID_CODE:
 return sAddressCursor;

 default:

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 157

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
 throw new SecurityException("The in-house signature permission is not declared by in-house application.")
;
 }

 // *** POINT 5 *** Handle the received request data carefully and securely,
 // even though the data came from an in-house application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
 // It depends on application whether the issued ID has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:
 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
 throw new SecurityException("The in-house signature permission is not declared by in-house application.")
;
 }

 // *** POINT 5 *** Handle the received request data carefully and securely,
 // even though the data came from an in-house application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
 // It depends on application whether the number of updated records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 15;

158 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {

 // *** POINT 4 *** Verify if the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
 throw new SecurityException("The in-house signature permission is not declared by in-house application.")
;
 }

 // *** POINT 5 *** Handle the received request data carefully and securely,
 // even though the data came from an in-house application.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
 // It depends on application whether the number of deleted records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 20;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 159

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

160 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

*** Point 7 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
requesting application.

Figure 4.3-2

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 161

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is the example of Activity which uses In house only Content Provider.

Point (Using a Content Provider):
8. Declare to use the in-house signature permission.
9. Verify if the in-house signature permission is defined by an in-house application.
10. Verify if the destination application is signed with the in-house certificate.
11. Sensitive information can be sent since the destination application is in-house one.
12. Handle the received result data carefully and securely, even though the data comes from an

in-house application.
13. When exporting an APK from Eclipse, sign the APK with the same developer key as that of the

destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.provider.inhouseuser"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 8 *** Declare to use the in-house signature permission. -->
 <uses-permission
 android:name="org.jssec.android.provider.inhouseprovider.MY_PERMISSION" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".InhouseUserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

InhouseUserActivity.java
package org.jssec.android.provider.inhouseuser;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ContentValues;
import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.ProviderInfo;
import android.database.Cursor;
import android.net.Uri;

162 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class InhouseUserActivity extends Activity {

 // Target Content Provider Information
 private static final String AUTHORITY = "org.jssec.android.provider.inhouseprovider";
 private interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.provider.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" in the debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" in the keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 // Get package name of target content provider.
 private static String providerPkgname(Context context, Uri uri) {
 String pkgname = null;
 PackageManager pm = context.getPackageManager();
 ProviderInfo pi = pm.resolveContentProvider(uri.getAuthority(), 0);
 if (pi != null) pkgname = pi.packageName;
 return pkgname;
 }

 public void onQueryClick(View view) {

 logLine("[Query]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 logLine(" The in-house signature permission is not declared by in-house application.");
 return;
 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.
 String pkgname = providerPkgname(this, Address.CONTENT_URI);
 if (!PkgCert.test(this, pkgname, myCertHash(this))) {
 logLine(" The target content provider is not served by in-house applications.");
 return;
 }

 Cursor cursor = null;
 try {
 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 163

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 12 *** Handle the received result data carefully and securely,
 // even though the data comes from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (cursor == null) {
 logLine(" null cursor");
 } else {
 boolean moved = cursor.moveToFirst();
 while (moved) {
 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));
 moved = cursor.moveToNext();
 }
 }
 }
 finally {
 if (cursor != null) cursor.close();
 }
 }

 public void onInsertClick(View view) {

 logLine("[Insert]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
 String correctHash = myCertHash(this);
 if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {
 logLine(" The in-house signature permission is not declared by in-house application.");
 return;
 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.
 String pkgname = providerPkgname(this, Address.CONTENT_URI);
 if (!PkgCert.test(this, pkgname, correctHash)) {
 logLine(" The target content provider is not served by in-house applications.");
 return;
 }

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
 ContentValues values = new ContentValues();
 values.put("city", "Tokyo");
 Uri uri = getContentResolver().insert(Address.CONTENT_URI, values);

 // *** POINT 12 *** Handle the received result data carefully and securely,
 // even though the data comes from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(" uri:" + uri);
 }

 public void onUpdateClick(View view) {

 logLine("[Update]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
 String correctHash = myCertHash(this);
 if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {
 logLine(" The in-house signature permission is not declared by in-house application.");
 return;
 }

164 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.
 String pkgname = providerPkgname(this, Address.CONTENT_URI);
 if (!PkgCert.test(this, pkgname, correctHash)) {
 logLine(" The target content provider is not served by in-house applications.");
 return;
 }

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
 ContentValues values = new ContentValues();
 values.put("city", "Tokyo");
 String where = "_id = ?";
 String[] args = { "4" };
 int count = getContentResolver().update(Address.CONTENT_URI, values, where, args);

 // *** POINT 12 *** Handle the received result data carefully and securely,
 // even though the data comes from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records updated", count));
 }

 public void onDeleteClick(View view) {

 logLine("[Delete]");

 // *** POINT 9 *** Verify if the in-house signature permission is defined by an in-house application.
 String correctHash = myCertHash(this);
 if (!SigPerm.test(this, MY_PERMISSION, correctHash)) {
 logLine(" The target content provider is not served by in-house applications.");
 return;
 }

 // *** POINT 10 *** Verify if the destination application is signed with the in-house certificate.
 String pkgname = providerPkgname(this, Address.CONTENT_URI);
 if (!PkgCert.test(this, pkgname, correctHash)) {
 logLine(" The target content provider is not served by in-house applications.");
 return;
 }

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
 int count = getContentResolver().delete(Address.CONTENT_URI, null, null);

 // *** POINT 12 *** Handle the received result data carefully and securely,
 // even though the data comes from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 logLine(String.format(" %s records deleted", count));
 }

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 165

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));

166 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

*** Point 12 *** When exporting an APK from Eclipse, sign the APK with the same developer key as
that of the destination application.

Figure 4.3-3

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 167

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.1.5. Creating/Using Temporary permit Content Providers

Temporary permit Content Provider is basically a private Content Provider, but this permits the
particular applications to access the particular URI. By sending an Intent which special flag is
specified to the target applications, temporary access permission is provided to those applications.
Contents provider side application can give the access permission actively to other applications, and
it can also give access permission passively to the application which claims the temporary access
permission.

Sample code of how to implement a temporary permit Content Provider is shown below.

Points (Creating a Content Provider):
1. Do not (Cannot) implement temporary permit content provider in Android 2.2 (API Level 8) or

earlier.
2. Explicitly set the exported attribute to false.
3. Specify the path to grant access temporarily with the grant-uri-permission.
4. Handle the received request data carefully and securely, even though the data comes from the

application granted access temporarily.
5. Information that is granted to disclose to the temporary access applications can be returned.
6. Specify URI for the intent to grant temporary access.
7. Specify access rights for the intent to grant temporary access.
8. Send the explicit intent to an application to grant temporary access.
9. Return the intent to the application that requests temporary access.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.provider.temporaryprovider"
 android:versionCode="1"
 android:versionName="1.0" >

 <!-- *** POINT 1 *** Do not (Cannot) implement temporary permit content provider in Android 2.2 (API Level 8) or
earlier. -->
 <uses-sdk android:minSdkVersion="9" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <activity
 android:name=".TemporaryActiveGrantActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Temporary Content Provider -->
 <!-- *** POINT 2 *** Explicitly set the exported attribute to false. -->

168 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 <provider
 android:name=".TemporaryProvider"
 android:authorities="org.jssec.android.provider.temporaryprovider"
 android:exported="false" >

 <!-- *** POINT 3 *** Specify the path to grant access temporarily with the grant-uri-permission. -->
 <grant-uri-permission android:path="/addresses" />

 </provider>

 <activity
 android:name=".TemporaryPassiveGrantActivity"
 android:label="@string/app_name"
 android:exported="true" />
 </application>
</manifest>

TemporaryProvider.java
package org.jssec.android.provider.temporaryprovider;

import android.content.ContentProvider;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.MatrixCursor;
import android.net.Uri;

public class TemporaryProvider extends ContentProvider {
 public static final String AUTHORITIY = "org.jssec.android.provider.temporaryprovider";
 public static final String CONTENT_TYPE = "vnd.android.cursor.dir/vnd.org.jssec.contenttype";
 public static final String CONTENT_ITEM_TYPE = "vnd.android.cursor.item/vnd.org.jssec.contenttype";

 // Expose the interface that the Content Provider provides.
 public interface Download {
 public static final String PATH = "downloads";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITIY + "/" + PATH);
 }
 public interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITIY + "/" + PATH);
 }

 // UriMatcher
 private static final int DOWNLOADS_CODE = 1;
 private static final int DOWNLOADS_ID_CODE = 2;
 private static final int ADDRESSES_CODE = 3;
 private static final int ADDRESSES_ID_CODE = 4;
 private static UriMatcher sUriMatcher;
 static {
 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITIY, Download.PATH, DOWNLOADS_CODE);
 sUriMatcher.addURI(AUTHORITIY, Download.PATH + "/#", DOWNLOADS_ID_CODE);
 sUriMatcher.addURI(AUTHORITIY, Address.PATH, ADDRESSES_CODE);
 sUriMatcher.addURI(AUTHORITIY, Address.PATH + "/#", ADDRESSES_ID_CODE);
 }

 // Since this is a sample program,

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 169

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // query method returns the following fixed result always without using database.
 private static MatrixCursor sAddressCursor = new MatrixCursor(new String[] { "_id", "city" });
 static {
 sAddressCursor.addRow(new String[] { "1", "New York" });
 sAddressCursor.addRow(new String[] { "2", "London" });
 sAddressCursor.addRow(new String[] { "3", "Paris" });
 }
 private static MatrixCursor sDownloadCursor = new MatrixCursor(new String[] { "_id", "path" });
 static {
 sDownloadCursor.addRow(new String[] { "1", "/sdcard/downloads/sample.jpg" });
 sDownloadCursor.addRow(new String[] { "2", "/sdcard/downloads/sample.txt" });
 }

 @Override
 public boolean onCreate() {
 return true;
 }

 @Override
 public String getType(Uri uri) {

 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case ADDRESSES_CODE:
 return CONTENT_TYPE;

 case DOWNLOADS_ID_CODE:
 case ADDRESSES_ID_CODE:
 return CONTENT_ITEM_TYPE;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {

 // *** POINT 4 *** Handle the received request data carefully and securely,
 // even though the data comes from the application granted access temporarily.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne
d.
 // It depends on application whether the query result can be disclosed or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 case DOWNLOADS_ID_CODE:
 return sDownloadCursor;

 case ADDRESSES_CODE:
 case ADDRESSES_ID_CODE:
 return sAddressCursor;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }

170 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {

 // *** POINT 4 *** Handle the received request data carefully and securely,
 // even though the data comes from the application granted access temporarily.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne
d.
 // It depends on application whether the issued ID has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return ContentUris.withAppendedId(Download.CONTENT_URI, 3);

 case ADDRESSES_CODE:
 return ContentUris.withAppendedId(Address.CONTENT_URI, 4);

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {

 // *** POINT 4 *** Handle the received request data carefully and securely,
 // even though the data comes from the application granted access temporarily.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne
d.
 // It depends on application whether the number of updated records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 5; // Return number of updated records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 15;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 171

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 4 *** Handle the received request data carefully and securely,
 // even though the data comes from the application granted access temporarily.
 // Here, whether uri is within expectations or not, is verified by UriMatcher#match() and switch case.
 // Checking for other parameters are omitted here, due to sample.
 // Please refer to "3.2 Handle Input Data Carefully and Securely."

 // *** POINT 5 *** Information that is granted to disclose to the temporary access applications can be returne
d.
 // It depends on application whether the number of deleted records has sensitive meaning or not.
 switch (sUriMatcher.match(uri)) {
 case DOWNLOADS_CODE:
 return 10; // Return number of deleted records

 case DOWNLOADS_ID_CODE:
 return 1;

 case ADDRESSES_CODE:
 return 20;

 case ADDRESSES_ID_CODE:
 return 1;

 default:
 throw new IllegalArgumentException("Invalid URI:" + uri);
 }
 }
}

TemporaryActiveGrantActivity.java
package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class TemporaryActiveGrantActivity extends Activity {

 // User Activity Information
 private static final String TARGET_PACKAGE = "org.jssec.android.provider.temporaryuser";
 private static final String TARGET_ACTIVITY = "org.jssec.android.provider.temporaryuser.TemporaryUserActivity";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.active_grant);
 }

 // In the case that Content Provider application grants access permission to other application actively.
 public void onSendClick(View view) {
 try {
 Intent intent = new Intent();

 // *** POINT 6 *** Specify URI for the intent to grant temporary access.
 intent.setData(TemporaryProvider.Address.CONTENT_URI);

172 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 7 *** Specify access rights for the intent to grant temporary access.
 intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 // *** POINT 8 *** Send the explicit intent to an application to grant temporary access.
 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
 startActivity(intent);

 } catch (ActivityNotFoundException e) {
 Toast.makeText(this, "User Activity not found.", Toast.LENGTH_LONG).show();
 }
 }
}

TemporaryPassiveGrantActivity.java
package org.jssec.android.provider.temporaryprovider;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class TemporaryPassiveGrantActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.passive_grant);
 }

 // In the case that Content Provider application passively grants access permission
 // to the application that requested Content Provider access.
 public void onGrantClick(View view) {
 Intent intent = new Intent();

 // *** POINT 6 *** Specify URI for the intent to grant temporary access.
 intent.setData(TemporaryProvider.Address.CONTENT_URI);

 // *** POINT 7 *** Specify access rights for the intent to grant temporary access.
 intent.setFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 // *** POINT 9 *** Return the intent to the application that requests temporary access.
 setResult(Activity.RESULT_OK, intent);
 finish();
 }

 public void onCloseClick(View view) {
 finish();
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 173

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is the example of temporary permit Content Provider.

Points (Using a Content Provider):
10. Do not send sensitive information.
11. When receiving a result, handle the result data carefully and securely.

TemporaryUserActivity.java
package org.jssec.android.provider.temporaryuser;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Intent;
import android.content.pm.ProviderInfo;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class TemporaryUserActivity extends Activity {

 // Information of the Content Provider's Activity to request temporary content provider access.
 private static final String TARGET_PACKAGE = "org.jssec.android.provider.temporaryprovider";
 private static final String TARGET_ACTIVITY = "org.jssec.android.provider.temporaryprovider.TemporaryPassiveGran
tActivity";

 // Target Content Provider Information
 private static final String AUTHORITY = "org.jssec.android.provider.temporaryprovider";
 private interface Address {
 public static final String PATH = "addresses";
 public static final Uri CONTENT_URI = Uri.parse("content://" + AUTHORITY + "/" + PATH);
 }

 private static final int REQUEST_CODE = 1;

 public void onQueryClick(View view) {

 logLine("[Query]");

 Cursor cursor = null;
 try {
 if (!providerExists(Address.CONTENT_URI)) {
 logLine(" Content Provider doesn't exist.");
 return;
 }

 // *** POINT 10 *** Do not send sensitive information.
 // If no problem when the information is taken by malware, it can be included in the request.
 cursor = getContentResolver().query(Address.CONTENT_URI, null, null, null, null);

 // *** POINT 11 *** When receiving a result, handle the result data carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 if (cursor == null) {
 logLine(" null cursor");
 } else {
 boolean moved = cursor.moveToFirst();
 while (moved) {
 logLine(String.format(" %d, %s", cursor.getInt(0), cursor.getString(1)));

174 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 moved = cursor.moveToNext();
 }
 }
 } catch (SecurityException ex) {
 logLine(" Exception:" + ex.getMessage());
 }
 finally {
 if (cursor != null) cursor.close();
 }
 }

 // In the case that this application requests temporary access to the Content Provider
 // and the Content Provider passively grants temporary access permission to this application.
 public void onGrantRequestClick(View view) {
 Intent intent = new Intent();
 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
 try {
 startActivityForResult(intent, REQUEST_CODE);
 } catch (ActivityNotFoundException e) {
 logLine("Content Provider's Activity not found.");
 }
 }

 private boolean providerExists(Uri uri) {
 ProviderInfo pi = getPackageManager().resolveContentProvider(uri.getAuthority(), 0);
 return (pi != null);
 }

 private TextView mLogView;

 // In the case that the Content Provider application grants temporary access
 // to this application actively.
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView)findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 175

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.2. Rule Book
Be sure to follow the rules below when Implementing or using a content provider.

1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API Level

8) or Earlier (Required)
2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)
3. Handle the Received Request Parameter Carefully and Securely (Required)
4. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house

Application (Required)
5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result

from the Destination Application (Required)
6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of

Protection (Required)

And user side should follow the below rules, too.

7. Handle the Returned Result Data from the Content Provider Carefully and Securely

 (Required)

4.3.2.1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API
Level 8) or Earlier (Required)

Private setting for a Content Provider does not work in Android 2.2 (API Level 8) or earlier. To share a
data in the same application, access a data storage location such as a data base instead of using a
Content Provider.

4.3.2.2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)

Content Provider which is used only in a single application is not necessary to be accessed by other
applications, and the access which attacks the Content Provider is not often considered by
developers. A Content Provider is basically the system to share data, so it's handled as public by
default. A Content Provider which is used only in a single application should be set as private
explicitly, and it should be a private Content Provider. In Android 2.3.1 (API Level 9) or later, a
Content Provider can be set as private by specifying android:exported="false" in provider element.

AndroidManifest.xml
 <!-- *** POINT 1 *** Do not (Cannot) implement Private Content Provider in Android 2.2 (API Level 8) or earlier.
-->
 <uses-sdk android:minSdkVersion="9" />
-abbreviation-

 <!-- *** POINT 2 *** Set false for the exported attribute explicitly. -->
 <provider
 android:name=".PrivateProvider"
 android:authorities="org.jssec.android.provider.privateprovider"
 android:exported="false" />

176 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.3.2.3. Handle the Received Request Parameter Carefully and Securely (Required)

Risks differ depending on the types of Content Providers, but when processing request parameters,
the first thing you should do is input validation.

Although each method of a Content Provider has the interface which is supposed to receive the
component parameter of SQL statement, actually it simply hands over the arbitrary character string in
the system, so it's necessary to pay attention that Contents Provider side needs to suppose the case
that unexpected parameter may be provided.

Since Public Content Providers can receive requests from untrusted sources, they can be attacked by
malware. On the other hand, Private Content Providers will never receive any requests from other
applications directly, but it is possible that a Public Activity in the targeted application may forward a
malicious Intent to a Private Content Provider so you should not assume that Private Content
Providers cannot receive any malicious input.
Since other Content Providers also have the risk of a malicious intent being forwarded to them as well,
it is necessary to perform input validation on these requests as well.
Please refer to "3.2 Handling Input Data Carefully and Securely"

4.3.2.4. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house
Application (Required)

Make sure to protect your in-house Content Providers by defining an in-house signature permission
when creating the Content Provider. Since defining a permission in the AndroidManifest.xml file or
declaring a permission request does not provide adequate security, please be sure to refer to "5.2.1.2
How to Communicate Between In-house Applications with In-house-defined Signature Permission."

4.3.2.5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result
from the Destination Application (Required)

In case of query() or insert(), Cursor or Uri is returned to the request sending application as a result
information. When sensitive information is included in the result information, the information may be
leaked from the destination application. In case of update() or delete(), number of updated/deleted
records is returned to the request sending application as a result information. In rare cases,
depending on some application specs, the number of updated/deleted records has the sensitive
meaning, so please pay attention to this.

4.3.2.6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of
Protection (Required)

When an information or function asset, that is protected by a permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 177

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole
because an application with permissions to an asset can act as a proxy and allow access to an
unprivileged application. Substantially this is the same as redelegating a permission, so it is referred
to as the "Permission Redelegation" problem. Please refer to "5.2.3.4 Permission Re-delegation
Problem."

4.3.2.7. Handle the Returned Result Data from the Content Provider Carefully and Securely
 (Required)

Risks differ depending on the types of Content Provider, but when processing a result data, the first
thing you should do is input validation.

In case that the destination Content Provider is a public Content Provider, Malware which
masquerades as the public Content Provider may return the attack result data. On the other hand, in
case that the destination Content Provider is a private Content Provider, it is less risk because it
receives the result data from the same application, but you should not assume that private Content
Providers cannot receive any malicious input.Since other Content Providers also have the risk of a
malicious data being returned to them as well, it is necessary to perform input validation on that
result data as well.

Please refer to "3.2 Handling Input Data Carefully and Securely"

178 All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4. Creating/Using Services

4.4.1. Sample Code

The risks and countermeasures of using Services differ depending on how that Service is being used.
You can find out which type of Service you are supposed to create through the following chart shown
below. Since the secure coding best practice varies according to how the service is created, we will
also explain about the implementation of the Service as well.

Table 4.4-1 Definition of service types

Type Definition
Private Service A service that cannot be used another application, and therefore is

the safest service.
Public Service A service that is supposed to be used by an unspecified large

number of applications
Partner Service A service that can only be used by the specific applications made by

a trusted partner company.
In-house Service A service that can only be used by other in-house applications.

Figure 4.4-1

There are several implementation methods for Service, and you will select the method which matches
with the type of Service that you suppose to create. The items of vertical columns in the table show
the implementation methods, and these are divided into 5 types. "OK" stands for the possible
combination and others show impossible/difficult combinations in the table.

Please refer to "4.4.3.2 How to Implement Service" and Sample code of each Service type (with * mark
in a table) for detailed implementation methods of Service.

Start

Use only in
the same application?

In-house ServicePrivate Service Partner ServicePublic Service

Allow unspecified number
applications to use?

Allow specified company’s
applications to use

Yes No

Yes No

Yes No

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 179

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Table 4.4-2

Category
Private
Service

Public
Service

Partner
Service

In-house
Service

startService type OK* OK - OK
IntentService type OK OK* - OK
local bind type OK - - -
Messenger bind
type

OK OK - OK*

AIDL bind type OK OK OK* OK

Sample code for each security type of Service are shown as below, by using combination of * mark in
Table 4.4-2.

180 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.1. Creating/Using Private Services

Private Services are Services which cannot be launched by the other applications and therefore it is
the safest Service.
When using Private Services that are only used within the application, as long as you use explicit
Intents to the class then you do not have to worry about accidently sending it to any other
application.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):
1. Explicitly set the exported attribute to false.
2. Handle the received intent carefully and securely, even though the intent was sent from the same

application.
3. Sensitive information can be sent since the requesting application is in the same application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.service.privateservice"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".PrivateUserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Private Service derived from Service class -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->
 <service android:name=".PrivateStartService" android:exported="false"/>

 <!-- Private Service derived from IntentService class -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to false. -->
 <service android:name=".PrivateIntentService" android:exported="false"/>

 </application>

</manifest>

PrivateStartService.java
package org.jssec.android.service.privateservice;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 181

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.widget.Toast;

public class PrivateStartService extends Service {

 // The onCreate gets called only one time when the service starts.
 @Override
 public void onCreate() {
 Toast.makeText(this, "PrivateStartService - onCreate()", Toast.LENGTH_SHORT).show();
 }

 // The onStartCommand gets called each time after the startService gets called.
 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 // *** POINT 2 *** Handle the received intent carefully and securely,
 // even though the intent was sent from the same application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = intent.getStringExtra("PARAM");
 Toast.makeText(this,
 String.format("PrivateStartService¥nReceived param: ¥"%s¥"", param),
 Toast.LENGTH_LONG).show();

 return Service.START_NOT_STICKY;
 }

 // The onDestroy gets called only one time when the service stops.
 @Override
 public void onDestroy() {
 Toast.makeText(this, "PrivateStartService - onDestroy()", Toast.LENGTH_SHORT).show();
 }

 @Override
 public IBinder onBind(Intent intent) {
 // This service does not provide binding, so return null
 return null;
 }
}

182 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is sample code for Activity which uses Private Service.

Points (Using a Service):
4. Use the explicit intent with class specified to call a service in the same application.
5. Sensitive information can be sent since the destination service is in the same application.
6. Handle the received result data carefully and securely, even though the data came from a service

in the same application.

PrivateUserActivity.java
package org.jssec.android.service.privateservice;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PrivateUserActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.privateservice_activity);
 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {
 // *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.
 Intent intent = new Intent(this, PrivateStartService.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination service is in the same application.
 intent.putExtra("PARAM", "Sensitive information");

 startService(intent);
 }

 public void onStopServiceClick(View v) {
 doStopService();
 }

 @Override
 public void onStop() {
 super.onStop();
 // Stop service if the service is running.
 doStopService();
 }

 private void doStopService() {
 // *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.
 Intent intent = new Intent(this, PrivateStartService.class);
 stopService(intent);
 }

 // --- IntentService control ---

 public void onIntentServiceClick(View v) {
 // *** POINT 4 *** Use the explicit intent with class specified to call a service in the same application.

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 183

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 Intent intent = new Intent(this, PrivateIntentService.class);

 // *** POINT 5 *** Sensitive information can be sent since the destination service is in the same application.
 intent.putExtra("PARAM", "Sensitive information");

 startService(intent);
 }
}

184 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.2. Creating/Using Public Services

Public Service is the Service which is supposed to be used by the unspecified large number of
applications. It's necessary to pay attention that it may receive the information (Intent etc.) which was
sent by Malware. In case using public Service, It's necessary to pay attention that information(Intent
etc.) to send may be received by Malware.

Sample code of how to use the startService type Service is shown below.

Points (Creating a Service):
1. Explicitly set the exported attribute to true.
2. Handle the received intent carefully and securely.
3. When returning a result, do not include sensitive information.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.service.publicservice"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Most standard Service -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->
 <service android:name=".PublicStartService" android:exported="true">
 <intent-filter>
 <action android:name="org.jssec.android.service.publicservice.action.startservice" />
 </intent-filter>
 </service>

 <!-- Public Service derived from IntentService class -->
 <!-- *** POINT 1 *** Explicitly set the exported attribute to true. -->
 <service android:name=".PublicIntentService" android:exported="true">
 <intent-filter>
 <action android:name="org.jssec.android.service.publicservice.action.intentservice" />
 </intent-filter>
 </service>

 </application>

</manifest>

PublicIntentService.java
package org.jssec.android.service.publicservice;

import android.app.IntentService;
import android.content.Intent;
import android.widget.Toast;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 185

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

public class PublicIntentService extends IntentService{

 /**
 * Default constructor must be provided when a service extends IntentService class.
 * If it does not exist, an error occurs.
 */
 public PublicIntentService() {
 super("CreatingTypeBService");
 }

 // The onCreate gets called only one time when the Service starts.
 @Override
 public void onCreate() {
 super.onCreate();

 Toast.makeText(this, this.getClass().getSimpleName() + " - onCreate()", Toast.LENGTH_SHORT).show();
 }

 // The onHandleIntent gets called each time after the startService gets called.
 @Override
 protected void onHandleIntent(Intent intent) {
 // *** POINT 2 *** Handle intent carefully and securely.
 // Since it's public service, the intent may come from malicious application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = intent.getStringExtra("PARAM");
 Toast.makeText(this, String.format("Recieved parameter ¥"%s¥"", param), Toast.LENGTH_LONG).show();
 }

 // The onDestroy gets called only one time when the service stops.
 @Override
 public void onDestroy() {
 Toast.makeText(this, this.getClass().getSimpleName() + " - onDestroy()", Toast.LENGTH_SHORT).show();
 }

}

186 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is sample code for Activity which uses Public Service.

Points (Using a Service):
4. Do not send sensitive information.
5. When receiving a result, handle the result data carefully and securely.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.service.publicserviceuser"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name">
 <activity
 android:name=".PublicUserActivity"
 android:label="@string/app_name"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>

</manifest>

PublicUserActivity.java
package org.jssec.android.service.publicserviceuser;

import org.jssec.android.service.publicserviceuser.R;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class PublicUserActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.publicservice_activity);
 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {
 Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice");

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 187

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 4 *** Do not send sensitive information.
 intent.putExtra("PARAM", "Not sensitive information");

 startService(intent);
 // *** POINT 5 *** When receiving a result, handle the result data carefully and securely.
 // This sample code uses startService(), so receiving no result.
 }

 public void onStopServiceClick(View v) {
 doStopService();
 }

 // --- IntentService control ---

 public void onIntentServiceClick(View v) {
 Intent intent = new Intent("org.jssec.android.service.publicservice.action.intentservice");

 // *** POINT 4 *** Do not send sensitive information.
 intent.putExtra("PARAM", "Not sensitive information");

 startService(intent);
 }

 @Override
 public void onStop(){
 super.onStop();
 // Stop service if the service is running.
 doStopService();
 }

 // Stop service
 private void doStopService() {
 Intent intent = new Intent("org.jssec.android.service.publicservice.action.startservice");
 stopService(intent);
 }
}

188 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.3. Creating/Using Partner Services

Partner Service is Service which can be used only by the particular applications. System consists of
partner company's application and In house application, this is used to protect the information and
features which are handled between a partner application and In house application.

Following is an example of AIDL bind type Service.

Points (Creating a Service):
1. Do not define the intent filter and explicitly set the exported attribute to true.
2. Verify that the certificate of the requesting application has been registered in the own white list.
3. Do not (Cannot) recognize whether the requesting application is partner or not by onBind

(onStartCommand, onHandleIntent).
4. Handle the received intent carefully and securely, even though the intent was sent from a partner

application.
5. Return only information that is granted to be disclosed to a partner application.

In addition, refer to "5.2.1.3 How to Verify the Hash Value of an Application's Certificate" for how to
verify the certification hash value of destination application which is specified to white list.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.service.partnerservice.aidl"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Service using AIDL -->
 <!-- *** POINT 1 *** Do not define the intent filter and explicitly set the exported attribute to true. -->
 <service
 android:name="org.jssec.android.service.partnerservice.aidl.PartnerAIDLService"
 android:exported="true" />
 </application>

</manifest>

In this example, 2 AIDL files are to be created. One is for callback interface to give data from Service
to Activity. The other one is Interface to give data from Activity to Service and to get information. In
addition, package name that is described in AIDL file should be consistent with directory hierarchy in
which AIDL file is created, same like package name described in java file.

IExclusiveAIDLServiceCallback.aidl
package org.jssec.android.service.exclusiveservice.aidl;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 189

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

interface IExclusiveAIDLServiceCallback {
 /**
 * It's called when the value is changed.
 */
 void valueChanged(String info);
}

IExclusiveAIDLService.aidl
package org.jssec.android.service.exclusiveservice.aidl;

import org.jssec.android.service.exclusiveservice.aidl.IExclusiveAIDLServiceCallback;

interface IExclusiveAIDLService {

 /**
 * Register Callback.
 */
 void registerCallback(IExclusiveAIDLServiceCallback cb);

 /**
 * Get Information
 */
 String getInfo(String param);

 /**
 * Unregister Callback
 */
 void unregisterCallback(IExclusiveAIDLServiceCallback cb);
}

PartnerAIDLService.java
package org.jssec.android.service.partnerservice.aidl;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLService;
import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLServiceCallback;
import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Service;
import android.content.Context;
import android.content.Intent;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.os.RemoteCallbackList;
import android.os.RemoteException;
import android.widget.Toast;

public class PartnerAIDLService extends Service {
 private static final int REPORT_MSG = 1;
 private static final int GETINFO_MSG = 2;

 // The value which this service informs to client
 private int mValue = 0;

 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the own white
 list.
 private static PkgCertWhitelists sWhitelists = null;

190 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner application "org.jssec.android.service.partnerservice.aidluser"
 sWhitelists.add("org.jssec.android.service.partnerservice.aidluser", isdebug ?
 // Certificate hash value of debug.keystore "androiddebugkey"
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
 // Certificate hash value of keystore "partner key"
 "1F039BB5 7861C27A 3916C778 8E78CE00 690B3974 3EB8259F E2627B8D 4C0EC35A");

 // Register other partner applications in the same way
 }

 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }

 // Object to register callback
 // Methods which RemoteCallbackList provides are thread-safe.
 private final RemoteCallbackList<IPartnerAIDLServiceCallback> mCallbacks =
 new RemoteCallbackList<IPartnerAIDLServiceCallback>();

 // Handler to send data when callback is called.
 private final Handler mHandler = new Handler() {
 @Override public void handleMessage(Message msg) {
 switch (msg.what) {
 case REPORT_MSG: {
 // Start broadcast
 // To call back on to the registered clients, use beginBroadcast().
 // beginBroadcast() makes a copy of the currently registered callback list.
 final int N = mCallbacks.beginBroadcast();
 for (int i = 0; i < N; i++) {
 IPartnerAIDLServiceCallback target = mCallbacks.getBroadcastItem(i);
 try {
 // *** POINT 5 *** Information that is granted to disclose to partner applications can be retur
ned.
 target.valueChanged("Information disclosed to partner application (callback from Service) No."
 + (++mValue));

 } catch (RemoteException e) {
 // Callbacks are managed by RemoteCallbackList, do not unregister callbacks here.
 // RemoteCallbackList.kill() unregister all callbacks
 }
 }
 // finishBroadcast() cleans up the state of a broadcast previously initiated by calling beginBroadcast
().
 mCallbacks.finishBroadcast();

 // Repeat after 10 seconds
 sendEmptyMessageDelayed(REPORT_MSG, 10000);
 break;
 }
 case GETINFO_MSG: {
 Toast.makeText(PartnerAIDLService.this,
 (String)msg.obj, Toast.LENGTH_LONG).show();
 break;
 }
 default:

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 191

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 super.handleMessage(msg);
 break;
 } // switch
 }
 };

 // Interfaces defined in AIDL
 private final IPartnerAIDLService.Stub mBinder = new IPartnerAIDLService.Stub() {
 private final boolean checkPartner() {
 Context ctx = PartnerAIDLService.this;
 if (!PartnerAIDLService.checkPartner(ctx, Utils.getPackageNameFromPid(ctx, getCallingPid()))) {
 Toast.makeText(ctx, "Requesting application is not partner application.", Toast.LENGTH_LONG).show();
 return false;
 }
 return true;
 }
 public void registerCallback(IPartnerAIDLServiceCallback cb) {
 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow
n white list.
 if (!checkPartner()) {
 return;
 }
 if (cb != null) mCallbacks.register(cb);
 }
 public String getInfo(String param) {
 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow
n white list.
 if (!checkPartner()) {
 return null;
 }
 // *** POINT 4 *** Handle the received intent carefully and securely,
 // even though the intent was sent from a partner application
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 Message msg = new Message();
 msg.what = GETINFO_MSG;
 msg.obj = String.format("Method calling from partner application. Recieved ¥"%s¥"", param);
 PartnerAIDLService.this.mHandler.sendMessage(msg);

 // *** POINT 5 *** Return only information that is granted to be disclosed to a partner application.
 return new String("Information disclosed to partner application (method from Service)");
 }

 public void unregisterCallback(IPartnerAIDLServiceCallback cb) {
 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the ow
n white list.
 if (!checkPartner()) {
 return;
 }

 if (cb != null) mCallbacks.unregister(cb);
 }
 };

 @Override
 public IBinder onBind(Intent intent) {
 // *** POINT 2 *** Verify that the certificate of the requesting application has been registered in the own wh
ite list.
 // So requesting application must be validated in methods defined in AIDL every time.
 return mBinder;
 }

192 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 public void onCreate() {
 Toast.makeText(this, this.getClass().getSimpleName() + " - onCreate()", Toast.LENGTH_SHORT).show();

 // During service is running, inform the incremented number periodically.
 mHandler.sendEmptyMessage(REPORT_MSG);
 }

 @Override
 public void onDestroy() {
 Toast.makeText(this, this.getClass().getSimpleName() + " - onDestroy()", Toast.LENGTH_SHORT).show();

 // Unregister all callbacks
 mCallbacks.kill();

 mHandler.removeMessages(REPORT_MSG);
 }
}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {
 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 193

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

194 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is sample code of Activity which uses partner only Service.

Points (Using a Service):
6. Verify if the certificate of the target application has been registered in the own white list.
7. Return only information that is granted to be disclosed to a partner application.
8. Use the explicit intent to call a partner service.
9. Handle the received result data carefully and securely, even though the data came from a partner

application.

ExclusiveAIDLUserActivity.java
package org.jssec.android.service.partnerservice.aidluser;

import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLService;
import org.jssec.android.service.partnerservice.aidl.IPartnerAIDLServiceCallback;
import org.jssec.android.shared.PkgCertWhitelists;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.os.RemoteException;
import android.view.View;
import android.widget.Toast;

public class PartnerAIDLUserActivity extends Activity {

 private boolean mIsBound;
 private Context mContext;

 private final static int MGS_VALUE_CHANGED = 1;

 // *** POINT 6 *** Verify if the certificate of the target application has been registered in the own white list.
 private static PkgCertWhitelists sWhitelists = null;
 private static void buildWhitelists(Context context) {
 boolean isdebug = Utils.isDebuggable(context);
 sWhitelists = new PkgCertWhitelists();

 // Register certificate hash value of partner service application "org.jssec.android.service.partnerservice.a
idl"
 sWhitelists.add("org.jssec.android.service.partnerservice.aidl", isdebug ?
 // Certificate hash value of debug.keystore "androiddebugkey"
 "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255" :
 // Certificate hash value of keystore "my company key"
 "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA");

 // Register other partner service applications in the same way
 }
 private static boolean checkPartner(Context context, String pkgname) {
 if (sWhitelists == null) buildWhitelists(context);
 return sWhitelists.test(context, pkgname);
 }

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 195

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Information about destination (requested) partner activity.
 private static final String TARGET_PACKAGE = "org.jssec.android.service.partnerservice.aidl";
 private static final String TARGET_CLASS = "org.jssec.android.service.partnerservice.aidl.partnerAIDLService";

 private final Handler mHandler = new Handler() {
 @Override public void handleMessage(Message msg) {
 switch (msg.what) {
 case MGS_VALUE_CHANGED: {
 String info = (String)msg.obj;
 Toast.makeText(mContext, String.format("Received ¥"%s¥" with callback.", info), Toast.LENGTH_SHORT
).show();
 break;
 }
 default:
 super.handleMessage(msg);
 break;
 } // switch
 }
 };

 // Interfaces defined in AIDL. Receive notice from service
 private final IPartnerAIDLServiceCallback.Stub mCallback =
 new IPartnerAIDLServiceCallback.Stub() {
 @Override
 public void valueChanged(String info) throws RemoteException {
 Message msg = mHandler.obtainMessage(MGS_VALUE_CHANGED, info);
 mHandler.sendMessage(msg);
 }
 };

 // Interfaces defined in AIDL. Inform service.
 private IPartnerAIDLService mService = null;

 // Connection used to connect with service. This is necessary when service is implemented with bindService().
 private ServiceConnection mConnection = new ServiceConnection() {

 // This is called when the connection with the service has been established.
 @Override
 public void onServiceConnected(ComponentName className, IBinder service) {
 mService = IPartnerAIDLService.Stub.asInterface(service);

 try{
 // connect to service
 mService.registerCallback(mCallback);

 }catch(RemoteException e){
 // service stopped abnormally
 }

 Toast.makeText(mContext, "Connected to service", Toast.LENGTH_SHORT).show();
 }

 // This is called when the service stopped abnormally and connection is disconnected.
 @Override
 public void onServiceDisconnected(ComponentName className) {
 Toast.makeText(mContext, "Disconnected from service", Toast.LENGTH_SHORT).show();
 }
 };

196 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.partnerservice_activity);

 mContext = this;
 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {
 // Start bindService
 doBindService();
 }

 public void onGetInfoClick(View v) {
 getServiceinfo();
 }

 public void onStopServiceClick(View v) {
 doUnbindService();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 doUnbindService();
 }

 /**
 * Connect to service
 */
 private void doBindService() {
 if (!mIsBound){
 // *** POINT 6 *** Verify if the certificate of the target application has been registered in the own whit
e list.
 if (!checkPartner(this, TARGET_PACKAGE)) {
 Toast.makeText(this, "Destination(Requested) sevice application is not registered in white list.", Toa
st.LENGTH_LONG).show();
 return;
 }

 Intent intent = new Intent();

 // *** POINT 7 *** Return only information that is granted to be disclosed to a partner application.
 intent.putExtra("PARAM", "Information disclosed to partner application");

 // *** POINT 8 *** Use the explicit intent to call a partner service.
 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 bindService(intent, mConnection, Context.BIND_AUTO_CREATE);
 mIsBound = true;
 }
 }

 /**
 * Disconnect service
 */
 private void doUnbindService() {

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 197

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (mIsBound) {
 // Unregister callbacks which have been registered.
 if(mService != null){
 try{
 mService.unregisterCallback(mCallback);
 }catch(RemoteException e){
 // Service stopped abnormally
 // Omitted, since it' s sample.
 }
 }

 unbindService(mConnection);

 Intent intent = new Intent();

 // *** POINT 8 *** Use the explicit intent to call a partner service.
 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 stopService(intent);

 mIsBound = false;
 }
 }

 /**
 * Get information from service
 */
 void getServiceinfo() {
 if (mIsBound && mService != null) {
 String info = null;

 try {
 // *** POINT 7 *** Return only information that is granted to be disclosed to a partner application.
 info = mService.getInfo(new String("Information disclosed to partner application (method from activity
)"));
 } catch (RemoteException e) {
 }
 // *** POINT 9 *** Handle the received result data carefully and securely,
 // even though the data came from a partner application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 Toast.makeText(mContext, String.format("Received ¥"%s¥" from service.", info), Toast.LENGTH_SHORT).show()
;
 }
 }
}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {

198 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 199

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

200 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.1.4. Creating/Using In-house Services

In-house Services are the Services which are prohibited to be used by applications other than
in-house applications. They are used in applications developed internally that want to securely share
information and functionality.

Following is an example which uses Messenger bind type Service.

Points (Creating a Service):
1. Define an in-house signature permission.
2. Require the in-house signature permission.
3. Do not define the intent filter and explicitly set the exported attribute to true.
4. Verify that the in-house signature permission is defined by an in-house application.
5. Handle the received intent carefully and securely, even though the intent was sent from an

in-house application.
6. Sensitive information can be returned since the requesting application is in-house.
7. When exporting an APK from Eclipse, sign the APK with the same developer key as the requesting

application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.service.inhouseservice.messenger"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 1 *** Define an in-house signature permission -->
 <permission
 android:name="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION"
 android:protectionLevel="signature" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Service using Messenger -->
 <!-- *** POINT 2 *** Require the in-house signature permission -->
 <!-- *** POINT 3 *** Do not define the intent filter and explicitly set the exported attribute to true. -->
 <service
 android:name="org.jssec.android.service.inhouseservice.messenger.InhouseMessengerService"
 android:exported="true"
 android:permission="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION" />
 </application>

</manifest>

InhouseMessengerService.java
package org.jssec.android.service.inhouseservice.messenger;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 201

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import java.util.ArrayList;
import java.util.Iterator;

import android.app.Service;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;
import android.os.RemoteException;
import android.widget.Toast;

public class InhouseMessengerService extends Service{
 // In-house signature permission
 private static final String MY_PERMISSION = "org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of debug.keystore "androiddebugkey"
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of keystore "my company key"
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 // Manage clients(destinations of sending data) in a list
 private ArrayList<Messenger> mClients = new ArrayList<Messenger>();

 // Messenger used when service receive data from client
 private final Messenger mMessenger = new Messenger(new ServiceSideHandler());

 // Handler which handles message received from client
 private class ServiceSideHandler extends Handler{
 @Override
 public void handleMessage(Message msg){
 switch(msg.what){
 case CommonValue.MSG_REGISTER_CLIENT:
 // Add messenger received from client
 mClients.add(msg.replyTo);
 break;
 case CommonValue.MSG_UNREGISTER_CLIENT:
 mClients.remove(msg.replyTo);
 break;
 case CommonValue.MSG_SET_VALUE:
 // Send data to client
 sendMessageToClients();
 break;
 default:

202 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 super.handleMessage(msg);
 break;
 }
 }
 }

 /**
 * Send data to client
 */
 private void sendMessageToClients(){

 // *** POINT 6 *** Sensitive information can be returned since the requesting application is in-house.
 String sendValue = "Sensitive information (from Service)";

 // Send data to the registered client one by one.
 // Use iterator to send all clients even though clients are removed in the loop process.
 Iterator<Messenger> ite = mClients.iterator();
 while(ite.hasNext()){
 try {
 Message sendMsg = Message.obtain(null, CommonValue.MSG_SET_VALUE, null);

 Bundle data = new Bundle();
 data.putString("key", sendValue);
 sendMsg.setData(data);

 Messenger next = ite.next();
 next.send(sendMsg);

 } catch (RemoteException e) {
 // If client does not exits, remove it from a list.
 ite.remove();
 }
 }
 }

 @Override
 public IBinder onBind(Intent intent) {

 // *** POINT 4 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "In-house defined signature permission is not defined by in-house application.", Toa
st.LENGTH_LONG).show();
 return null;
 }

 // *** POINT 5 *** Handle the received intent carefully and securely,
 // even though the intent was sent from an in-house application.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String param = intent.getStringExtra("PARAM");
 Toast.makeText(this, String.format("Received parameter ¥"%s¥".", param), Toast.LENGTH_LONG).show();

 return mMessenger.getBinder();
 }

 @Override
 public void onCreate() {
 Toast.makeText(this, "Service - onCreate()", Toast.LENGTH_SHORT).show();
 }

 @Override

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 203

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onDestroy() {
 Toast.makeText(this, "Service - onDestroy()", Toast.LENGTH_SHORT).show();
 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {

204 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 205

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 7 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
requesting application.

Figure 4.4-2

206 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Next is the sample code of Activity which uses In house only Service.

Points (Using a Service):
8. Declare to use the in-house signature permission.
9. Verify that the in-house signature permission is defined by an in-house application.
10. Verify that the destination application is signed with the in-house certificate.
11. Sensitive information can be sent since the destination application is in-house.
12. Use the explicit intent to call an in-house service.
13. Handle the received result data carefully and securely, even though the data came from an

in-house application.
14. When exporting an APK from Eclipse, sign the APK with the same developer key as the

destination application.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.service.inhouseservice.messengeruser"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 8 *** Declare to use the in-house signature permission. -->
 <uses-permission
 android:name="org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name="org.jssec.android.service.inhouseservice.messengeruser.InhouseMessengerUserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

InhouseMessengerUserActivity.java
package org.jssec.android.service.inhouseservice.messengeruser;

import org.jssec.android.service.inhouseservice.messengeruser.R;
import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 207

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.os.Messenger;
import android.os.RemoteException;
import android.view.View;
import android.widget.Toast;

public class InhouseMessengerUserActivity extends Activity {

 private boolean mIsBound;
 private Context mContext;

 // Destination (Requested) service application information
 private static final String TARGET_PACKAGE = "org.jssec.android.service.inhouseservice.messenger";
 private static final String TARGET_CLASS = "org.jssec.android.service.inhouseservice.messenger.inhouseMessengerS
ervice";

 // In-house signature permission
 private static final String MY_PERMISSION = "org.jssec.android.service.inhouseservice.messenger.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of debug.keystore "androiddebugkey"
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of keystore "my company key"
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 // Messenger used when this application receives data from service.
 private Messenger mServiceMessenger = null;

 // Messenger used when this application sends data to service.
 private final Messenger mActivityMessenger = new Messenger(new ActivitySideHandler());

 // Handler which handles message received from service
 private class ActivitySideHandler extends Handler {
 @Override
 public void handleMessage(Message msg) {
 switch (msg.what) {
 case CommonValue.MSG_SET_VALUE:
 Bundle data = msg.getData();
 String info = data.getString("key");
 // *** POINT 13 *** Handle the received result data carefully and securely,
 // even though the data came from an in-house application
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely
."
 Toast.makeText(mContext, String.format("Received ¥"%s¥" from service.", info),
 Toast.LENGTH_SHORT).show();
 break;
 default:

208 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 super.handleMessage(msg);
 }
 }
 }

 // Connection used to connect with service. This is necessary when service is implemented with bindService().
 private ServiceConnection mConnection = new ServiceConnection() {

 // This is called when the connection with the service has been established.
 @Override
 public void onServiceConnected(ComponentName className, IBinder service) {
 mServiceMessenger = new Messenger(service);
 Toast.makeText(mContext, "Connect to service", Toast.LENGTH_SHORT).show();

 try {
 // Send own messenger to service
 Message msg = Message.obtain(null, CommonValue.MSG_REGISTER_CLIENT);
 msg.replyTo = mActivityMessenger;
 mServiceMessenger.send(msg);
 } catch (RemoteException e) {
 // Service stopped abnormally
 }
 }

 // This is called when the service stopped abnormally and connection is disconnected.
 @Override
 public void onServiceDisconnected(ComponentName className) {
 mServiceMessenger = null;
 Toast.makeText(mContext, "Disconnected from service", Toast.LENGTH_SHORT).show();
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.inhouseservice_activity);

 mContext = this;
 }

 // --- StartService control ---

 public void onStartServiceClick(View v) {
 // Start bindService
 doBindService();
 }

 public void onGetInfoClick(View v) {
 getServiceinfo();
 }

 public void onStopServiceClick(View v) {
 doUnbindService();
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 doUnbindService();

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 209

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 /**
 * Connect to service
 */
 void doBindService() {
 if (!mIsBound){
 // *** POINT 9 *** Verify that the in-house signature permission is defined by an in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "In-house defined signature permission is not defined by in-house application.",
Toast.LENGTH_LONG).show();
 return;
 }

 // *** POINT 10 *** Verify that the destination application is signed with the in-house certificate.
 if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
 Toast.makeText(this, "Destination(Requested) service application is not in-house application.", Toast
.LENGTH_LONG).show();
 return;
 }

 Intent intent = new Intent();

 // *** POINT 11 *** Sensitive information can be sent since the destination application is in-house one.
 intent.putExtra("PARAM", "Sensitive information");

 // *** POINT 12 *** Use the explicit intent to call an in-house service.
 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 bindService(intent, mConnection, Context.BIND_AUTO_CREATE);
 mIsBound = true;
 }
 }

 /**
 * Disconnect service
 */
 void doUnbindService() {
 if (mIsBound) {
 unbindService(mConnection);
 mIsBound = false;
 }
 }

 /**
 * Get information from service
 */
 void getServiceinfo() {
 if (mServiceMessenger != null) {
 try {
 // Request sending information
 Message msg = Message.obtain(null, CommonValue.MSG_SET_VALUE);
 mServiceMessenger.send(msg);
 } catch (RemoteException e) {
 // Service stopped abnormally
 }
 }
 }

}

210 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 211

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

212 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point14 *** When exporting an APK from Eclipse, sign the APK with the same developer key as the
destination application.

Figure 4.4-3

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 213

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.2. Rule Book

Implementing or using service, follow the rules below.

1. Service that Is Used Only in an application, Must Be Set as Private (Required)
2. Handle the Received Data Carefully and Securely (Required)
3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house

Application (Required)
4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)
5. When Returning a Result Information, Pay Attention the Result Information Leakage from the

Destination Application (Required)
6. Use the Explicit Intent if the Destination Service Is fixed (Required)
7. Verify the Destination Service If Linking with the Other Company's Application (Required)
8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level

Protection (Required)
9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

4.4.2.1. Service that Is Used Only in an application, Must Be Set as Private (Required)

Service that is used only in an application (or in same UID) must be set as Private. It avoids the
application from receiving Intents from other applications unexpectedly and eventually prevents
from damages such as application functions are used or application behavior becomes abnormal.

All you have to do in implementation is set exported attribute false when defining Service in
AndroidManifest.xml.

AndroidManifest.xml
 <!-- Private Service derived from Service class -->
 <!-- *** POINT 1 *** Set false for the exported attribute explicitly. -->
 <service android:name=".PrivateStartService" android:exported="false"/>

In addition, this is a rare case, but do not set Intent Filter when service is used only within the
application. The reason is that, due to the characteristics of Intent Filter, public service in other
application may be called unexpectedly though you intend to call Private Service within the
application.

AndroidManifest.xml(Not recommended)
 <!-- Private Service derived from Service class -->
 <!-- *** POINT 1 *** Set false for the exported attribute explicitly. -->
 <service android:name=".PrivateStartService" android:exported="false">
 <intent-filter>
 <action android:name="org.jssec.android.service.OPEN />
 </intent-filter>
 </service>

214 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

See "4.4.3.1 Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)."

4.4.2.2. Handle the Received Data Carefully and Securely (Required)

Same like Activity, In case of Service, when processing a received Intent data, the first thing you
should do is input validation. Also in Service user side, it's necessary to verify the safety of result
information from Service. Please refer to "4.1.2.5 Handling the Received Intent Carefully and Securely
 (Required)" and "4.1.2.9 Handle the Returned Data from a Requested Activity Carefully and
Securely (Required)."

In Service, you should also implement calling method and exchanging data by Message carefully.

Please refer to "3.2 Handling Input Data Carefully and Securely"

4.4.2.3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house
Application (Required)

Make sure to protect your in-house Services by defining in-house signature permission when
creating the Service. Since defining a permission in the AndroidManifest.xml file or declaring a
permission request does not provide adequate security, please be sure to refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission."

4.4.2.4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)

Security checks such as Intent parameter verification or in-house-defined Signature Permission
verification should not be included in onCreate, because when receiving new request during Service
is running, process of onCreate is not executed. So, when implementing Service which is started by
startService, judgment should be executed by onStartCommand (In case of using IntentService,
judgment should be executed by onHandleIntent.) It's also same in the case when implementing
Service which is started by bindService, judgment should be executed by onBind.

4.4.2.5. When Returning a Result Information, Pay Attention the Result Information Leakage from the
Destination Application (Required)

Depends on types of Service, the reliability of result information destination application (callback
receiver side/ Message destination) are different. Need to consider seriously about the information
leakage considering the possibility that the destination may be Malware.

See, Activity "4.1.2.7 When Returning a Result, Pay Attention to the Possibility of Information
Leakage of that Result from the Destination Application (Required)", for details.

4.4.2.6. Use the Explicit Intent if the Destination Service Is fixed (Required)

When using a Service by implicit Intents, in case the definition of Intent Filter is same, Intent is sent to
All rights reserved © Japan Smartphone Security Association. Creating/Using Services 215

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

the Service which was installed earlier. If Malware with the same Intent Filter defined intentionally was
installed earlier, Intent is sent to Malware and information leakage occurs. On the other hand, when
using a Service by explicit Intents, only the intended Service will receive the Intent so this is much
safer.

There are some other points which should be considered, please refer to "4.1.2.8 Use the explicit
Intents if the destination Activity is predetermined. (Required)."

4.4.2.7. Verify the Destination Service If Linking with the Other Company's Application (Required)

Be sure to sure a whitelist when linking with another company's application. You can do this by
saving a copy of the company's certificate hash inside your application and checking it with the
certificate hash of the destination application. This will prevent a malicious application from being
able to spoof Intents. Please refer to sample code section "4.4.1.3 Creating/Using Partner Service" for
the concrete implementation method.

4.4.2.8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level
Protection (Required)

When an information or function asset, that is protected by permission, is provided to another
application secondhand, you need to make sure that it has the same required permissions needed to
access the asset. In the Android OS permission security model, only an application that has been
granted proper permissions can directly access a protected asset. However, there is a loophole
because an application with permissions to an asset can act as a proxy and allow access to an
unprivileged application. Substantially this is the same as redelegating permission so it is referred to
as the "Permission Redelegation" problem. Please refer to "5.2.3.4 Permission Re-delegation
Problem."

4.4.2.9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

You should not send sensitive information to untrusted parties.

You need to consider the risk of information leakage when exchanging sensitive information with a
Service. You must assume that all data in Intents sent to a Public Service can be obtained by a
malicious third party. In addition, there is a variety of risks of information leakage when sending
Intents to Partner or In-house Services as well depending on the implementation.

Not sending sensitive data in the first place is the only perfect solution to prevent information
leakage therefore you should limit the amount of sensitive information being sent as much as
possible. When it is necessary to send sensitive information, the best practice is to only send to a
trusted Service and to make sure the information cannot be leaked through LogCat

216 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.4.3. Advanced Topics

4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)

We have explained how to implement the four types of Services in this guidebook: Private Services,
Public Services, Partner Services, and In-house Services. The various combinations of permitted
settings for each type of exported attribute defined in the AndroidManifest.xml file and the
intent-filter elements are defined in the table below. Please verify the compatibility of the exported
attribute and intent-filter element with the Service you are trying to create.

Table 4.4-3
 Value of exported attribute

True false Not specified
Intent Filter defined Public (Do not Use) (Do not Use)
Intent Filter Not
Defined

Public, Partner,
In-house

Private (Do not Use)

The reason why an undefined intent filter and an exported attribute of false should not be used is
that there is a loophole in Android's behavior, and because of how Intent filters work, other
application's Services can be called unexpectedly.

Concretely, Android behaves as per below, so it's necessary to consider carefully when application
designing.

 When multiple Services define the same content of intent-filter, the definition of Service within

application installed earlier is prioritized.
 In case explicit Intent is used, prioritized Service is automatically selected and called by OS.

The system that unexpected call is occurred due to Android's behavior is described in the three
figures below. Figure 4.4-4 is an example of normal behavior that Private Service (application A) can
be called by implicit Intent only from the same application. Because only application A defines
Intent-filter (action="X" in the Figure), it behaves normally. This is the normal behavior.

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 217

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 4.4-4

Figure 4.4-5 and Figure 4.4-6 below show a scenario in which the same Intent filter (action="X") is
defined in Application B as well as Application A.

Figure 4.4-5 shows the scenario that applications are installed in the order, application A ->
application B. In this case, when application C sends implicit Intent, calling Private Service (A-1) fails.
On the other hand, since application A can successfully call Private Service within the application by
implicit Intent as expected, there won't be any problems in terms of security (counter-measure for
Malware).

Android device

Application A
Call a service with
the implicit intent

Private Service A-1
exported=“false”

action=“X”

Intent(“X”)

Application C
Call the service with
the implicit intent

Intent(“X”)

Since the service A-1 is private one,
it can be called only by the application A.

218 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 4.4-5

Figure 4.4-6 shows the scenario that applications are installed in the order,
applicationB->applicationA. There is a problem here, in terms of security. It shows an example that
application A tries to call Private Service within the application by sending implicit Intent, but actually
Public Activity (B-1) in application B which was installed earlier, is called. Due to this loophole, it is
possible that sensitive information can be sent from applicationA to applicationB. If applicationB is
Malware, it will lead the leakage of sensitive information.

Android device

Application A
Call a service with
the implicit intent

Private Service A-1
exported=“false”

action=“X”

When application A that has private
service is installed earlier than
applications else, and it does not accept
any intents from other applications.

Application B

Public Service B-1
exported=“true”

action=“X”

Intent(“X”)

Application C
Call the service with
the implicit intent

Intent(“X”)

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 219

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 4.4-6

As shown above, using Intent filters to send implicit Intents to Private Service may result in
unexpected behavior so it is best to avoid this setting.

4.4.3.2. How to Implement Service

Because methods for Service implementation are various and should be selected with consideration
of security type which is categorized by sample code, each characteristics are briefly explained. It's
divided roughly into the case using startService and the case using bindService. And it's also possible
to create Service which can be used in both startService and bindService. Following items should be
investigated to determine the implementation method of Service.

 Whether to disclose Service to other applications or not (Disclosure of Service)
 Whether to exchange data during running or not (Mutual sending /receiving data)
 Whether to control Service or not (Launch or complete)
 Whether to execute as another process (communication between processes)
 Whether to execute multiple processes in parallel (Parallel process)

Table 4.4-3 shows category of implementation methods and feasibility of each item.
"NG" stands for impossible case or case that another frame work which is different from the provided
function is required.

Android device

When application BA that has public
service is installed earlier than
applications else, and it is only enabled
and service B-1 is called unintentionally
from application A.

Application B

Public Service B-1
exported=“true”

action=“X”

Application C
Call the service with
the implicit intent

Intent(“X”)

Application A
Call a service with
the implicit intent

Private Service A-1
exported=“false”

action=“X”

Intent(“X”)

220 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Table 4.4-4 Category of implementation methods for Service

Category Disclosure of
Service

Mutual
sending/receiving

data

Control Service
(Boot /Exit)

Communication
between

processes

Parallel
process

startService type OK NG OK OK NG

IntentService
type

OK NG NG OK NG

local bind type NG OK OK NG NG

Messenger bind
type

OK OK OK OK NG

AIDL bind type OK OK OK OK OK

startService type

This is the most basic Service. This inherits Service class, and executes processes by
onStartCommand.

In user side, specify Service by Intent, and call by startService. Because data such as results
cannot be returned to source of Intent directly, it should be achieved in combination with another
method such as Broadcast. Please refer to "4.4.1.1 Creating/Using Private Service" for the
concrete example.

Checking in terms of security should be done by onStartCommand, but it cannot be used for
partner only Service since the package name of the source cannot be obtained.

IntentService type
IntentService is the class which was created by inheriting Service. Calling method is same as
startService type. Following are characteristics compared with standard service (startService
type.)

 Processing Intent is done by onHandleIntent (onStartCommand is not used.)
 It's executed by another thread.
 Process is to be queued.

Call is immediately returned because process is executed by another thread, and process
towards Intents is sequentially executed by Queuing system. Each Intent is not processed in
parallel, but it is also selectable depending on the product's requirement, as an option to simplify
implementation. Since data such as results cannot be returned to source of Intent, it should be
achieved in combination with another method such as Broadcast. Please refer to "4.4.1.2
Creating/Using Public Service" for the concrete example of implementation.

Checking in terms of security should be done by onHandleIntent, but it cannot be used for
partner only Service since the package name of the source cannot be obtained.

All rights reserved © Japan Smartphone Security Association. Creating/Using Services 221

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

local bind type
This is a method to implement local Service which works only within the process same as an
application. Define the class which was derived from Binder class, and prepare to provide the
feature (method) which was implemented in Service to caller side.

From user side, specify Service by Intent and call Service by using bindService. This is the most
simple implementation method among all methods of binding Service, but it has limited usages
since it cannot be launched by another process and also Service cannot be disclosed. See project
"Service PrivateServiceLocalBind" which is included in Sample code, for the concrete
implementation example.

From the security point of view, only private Service can be implemented.

Messenger bind type
This is the method to achieve the linking with Service by using Messenger system.

Since Messenger can be given as a Message destination from Service user side, the mutual data
exchanging can be achieved comparatively easily. In addition, since processes are to be queued,
it has a characteristic that behaves "thread-safe"ly. Parallel process for each process is not
possible, but it is also selectable as an option to simplify the implementation depending on the
product's requirement. Regarding user side, specify Service by Intent, and call Service by using
bindService. See "4.4.1.4 Creating/Using In-house Service" for the concrete implementation
example.

Security check in onBind or by Message Handler is necessary, however, it cannot be used for
partner only Service since package name of source cannot be obtained.

AIDL bind type
This is a method to achieve linking with Service by using AIDL system. Define interface by AIDL,
and provide features that Service has as a method. In addition, call back can be also achieved by
implementing interface defined by AIDL in user side, Multi-thread calling is possible, but it's
necessary to implement explicitly in Service side for exclusive process.

User side can call Service, by specifying Intent and using bindService. Please refer to "4.4.1.3
Creating/Using Partner Service" for the concrete implementation example.

Security must be checked in onBind for In-house only Service and by each method of interface
defined by AIDL for partner only Service.

This can be used for all security types of Service which are described in this Guidebook.

222 All rights reserved © Japan Smartphone Security Association. Creating/Using Services

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.5. Using SQLite

Herein after, some cautions in terms of security when creating/operating database by using SQLite.
Main points are appropriate setting of access right to database file, and counter-measures for SQL
injection. Database which permits reading/writing database file from outside directly (sharing among
multiple applications) is not supposed here, but suppose the usage in backend of Content Provider
and in an application itself. In addition, it is recommended to adopt counter-measures mentioned
below in case of handling not so much sensitive information, though handling a certain level of
sensitive information is supposed here.

4.5.1. Sample Code

4.5.1.1. Creating/Operating Database

When handling database in Android application, appropriate arrangements of database files and
access right setting (Setting for denying other application's access) can be achieved by using
SQLiteOpenHelper4. Here is an example of easy application that creates database when it's launched,
and executes searching /adding/changing/deleting data through UI. Sample code is what
counter-measure for SQL injection is done, to avoid from incorrect SQL being executed against the
input from outside.

4 As regarding file storing, the absolute file path can be specified as the 2nd parameter (name) of
SQLiteOpenHelper constructor. Therefore, need attention that the stored files can be read and written
by the other applications if the SDCard path is specified.

All rights reserved © Japan Smartphone Security Association. Using SQLite 223

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 4.5-1

Points:
1. SQLiteOpenHelper should be used for database creation.
2. Use place holder.
3. Validate the input value according the application requirements.

SampleDbOpenHelper.java
package org.jssec.android.sqlite;

import org.jssec.android.sqlite.R;

import android.content.Context;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;
import android.widget.Toast;

public class SampleDbOpenHelper extends SQLiteOpenHelper {
 private SQLiteDatabase mSampleDb; //Database to store the data to be handled

 public static SampleDbOpenHelper newHelper(Context context)
 {
 //*** POINT 1 *** SQLiteOpenHelper should be used for database creation.
 return new SampleDbOpenHelper(context);
 }

 public SQLiteDatabase getDb() {
 return mSampleDb;
 }

224 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 //Open DB by Writable mode
 public void openDatabaseWithHelper() {
 try {
 if (mSampleDb != null && mSampleDb.isOpen()) {
 if (!mSampleDb.isReadOnly())// Already opened by writable mode
 return;
 mSampleDb.close();
 }
 mSampleDb = getWritableDatabase(); //It's opened here.
 } catch (SQLException e) {
 //In case fail to construct database, output to log
 Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));
 Toast.makeText(mContext, R.string.DATABASE_OPEN_ERROR_MESSAGE, Toast.LENGTH_LONG).show();
 return;
 }
 }

 //Open DB by ReadOnly mode.
 public void openDatabaseReadOnly() {
 try {
 if (mSampleDb != null && mSampleDb.isOpen()) {
 if (mSampleDb.isReadOnly())// Already opened by ReadOnly.
 return;
 mSampleDb.close();
 }
 SQLiteDatabase.openDatabase(mContext.getDatabasePath(CommonData.DBFILE_NAME).getPath(), null, SQLiteDatab
ase.OPEN_READONLY);
 } catch (SQLException e) {
 //In case failed to construct database, output to log
 Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));
 Toast.makeText(mContext, R.string.DATABASE_OPEN_ERROR_MESSAGE, Toast.LENGTH_LONG).show();
 return;
 }
 }

 //Database Close
 public void closeDatabase() {
 try {
 if (mSampleDb != null && mSampleDb.isOpen()) {
 mSampleDb.close();
 }
 } catch (SQLException e) {
 //In case failed to construct database, output to log
 Log.e(mContext.getClass().toString(), mContext.getString(R.string.DATABASE_CLOSE_ERROR_MESSAGE));
 Toast.makeText(mContext, R.string.DATABASE_CLOSE_ERROR_MESSAGE, Toast.LENGTH_LONG).show();
 return;
 }
 }

 //Remember Context
 private Context mContext;

 //Table creation command
 private static final String CREATE_TABLE_COMMANDS
 = "CREATE TABLE " + CommonData.TABLE_NAME + " ("
 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 + "idno INTEGER UNIQUE, "
 + "name VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ") NOT NULL, "
 + "info VARCHAR(" + CommonData.TEXT_DATA_LENGTH_MAX + ")"

All rights reserved © Japan Smartphone Security Association. Using SQLite 225

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 + ");";

 public SampleDbOpenHelper(Context context) {
 super(context, CommonData.DBFILE_NAME, null, CommonData.DB_VERSION);
 mContext = context;
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 try {
 db.execSQL(CREATE_TABLE_COMMANDS); //Execute DB construction command
 } catch (SQLException e) {
 //In case failed to construct database, output to log
 Log.e(this.getClass().toString(), mContext.getString(R.string.DATABASE_CREATE_ERROR_MESSAGE));
 }
 }

 @Override
 public void onUpgrade(SQLiteDatabase arg0, int arg1, int arg2) {
 // It's to be executed when database version up. Write processes like data transition.
 }

}

DataSearchTask.java (SQLite Database project)
package org.jssec.android.sqlite.task;

import org.jssec.android.sqlite.CommonData;
import org.jssec.android.sqlite.DataValidator;
import org.jssec.android.sqlite.MainActivity;
import org.jssec.android.sqlite.R;

import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.os.AsyncTask;
import android.util.Log;

//Data search task
public class DataSearchTask extends AsyncTask<String, Void, Cursor> {
 private MainActivity mActivity;
 private SQLiteDatabase mSampleDB;

 public DataSearchTask(SQLiteDatabase db, MainActivity activity) {
 mSampleDB = db;
 mActivity = activity;
 }

 @Override
 protected Cursor doInBackground(String... params) {
 String idno = params[0];
 String name = params[1];
 String info = params[2];
 String cols[] = {"_id", "idno","name","info"};

 Cursor cur;

226 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 //*** POINT 3 *** Validate the input value according the application requirements.
 if (!DataValidator.validateData(idno, name, info))
 {
 return null;
 }

 //When all parameters are null, execute all search
 if ((idno == null || idno.length() == 0) &&
 (name == null || name.length() == 0) &&
 (info == null || info.length() == 0)) {
 try {
 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, null, null, null, null, null);
 } catch (SQLException e) {
 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
 return null;
 }
 return cur;
 }

 //When No is specified, execute searching by No
 if (idno != null && idno.length() > 0) {
 String selectionArgs[] = {idno};

 try {
 //*** POINT 2 *** Use place holder.
 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "idno = ?", selectionArgs, null, null, null);
 } catch (SQLException e) {
 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
 return null;
 }
 return cur;
 }

 //When Name is specified, execute perfect match search by Name
 if (name != null && name.length() > 0) {
 String selectionArgs[] = {name};
 try {
 //*** POINT 2 *** Use place holder.
 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "name = ?", selectionArgs, null, null, null);
 } catch (SQLException e) {
 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
 return null;
 }
 return cur;
 }

 //Other than above, execute partly match searching with the condition of info.
 String argString = info.replaceAll("@", "@@"); //Escape $ in info which was received as input.
 argString = argString.replaceAll("%", "@%"); //Escape % in info which was received as input.
 argString = argString.replaceAll("_", "@_"); //Escape _ in info which was received as input.
 String selectionArgs[] = {argString};

 try {
 //*** POINT 2 *** Use place holder.
 cur = mSampleDB.query(CommonData.TABLE_NAME, cols, "info LIKE '%' || ? || '%' ESCAPE '@'", selectionArgs,
null, null, null);
 } catch (SQLException e) {
 Log.e(DataSearchTask.class.toString(), mActivity.getString(R.string.SEARCHING_ERROR_MESSAGE));
 return null;
 }

All rights reserved © Japan Smartphone Security Association. Using SQLite 227

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return cur;
 }

 @Override
 protected void onPostExecute(Cursor resultCur) {
 mActivity.updateCursor(resultCur);
 }
}

DataValidator.java
package org.jssec.android.sqlite;

public class DataValidator {
 //Validate the Input value
 //validate numeric characters
 public static boolean validateNo(String idno) {
 //null and blank are OK
 if (idno == null || idno.length() == 0) {
 return true;
 }

 //Validate that it's numeric character.
 try {
 if (!idno.matches("[1-9][0-9]*")) {
 //Error if it's not numeric value
 return false;
 }
 } catch (NullPointerException e) {
 //Detected an error
 return false;
 }

 return true;
 }

 // Validate the length of a character string
 public static boolean validateLength(String str, int max_length) {
 //null and blank are OK
 if (str == null || str.length() == 0) {
 return true;
 }

 //Validate the length of a character string is less than MAX
 try {
 if (str.length() > max_length) {
 //When it's longer than MAX, error
 return false;
 }
 } catch (NullPointerException e) {
 //Bug
 return false;
 }

 return true;
 }

 // Validate the Input value
 public static boolean validateData(String idno, String name, String info) {

228 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (!validateNo(idno)) {
 return false;
 }
 if (!validateLength(name, CommonData.TEXT_DATA_LENGTH_MAX)) {
 return false;
 }
 if (!validateLength(info, CommonData.TEXT_DATA_LENGTH_MAX)) {
 return false;
 }
 return true;
 }
}

All rights reserved © Japan Smartphone Security Association. Using SQLite 229

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.5.2. Rule Book

Using SQLite, follow the rules below accordingly.

1. Set DB File Location and Access Right Correctly (Required)
2. Use Content Provider for Access Control When Sharing DB Data with Other Application

 (Required)
3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.

 (Required)

4.5.2.1. Set DB File Location and Access Right Correctly (Required)

Considering the protection of DB file data, DB file location and access right setting is the very
important elements that need to be considered together.

For example, even if file access right is set correctly, a DB file can be accessed from anybody in case
that it is arranged in a location which access right cannot be set, e.g. SD card. And in case that it's
arranged in application directory, if the access right is not correctly set, it will eventually allow the
unexpected access. Following are some points to be met regarding the correct allocation and access
right setting, and the methods to realize them.

About location and access right setting, considering in terms of protecting DB file (data), it's
necessary to execute 2 points as per below.

1. Location

Locate in file path that can be obtained by Context#getDatabasePath(String name),or in some
cases, directory that can be obtained by Context#getFilesDir5.

2. Access right
Set to MODE_PRIVATE (=it can be accessed only by the application which creates file) mode.

By executing following 2 points, DB file which cannot be accessed by other applications can be
created. Here are some methods to execute them.

1. Use SQLiteOpenHelper
2. Use Context#openOrCreateDatabase

When creating DB file, SQLiteDatabase#openOrCreateDatabase can be used. However, when using
this method, DB files which can be read out from other applications are created, in some Android
smartphone devices. So it is recommended to avoid this method, and using other methods. Each
characteristics for the above 2 methods are as per below.

5 Both methods provide the path under (package) directory which is able to be read and written only by
the specified application.

230 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Using SQLiteOpenHelper

When using SQLiteOpenHelper, developers don't need to be worried about many things. Create a
class derived from SQLiteOpenHelper, and specify DB name (which is used for file name)6 to
constructer's parameter, then DB file which meets above security requirements, are to be created
automatically.

Refer to specific usage method for "4.5.1.1 Creating/Operating Database" for how to use.

Using Context#openOrCreateDatabase
When creating DB by using Context#openOrCreateDatabase method, file access right should be
specified by option, in this case specify MODE_PRIVATE explicitly.

Regarding file arrangement, specifying DB name (which is to be used to file name) can be done as
same as SQLiteOpenHelper, a file is to be created automatically, in the file path which meets the
above mentioned security requirements. However, full path can be also specified, so it's
necessary to pay attention that when specifying SD card, even though specifying MODE_PRIVATE,
other applications can also access.

Example to execute accsee permission setting to DB explicitly:MainActivity.java
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Construct database
 try {
 //Create DB by setting MODE_PRIVATE
 db = Context.openOrCreateDatabase("Sample.db",
 MODE_PRIVATE, null);
 } catch (SQLException e) {
 //In case failed to construct DB, log output
 Log.e(this.getClass().toString(), getString(R.string.DATABASE_OPEN_ERROR_MESSAGE));
 return;
 }
 //Ommit other initial process
 }

FYI, there are following 3 types of access right setting including MODE_PRIVATE.
MODE_WORLD_READABLE and MODE_WORLD_WRITABLE can be specified together by OR
calculation. When using other than MODE_PRIVATE, need to consider carefully along with the
application requirements.

 MODE_PRIVATE Only creator application can read and write

6 (Undocumented in Android reference) Since the full file path can be specified as the database name
inSQLiteOpenHelper implementation, need attention that specifying the place (path) which does not
have access control feature (e.g. sdcards) unintentionally.

All rights reserved © Japan Smartphone Security Association. Using SQLite 231

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 MODE_WORLD_READABLE Creator application can read and write, Others can only read in
 MODE_WORLD_WRITABLE Creator application can read and write, Others can only write in

4.5.2.2. Use Content Provider for Access Control When Sharing DB Data with Other Application
 (Required)

The method to share DB data with other application is that create DB file as WORLD_READABLE,
WORLD_WRITABLE, to other applications to access directly. However, this method cannot limit
applications which access to DB or operations to DB, so data can be read-in or written by unexpected
party (application). As a result, it can be considered that some problems may occur in confidentiality
or consistency of data, or it may be an attack target of Malware.

As mentioned above, when sharing DB data with other applications in Android, it's strongly
recommended to use Content Provider. By using Content Provider, there are some merits, not only
the merits from the security point of view which is the access control on DB can be achieved, but also
merits from the designing point of view which is DB scheme structure can be hidden into Content
Provider.

4.5.2.3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation.
 (Required)

In the sense that preventing from SQL injection, when incorporating the arbitrary input value to SQL
statement, placeholder should be used. There are 2 methods as per below to execute SQL using
placeholder.

1. Get SQLiteStatement by using SQLiteDatabase#compileStatement(), and after that place

parameter to placeholder by using SQLiteStatement#bindString() or bindLong() etc.
2. When calling execSQL(), insert(), update(), delete(), query(), rawQuery() and replace() etc in

SQLiteDatabese class, use SQL statement which has placeholder.

In addition, when executing SELECT command, by using SQLiteDatabase#compileStatement(), there
is a limitation that "only the top 1 element can be obtained as a result of SELECT command," so
usages are limited.

In either method, the data content which is given to placeholder is better to be checked in advance
according the application requirements. Following is the further explanation for each method.

When Using SQLiteDatabase#compileStatement():

Data is given to placeholder in the following steps.

1. Get the SQL statement which includes placeholder by using

SQLiteDatabase#compileStatement(), as SQLiteStatement.
2. Set the created as SQLiteStatement objects to placeholder by using the method like

bindLong() and bindString().

232 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

3. Execute SQL by method like execute() etc of ExecSQLiteStatement object.

Use case of placeholder:DataInsertTask.java (an extra)
//Adding data task
public class DataInsertTask extends AsyncTask<String, Void, Void> {
 private MainActivity mActivity;
 private SQLiteDatabase mSampleDB;

 public DataInsertTask(SQLiteDatabase db, MainActivity activity) {
 mSampleDB = db;
 mActivity = activity;
 }

 @Override
 protected Void doInBackground(String... params) {
 String idno = params[0];
 String name = params[1];
 String info = params[2];

 //*** POINT 3 *** Validate the input value according the application requirements.
 if (!DataValidator.validateData(idno, name, info))
 {
 return null;
 }
 // Adding data task
 //*** POINT 2 *** Use place holder
 String commandString = "INSERT INTO " + CommonData.TABLE_NAME + " (idno, name, info) VALUES (?, ?, ?)";
 SQLiteStatement sqlStmt = mSampleDB.compileStatement(commandString);
 sqlStmt.bindString(1, idno);
 sqlStmt.bindString(2, name);
 sqlStmt.bindString(3, info);
 try {
 sqlStmt.executeInsert();
 } catch (SQLException e) {
 Log.e(DataInsertTask.class.toString(), mActivity.getString(R.string.UPDATING_ERROR_MESSAGE));
 } finally {
 sqlStmt.close();
 }
 return null;
 }

 ... Abbreviation ...
}

This is a type that SQL statement to be executed as object is created in advance, and parameters
are allocated to it. The process to execute is fixed, so there's no room for SQL injection to occur.
In addition, there is a merit that process efficiency is enhanced by reutilizing SQLiteStatement
object.

In the Case Using Method for Each Process which SQLiteDatabase provides:

There are 2 types of DB operation methods that SQLiteDatabase provides. One is what SQL
statement is used, and another is what SQL statement is not used. Methods that SQL statement is
used are SQLiteDatabase# execSQL()/rawQuery() etc, and it's executed in the following steps.

All rights reserved © Japan Smartphone Security Association. Using SQLite 233

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

1. Prepare SQL statement which includes placeholder.
2. Create data to allocate to placeholder.
3. Send SQL statement and data as parameter, and execute a method for process.

On the other hand, SQLiteDatabase#insert()/update()/delete()/query()/replace() etc is the
method that SQL statement is not used. When using them, data should be sent as per the
following steps.

1. In case there's data to insert /update to DB, register to ContentValues.
2. Send ContentValues as parameter, and execute a method for each process (In the following

example, SQLiteDatabase#insert())

Use case of metod for each process (SQLiteDatabase#insert())
 private SQLiteDatabase mSampleDB;
 private void addUserData(String idno, String name, String info) {

 //Validity check of the value(Type, range), escape process
 if (!validateInsertData(idno, name, info)) {
 //If failed to pass the validation, log output
 Log.e(this.getClass().toString(), getString(R.string.VALIDATION_ERROR_MESSAGE));
 return
 }

 //Prepare data to insert
 ContentValues insertValues = new ContentValues();
 insertValues.put("idno", idno);
 insertValues.put("name", name);
 insertValues.put("info", info);

 //Execute Inser
 try {
 mSampleDb.insert("SampleTable", null, insertValues);
 } catch (SQLException e) {
 Log.e(this.getClass().toString(), getString(R.string.DB_INSERT_ERROR_MESSAGE));
 return;
 }
 }

In this example, SQL command is not directly written, for instead, a method for inserting which
SQLiteDatabase provides, is used. SQL command is not directly used, so there's no room for SQL
injection in this method, too.

234 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.5.3. Advanced Topics

4.5.3.1. When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be
Implemented

When using character string which includes wild card (%, _) of LIKE predicate, as input value of place
holder, it will work as a wild card unless it is processed properly, so it's necessary to implement
escape process in advance according the necessity. It is the case which escape process is necessary
that wild card should be used as a single character ("%" or "_").

The actual escape process is executed by using ESCAPE clause as per below sample code.

Example of ESCAPE process in case of using LIKE
//Data search task
public class DataSearchTask extends AsyncTask<String, Void, Cursor> {
 private MainActivity mActivity;
 private SQLiteDatabase mSampleDB;
 private ProgressDialog mProgressDialog;

 public DataSearchTask(SQLiteDatabase db, MainActivity activity) {
 mSampleDB = db;
 mActivity = activity;
 }

 @Override
 protected Cursor doInBackground(String... params) {
 String idno = params[0];
 String name = params[1];
 String info = params[2];
 String cols[] = {"_id", "idno","name","info"};

 Cursor cur;

 ... Abbreviation ...

 //Execute like search(partly match) with the condition of info
 //Point:Escape process should be performed on characters which is applied to wild card
 String argString = info.replaceAll("@", "@@"); // Escape $ in info which was received as input
 argString = argString.replaceAll("%", "@%"); // Escape % in info which was received as input
 argString = argString.replaceAll("_", "@_"); // Escape _ in info which was received as input
 String selectionArgs[] = {argString};

 try {
 //Point:Use place holder
 cur = mSampleDB.query("SampleTable", cols, "info LIKE '%' || ? || '%' ESCAPE '@'",
 selectionArgs, null, null, null);
 } catch (SQLException e) {
 Toast.makeText(mActivity, R.string.SERCHING_ERROR_MESSAGE, Toast.LENGTH_LONG).show();
 return null;
 }
 return cur;
 }

 @Override
 protected void onPostExecute(Cursor resultCur) {

All rights reserved © Japan Smartphone Security Association. Using SQLite 235

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 mProgressDialog.dismiss();
 mActivity.updateCursor(resultCur);
 }
}

4.5.3.2. Use External Input to SQL Command in which Place Holder Cannot Be Used

When executing SQL statement which process targets are DB objects like table creation/deletion etc,
placeholder cannot be used for the value of table name. Basically, DB should not be designed using
arbitrary character string which was input from outside in case that placeholder cannot be used for
the value.

When placeholder cannot be used due to the restriction of specifications or features, whether the
Input value is dangerous or not, should be verified before execution, and it's necessary to implement
necessary processes.

Basically,

1. When using as character string parameter, escape or quote process for character should be

made.
2. When using as numeric value parameter, verify that characters other than numeric value are not

included.
3. When using as identifier or command, verify whether characters which cannot be used are not

included, along with 1.

should be executed.

Reference: http://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf (Japanese)

4.5.3.3. Take a Countermeasure that Database Is Not Overwritten Unexpectedly

In case getting instance of DB by SQLiteOpenHelper#getReadableDatabase, getWritableDatabase,
DB is to be opened in readable/writable state by using either method7. In addition, it's same to
Context#openOrCreateDatabase, SQLiteDatabase#openOrCreateDatabase, etc. It means that
contents of DB may be overwritten unexpectedly by application operation or by defects in
implementation. Basically, it can be supported by the application's spec and range of implementation,
but when implementing the function which requires only read in function like application's searching
function etc, opening database by read-only, it may lead to simplify designing or inspection and
furthermore, lead to enhance application quality, so it's recommended depends on the situation.

7 getReableDatabase() returns the same object which can be got by getWritableDatabase. This spec is,
in case writable object cannot be generated due to disc full etc, it will return Read- only object.
(getWritableDatabase() will be execution error under the situation like disc full etc.)

236 All rights reserved © Japan Smartphone Security Association. Using SQLite

http://www.ipa.go.jp/security/vuln/documents/website_security_sql.pdf

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Specifically, open database by specifying OPEN_READONLY to SQLiteDatabase#openDatabase.

Open database by read-only
 ... Ommit ...
 // Open DB(DB should be created in advance)
 SQLiteDatabase db
 = SQLiteDatabase.openDatabase(SQLiteDatabase.getDatabasePath("Sample.db"), null, OPEN_READONLY);

Reference: http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.ht
ml#getReadableDatabase()

4.5.3.4. Verify the Validity of Input/Output Data of DB, According to Application's Requirement

SQLite is the database which is tolerant types, and it can store character type data into columns which
is declared as Integer in DB. Regarding data in database, all data including numeric value type is
stored in DB as character data of plain text. So searching of character string type, can be executed to
Integer type column. (LIKE '%123%' etc.) In addition, the limitation for the value in SQLite (validity
verification) is untrustful since data which is longer than limitation can be input in some case, e.g.
VARCHAR(100).

So, applications which use SQLite, need to be very careful about this characteristics of DB, and it's
necessary take actions according to application requirements, not to store unexpected data to DB
or not to get unexpected data. Countermeasures are as per below 2 points.

1. When storing data in database, verify that type and length are matched.
2. When getting the value from database, verify whether data is beyond the supposed type and

length, or not.

Following is an example of the code which verifies that the Input value is more than 1.

Verify that the Input value is more than 1 (Extract from MainActivity.java)
public class MainActivity extends Activity {

 ... Abbreviation ...

 //Process for adding
 private void addUserData(String idno, String name, String info) {
 //Check for No
 if (!validateNo(idno, CommonData.REQUEST_NEW)) {
 return;
 }

 //Inserting data process
 DataInsertTask task = new DataInsertTask(mSampleDbyhis);
 task.execute(idno, name, info);
 }

 ... Abbreviation ...

All rights reserved © Japan Smartphone Security Association. Using SQLite 237

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html%23getReadableDatabase()
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html%23getReadableDatabase()

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private boolean validateNo(String idno, int request) {
 if (idno == null || idno.length() == 0) {
 if (request == CommonData.REQUEST_SEARCH) {
 //When search process, unspecified is considered as OK.
 return true;
 } else {
 //Other than search process, null and blank are error.
 Toast.makeText(this, R.string.IDNO_EMPTY_MESSAGE, Toast.LENGTH_LONG).show();
 return false;
 }
 }

 //Verify that it's numeric character
 try {
 // Value which is more than 1
 if (!idno.matches("[1-9][0-9]*")) {
 //In case of not numeric character, error
 Toast.makeText(this, R.string.IDNO_NOT_NUMERIC_MESSAGE, Toast.LENGTH_LONG).show();
 return false;
 }
 } catch (NullPointerException e) {
 //It never happen in this case
 return false;
 }

 return true;
 }

 ... Abbreviation...
}

4.5.3.5. Consideration - the Data Stored into Database

In SQLite implementation, when storing data to file is as per below.

 All data including numeric value type are stored into DB file as character data of plain text.
 When executing data deletion to DB, data itself is not deleted form DB file. (Only deletion mark is

added.)
 When updating data, data before updating has not been deleted, and still remains there in DB

file.

So, the information which "must have" been deleted may still remain in DB file. Even in this case, take
counter-measures according this Guidebook, and when Android security function is enabled,
data/file may not be directly accessed by the third party including other applications. However,
considering the case that files are picked out by passing through Android's protection system like
root privilege is taken, in case the data which gives huge influence on business is stored, data
protection which doesn't depend on Android protection system, should be considered.

As above reasons, the important data which is necessary to be protected even when device's root
privilege is taken, should not be stored in DB of SQLite, as it is. In case need to store the important
data, it's necessary to implement counter-measures, or encrypt overall DB.

238 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

When encryption is necessary, there are so many issues that are beyond the range of this Guidebook,
like handling the key which is used for encryption or code obfuscation, so as of now it's
recommended to consult the specialist when developing an application which handles data that has
huge business impact.

Please refer to "4.5.3.6 [Reference] Encrypt SQLite Database (SQLCipher for Android," library which
encrypts database is introduced here.

4.5.3.6. [Reference] Encrypt SQLite Database (SQLCipher for Android)

SQLCipher is the SQLite extension that provides encryption of transparent 256 bit AES for database.
It's open sourced (BSD license), and maintained/managed by Zetetic LLC. In a world of mobile,
SQLCipher is widely used in Nokia/QT, Apple's iOS.

SQLCipher for Android project is aiming to support the standard integrated encryption for SQLite
database in Android environment. By creating the standard SQLite's API for SQLCipher, developers
can use the encrypted database with the same coding as per usual.

Reference: https://guardianproject.info/code/sqlcipher/

How to Use

Application developers can use SQLCipher by following 3 steps below.

1. Locate sqlcipher.jar, libdatabase_sqlcipher.so, libsqlcipher_android.so and

libstlport_shared.so in application's lib directory.
2. Regarding all source files, change all android.database.sqlite.* which is specified by import,

to info.guardianproject.database.sqlite.*. In addition, android.database.Cursor can be used
as it is.

3. Initialize database in onCreate(), and set password when opening database.

 Easy code example
SQLiteDatabase.loadLibs(this); // First, Initialize library by using context.
SQLiteOpenHelper.getWritableDatabase(passwoed): // Parameter is password(Suppose that it's string type and It's got
 in a secure way.)

SQLCipher for Android was version 1.1.0 at the time of writing, and now version 2.0.0 is under
developing, and RC4 is disclosed now. In terms of the past usage in Android and stability of API,
it's necessary to be verified later, but currently still there's a room to consider as encryption
solution of SQLite, which can be used in Android.

Library Structure
The following files which are included as SDK, are necessary, to use SQLCipher.

All rights reserved © Japan Smartphone Security Association. Using SQLite 239

https://guardianproject.info/code/sqlcipher/

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 assets/icudt46l.zip 2,252KB
It's necessary when icudt46l.dat doesn't exist below /system/usr/icu/ and its earlier version.
When icudt46l.dat cannot be found, this zip is unzipped and to be used.

 libs/armeabi/libdatabase_sqlcipher.so 44KB
 libs/armeabi/libsqlcipher_android.so 1,117KB
 libs/armeabi/libstlport_shared.so 555KB

Native Library. It's read out when SQLCipher's initial load (When calling
SQLiteDatabase#loadLibs()).

 libs/commons-codec.jar 46KB
 libs/guava-r09.jar 1,116KB
 libs/sqlcipher.jar 102KB

Java library which calls Native library. sqlcipher.jar is main. Others are referred from
sqlcipher.jar.

Toal: about 5.12MB
However, when icudt46l.zip is unzipped, it amounts to around 7MB.

240 All rights reserved © Japan Smartphone Security Association. Using SQLite

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6. Handling Files

According to Android security designing idea, files are used only for making information persistence
and temporary save (cache), and it should be private in principle. Exchanging information between
applications should not be direct access to files, but it should be exchanged by inter-application
linkage system, like Content Provider or Service. By using this, inter-application access control can
be achieved.

Since enough access control cannot be performed on external memory device like SD card etc, so it
should be limited to use only when it's necessary by all means in terms of function, like when
handling huge size files or transferring information to another location (PC etc.). Basically, files that
include sensitive information should not be saved in external memory device. In case sensitive
information needs to be saved in a file of external device at any rate, counter-measures like
encryption are necessary, but it's not referred here.

4.6.1. Sample Code

As mentioned above, files should be private in principle. However, sometimes files should be read
out/written by other applications directly for some reasons. File types which are categorized from the
security point of view and comparison are shown in Table 4.6-1. These are categorized into 4 types
of files based on the file storage location or access permission to other application. Sample code for
each file category is shown below and explanation for each of them are also added there.

Table 4.6-1 File category and comparison from security point of view

File category Access permission
to other application

Storage
location

Overview

Private file NA In
application
directory

 Can read and write only in an application
 Sensitive information can be handled.
 File should be this type in principle.

Read out
public file

Read out In
application
directory

 Other applications and users can read.
 Information that can be disclosed to

outside of application is handled.
Read write
public file

Read out
Write in

In
application
directory

 Other applications and users can read
and write.

 It should not be used from both security
and application designing points of
view.

External
memory
device
(Read write
public)

Read out
Write in

External
memory
device like
SD card

 No access control
 Other applications and users can always

read/write/delete files.
 Usage should be minimum requirement.
 Comparatively huge size of files can be

handled.

All rights reserved © Japan Smartphone Security Association. Handling Files 241

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.1.1. Using Private Files

This is the case to use files that can be read /written only in the same application, and it is a very safe
way to use files. In principle, whether the information stored in the file is public or not, keep files
private as much as possible, and when exchanging the necessary information with other applications,
it should be done using another Android system (Content Provider, Service.)

Points:
1. Files must be created in application directory.
2. The access privilege of file must be set private mode in order not to be used by other

applications.
3. Sensitive information can be stored.
4. Regarding the information to be stored in files, handle file data carefully and securely.

PrivateFileActivity.java
package org.jssec.android.file.privatefile;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import org.jssec.android.file.privatefile.R;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PrivateFileActivity extends Activity {

 private TextView mFileView;

 private static final String FILE_NAME = "private_file.dat";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.file);

 mFileView = (TextView) findViewById(R.id.file_view);
 }

 /**
 * Create file process
 *
 * @param view
 */
 public void onCreateFileClick(View view) {
 FileOutputStream fos = null;
 try {
 // *** POINT 1 *** Files must be created in application directory.
 // *** POINT 2 *** The access privilege of file must be set private mode in order not to be used by other
applications.

242 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 fos = openFileOutput(FILE_NAME, MODE_PRIVATE);

 // *** POINT 3 *** Sensitive information can be stored.
 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 fos.write(new String("Not sensotive information (File Activity)¥n").getBytes());
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fos != null) {
 try {
 fos.close();
 } catch (IOException e) {
 }
 }
 }

 finish();
 }

 /**
 * Read file process
 *
 * @param view
 */
 public void onReadFileClick(View view) {
 FileInputStream fis = null;
 try {
 fis = openFileInput(FILE_NAME);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 String str = new String(data);

 mFileView.setText(str);
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 }

 /**
 * Delete file process
 *
 * @param view
 */
 public void onDeleteFileClick(View view) {

 File file = new File(this.getFilesDir() + "/" + FILE_NAME);

All rights reserved © Japan Smartphone Security Association. Handling Files 243

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 file.delete();

 mFileView.setText(R.string.file_view);
 }
}

PrivateUserActivity.java
package org.jssec.android.file.privatefile;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import org.jssec.android.file.privatefile.R;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PrivateUserActivity extends Activity {

 private TextView mFileView;

 private static final String FILE_NAME = "private_file.dat";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user);
 mFileView = (TextView) findViewById(R.id.file_view);
 }

 private void callFileActivity() {
 Intent intent = new Intent();
 intent.setClass(this, PrivateFileActivity.class);

 startActivity(intent);
 }

 /**
 * Call file Activity process
 *
 * @param view
 */
 public void onCallFileActivityClick(View view) {
 callFileActivity();
 }

 /**
 * Read file process
 *
 * @param view
 */
 public void onReadFileClick(View view) {
 FileInputStream fis = null;

244 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 try {
 fis = openFileInput(FILE_NAME);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String str = new String(data);

 mFileView.setText(str);
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 }

 /**
 * Rewrite file process
 *
 * @param view
 */
 public void onWriteFileClick(View view) {
 FileOutputStream fos = null;
 try {
 // *** POINT 1 *** Files must be created in application directory.
 // *** POINT 2 *** The access privilege of file must be set private mode in order not to be used by other
applications.
 fos = openFileOutput(FILE_NAME, MODE_APPEND);

 // *** POINT 3 *** Sensitive information can be stored.
 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 fos.write(new String("Sensitive information (User Activity)¥n").getBytes());
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fos != null) {
 try {
 fos.close();
 } catch (IOException e) {
 }
 }
 }

 callFileActivity();
 }

}

All rights reserved © Japan Smartphone Security Association. Handling Files 245

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

246 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.1.2. Using Public Read Only Files

This is the case to use files to disclose the contents to unspecified large number of applications. If
you implement by following the below points, it's also comparatively safe file usage method.

Points:
1. Files must be created in application directory.
2. The access privilege of file must be set to read only to other applications.
3. Sensitive information must not be stored.
4. Regarding the information to be stored in files, handle file data carefully and securely.

PublicFileActivity.java
package org.jssec.android.file.publicfile.readonly;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import org.jssec.android.file.publicfile.readonly.R;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PublicFileActivity extends Activity {

 private TextView mFileView;

 private static final String FILE_NAME = "public_file.dat";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.file);

 mFileView = (TextView) findViewById(R.id.file_view);
 }

 /**
 * Create file process
 *
 * @param view
 */
 public void onCreateFileClick(View view) {
 FileOutputStream fos = null;
 try {
 // *** POINT 1 *** Files must be created in application directory.
 // *** POINT 2 *** The access privilege of file must be set to read only to other applications.
 fos = openFileOutput(FILE_NAME, MODE_WORLD_READABLE);

 // *** POINT 3 *** Sensitive information must not be stored.
 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel
y.

All rights reserved © Japan Smartphone Security Association. Handling Files 247

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 fos.write(new String("Not sensitive information (Public File Activity)¥n")
 .getBytes());
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fos != null) {
 try {
 fos.close();
 } catch (IOException e) {
 }
 }
 }

 finish();
 }

 /**
 * Read file process
 *
 * @param view
 */
 public void onReadFileClick(View view) {
 FileInputStream fis = null;
 try {
 fis = openFileInput(FILE_NAME);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 String str = new String(data);

 mFileView.setText(str);
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 }

 /**
 * Delete file process
 *
 * @param view
 */
 public void onDeleteFileClick(View view) {

 File file = new File(this.getFilesDir() + "/" + FILE_NAME);
 file.delete();

 mFileView.setText(R.string.file_view);
 }

248 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

}

PublicUserActivity.java
package org.jssec.android.file.publicuser.readonly;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import org.jssec.android.file.publicuser.readonly.R;

import android.app.Activity;
import android.content.ActivityNotFoundException;
import android.content.Context;
import android.content.Intent;
import android.content.pm.PackageManager.NameNotFoundException;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class PublicUserActivity extends Activity {

 private TextView mFileView;

 private static final String TARGET_PACKAGE = "org.jssec.android.file.publicfile.readonly";
 private static final String TARGET_CLASS = "org.jssec.android.file.publicfile.readonly.PublicFileActivity";

 private static final String FILE_NAME = "public_file.dat";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user);
 mFileView = (TextView) findViewById(R.id.file_view);
 }

 private void callFileActivity() {
 Intent intent = new Intent();
 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 try {
 startActivity(intent);
 } catch (ActivityNotFoundException e) {
 mFileView.setText("(File Activity does not exist)");
 }
 }

 /**
 * Call file Activity process
 *
 * @param view
 */
 public void onCallFileActivityClick(View view) {
 callFileActivity();
 }

All rights reserved © Japan Smartphone Security Association. Handling Files 249

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 /**
 * Read file process
 *
 * @param view
 */
 public void onReadFileClick(View view) {
 FileInputStream fis = null;
 try {
 File file = new File(getFilesPath(FILE_NAME));
 fis = new FileInputStream(file);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String str = new String(data);

 mFileView.setText(str);
 } catch (FileNotFoundException e) {
 } catch (IOException e) {
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 }

 /**
 * Rewrite file process
 *
 * @param view
 */
 public void onWriteFileClick(View view) {
 FileOutputStream fos = null;
 boolean exception = false;
 try {
 File file = new File(getFilesPath(FILE_NAME));
 // Fail to write in. FileNotFoundException occurs.
 fos = new FileOutputStream(file, true);

 fos.write(new String("Not sensitive information (Public User Activity)¥n")
 .getBytes());
 } catch (FileNotFoundException e) {
 mFileView.setText(e.getMessage());
 exception = true;
 } catch (IOException e) {
 mFileView.setText(e.getMessage());
 exception = true;
 } finally {
 if (fos != null) {
 try {
 fos.close();
 } catch (IOException e) {
 exception = true;

250 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 }
 }

 if (exception == false)
 callFileActivity();
 }

 private final String getFilesPath(String filename) {
 String path = "";

 try {
 Context ctx = createPackageContext(TARGET_PACKAGE,
 Context.CONTEXT_RESTRICTED);
 File file = new File(ctx.getFilesDir(), filename);
 path = file.getPath();
 } catch (NameNotFoundException e) {
 }
 return path;
 }
}

All rights reserved © Japan Smartphone Security Association. Handling Files 251

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.1.3. Using Public Read/Write Files

This is the usage of the file which permits read-write access to unspecified large number of
application.

Unspecified large number of application can read and write, means that needless to say. Malware can
also read and write, so the credibility and safety of data will be never guaranteed. In addition, even in
case of not malicious intention, data format in file or timing to write in cannot be controlled. So this
type of file is almost not practical in terms of functionality.

As above, it's impossible to use read-write files safely from both security and application designing
points of view, so using read-write files should be avoided.

Point:
1. Must not create files that be allowed to read/write access from other applications.

252 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.1.4. Using Eternal Memory (Read Write Public) Files

This is the case when storing files in an external memory like SD card. It's supposed to be used when
storing comparatively huge information (placing file which was downloaded from Web), or when
bring out the information to outside (backup etc.)

"External memory file (Read Write public)" has the equal characteristics with "Read Write public file" to
unspecified large number of applications. In addition, it has the equal characteristics with "Read Write
public file" to applications which declares to use android.permission.WRITE_EXTERNAL_STORAGE
Permission. So, the usage of "External memory file (Read Write public) file" should be minimized as
less as possible.

A Backup file is most probably created in an external memory device as Android application's
customary practice. However, as mentioned as above, files in an external memory have the risk that
is tampered/ deleted by other applications including malware. Hence, in applications which output
backup, some contrivances to minimize risks in terms of application spec or designing like
displaying a caution "Copy Backup files to the safety location like PC etc, a.s.a.p.", are necessary.

Points:
1. Sensitive information must not be stored.
2. Files must be stored in the unique directory per application.
3. Regarding the information to be stored in files, handle file data carefully and securely.
4. Writing file by the requesting application should be prohibited as the specification.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.file.externalfile"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />
 <!-- declare android.permission.WRITE_EXTERNAL_STORAGE permission to write to the external strage -->
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".ExternalFileActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

All rights reserved © Japan Smartphone Security Association. Handling Files 253

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

ExternalFileActivity.java
package org.jssec.android.file.externalfile;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import org.jssec.android.file.externalfile.R;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class ExternalFileActivity extends Activity {

 private TextView mFileView;

 private static final String TARGET_TYPE = "external";

 private static final String FILE_NAME = "external_file.dat";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.file);

 mFileView = (TextView) findViewById(R.id.file_view);
 }

 /**
 * Create file process
 *
 * @param view
 */
 public void onCreateFileClick(View view) {
 FileOutputStream fos = null;
 try {
 // *** POINT 1 *** Sensitive information must not be stored.
 // *** POINT 2 *** Files must be stored in the unique directory per application.
 File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);
 fos = new FileOutputStream(file, false);

 // *** POINT 3 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 fos.write(new String("Non-Sensitive Information(ExternalFileActivity)¥n")
 .getBytes());
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fos != null) {
 try {
 fos.close();
 } catch (IOException e) {

254 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 }
 }

 finish();
 }

 /**
 * Read file process
 *
 * @param view
 */
 public void onReadFileClick(View view) {
 FileInputStream fis = null;
 try {
 File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);
 fis = new FileInputStream(file);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 3 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String str = new String(data);

 mFileView.setText(str);
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 }

 /**
 * Delete file process
 *
 * @param view
 */
 public void onDeleteFileClick(View view) {

 File file = new File(getExternalFilesDir(TARGET_TYPE), FILE_NAME);
 file.delete();

 mFileView.setText(R.string.file_view);
 }
}

ExternalFileUser.java
package org.jssec.android.file.externaluser;

All rights reserved © Japan Smartphone Security Association. Handling Files 255

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import org.jssec.android.file.externaluser.R;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.ActivityNotFoundException;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.content.pm.PackageManager.NameNotFoundException;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class ExternalUserActivity extends Activity {

 private TextView mFileView;

 private static final String TARGET_PACKAGE = "org.jssec.android.file.externalfile";
 private static final String TARGET_CLASS = "org.jssec.android.file.externalfile.ExternalFileActivity";
 private static final String TARGET_TYPE = "external";

 private static final String FILE_NAME = "external_file.dat";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user);
 mFileView = (TextView) findViewById(R.id.file_view);
 }

 private void callFileActivity() {
 Intent intent = new Intent();
 intent.setClassName(TARGET_PACKAGE, TARGET_CLASS);

 try {
 startActivity(intent);
 } catch (ActivityNotFoundException e) {
 mFileView.setText("(File Activity does not exist)");
 }
 }

 /**
 * Call file Activity process
 *
 * @param view
 */
 public void onCallFileActivityClick(View view) {
 callFileActivity();
 }

 /**
 * Read file process
 *
 * @param view
 */

256 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onReadFileClick(View view) {
 FileInputStream fis = null;
 try {
 File file = new File(getFilesPath(FILE_NAME));
 fis = new FileInputStream(file);

 byte[] data = new byte[(int) fis.getChannel().size()];

 fis.read(data);

 // *** POINT 3 *** Regarding the information to be stored in files, handle file data carefully and securel
y.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String str = new String(data);

 mFileView.setText(str);
 } catch (FileNotFoundException e) {
 mFileView.setText(R.string.file_view);
 } catch (IOException e) {
 } finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 }

 /**
 * Rewrite file process
 *
 * @param view
 */
 public void onWriteFileClick(View view) {

 // *** POINT 4 *** Writing file by the requesting application should be prohibited as the specification.
 // Application should be designed supposing malicious application may overwrite or delete file.

 final AlertDialog.Builder alertDialogBuilder = new AlertDialog.Builder(
 this);
 alertDialogBuilder.setTitle("POINT 4");
 alertDialogBuilder.setMessage("Do not write in calling appllication.");
 alertDialogBuilder.setPositiveButton("OK",
 new DialogInterface.OnClickListener() {

 @Override
 public void onClick(DialogInterface dialog, int which) {
 callFileActivity();
 }
 });

 alertDialogBuilder.create().show();

 }

 private final String getFilesPath(String filename) {
 String path = "";

 try {

All rights reserved © Japan Smartphone Security Association. Handling Files 257

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 Context ctx = createPackageContext(TARGET_PACKAGE,
 Context.CONTEXT_IGNORE_SECURITY);
 File file = new File(ctx.getExternalFilesDir(TARGET_TYPE), filename);
 path = file.getPath();
 } catch (NameNotFoundException e) {
 }
 return path;
 }
}

258 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.2. Rule Book

Handling files follow the rules below.

1. File Must Be Created as a Private File in Principle (Required)
2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications (Required)
3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Required)
4. Application Should Be Designed Considering the Scope of File (Required)

4.6.2.1. File Must Be Created as a Private File in Principle (Required)

As mentioned in "4.6 Handling Files" and "4.6.1.3 Using Public Read/Write File," regardless of the
contents of the information to be stored, files should be set private, in principle. From Android
security designing point of view, exchanging information and its access control should be done in
Android system like Content Provider and Service, etc, and in case there's a reason that is impossible,
it should be considered to be substituted by file access permission as alternative method.

Please refer to sample code of each file type and following rule items.

4.6.2.2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications
 (Required)

As mentioned in "4.6.1.3 Using Public Read/Write File," when permitting other applications to
read/write files, information stored in files cannot be controlled. So, sharing information by using
read/write public files should not be considered from both security and function/designing points of
view.

4.6.2.3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum(Required)

As mentioned in "4.6.1.4 Using Eternal Memory (Read Write Public) File," storing files in external
memory device like SD card, leads to holding the potential problems from security and functional
points of view. On the other hand, SD card can handle files which have longer scope, compared with
application directory, and this is the only one storage that can be always used to bring out the data to
outside of application. So, there may be many cases that cannot help using it, depends on
application's spec.

When storing files in external memory device, considering unspecified large number of applications
and users can read/write/delete files, so it's necessary that application is designed considering the
points as per below as well as the points mentioned in sample code. In addition, regarding encryption
technology like encryption and electrical signature, it's planned that articles are published in future
edition of this Guidebook.

 Sensitive information should not be saved in a file of external memory device, in principle.
 In case sensitive information is saved in a file of external memory device, it should be encrypted.
All rights reserved © Japan Smartphone Security Association. Handling Files 259

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 In case saving in a file of external memory device information that will be trouble if it's tampered
by other application or users, it should be saved with electrical signature.

 When reading in files in external memory device, use data after verifying the safety of data to
read in.

 Application should be designed supposing that files in external memory device can be always
deleted.

Please refer to "4.6.2.4 Application Should Be Designed Considering the Scope of File (Required)."

4.6.2.4. Application Should Be Designed Considering the Scope of File (Required)

Data saved in application directory is deleted by the following user operations. It's consistent with the
application's scope, and it's distinctive that it's shorter than the scope of application.

 Uninstalling application.
 Delete data and cache of each application (Setting > Apps > select target application.)

Files that were saved in external memory device like SD card, it's distinctive that the scope of the file
is longer than the scope of the application. In addition, the following situations are also necessary to
be considered.

 File deletion by user
 Pick off/replace/unmount SD card
 File deletion by Malware

As mentioned above, since scope of files are different depends on the file saving location, not only
from the viewpoint to protect sensitive information, but also form view point to achieve the right
behavior as application, it's necessary to select the file save location.

260 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.3. Advanced Topics

4.6.3.1. File Sharing Through File Descriptor

There is a method to share files through file descriptor, not letting other applications access to public
files. This method can be used in Content Provider and in Service. Opponent application can
read/write files through file descriptors which are got by opening private files in Content Provider or
in Service.

Comparison between the file sharing method of direct access by other applications and the file
sharing method via file descriptor, is as per below Table 4.6-2. Variation of access permission and
range of applications that are permitted to access, can be considered as merits. Especially, from
security point of view, this is a great merit that, applicaions that are permitted to accesss can be
controlled in detail.

Table 4.6-2 Comparison of inter-application file sharing method
File sharing method Variation or access permission

setting
Range of applications that are
permitted to access

File sharing that permits other
applications to access files
directly

Read in
Write in
Read in + Write in

Give all applications access
permissions equally

File sharing through file
descriptor

Read in
Write in
Only add
Read in + Write in
Read in + Only add

Can control whether to give
access permission or not, to
application which try to access
individually and temporarily, to
Content Provider or Service

This is common in both of above file sharing methods, when giving write permission for files to other
applications, integrity of file contents are difficult to be guaranteed. When several applications write
in in parallel, there's a risk that data structure of file contents are destroyed, and application doesn't
work normally. So, in sharing files with other applications, giving only read only permission is
preferable.

Herein below an implementation example of file sharing by Content Provider and its sample code, are
published.

Point
1. The source application is In house application, so sensitive information can be saved.
2. Even if it's a result from In house only Content Provider application, verify the safety of the result

data.

InhouseProvider.java
package org.jssec.android.file.inhouseprovider;

import java.io.File;

All rights reserved © Japan Smartphone Security Association. Handling Files 261

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.content.ContentProvider;
import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.net.Uri;
import android.os.ParcelFileDescriptor;

public class InhouseProvider extends ContentProvider {

 private static final String FILENAME = "sensitive.txt";

 // In-house signature permission
 private static final String MY_PERMISSION = "org.jssec.android.file.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of debug.keystore "androiddebugkey"
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of keystore "my company key"
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 @Override
 public boolean onCreate() {
 File dir = getContext().getFilesDir();
 FileOutputStream fos = null;
 try {
 fos = new FileOutputStream(new File(dir, FILENAME));
 // *** POINT 1 *** The source application is In house application, so sensitive information can be saved.
 fos.write(new String("Sensitive information").getBytes());

 } catch (IOException e) {
 } finally {
 try {
 fos.close();
 } catch (IOException e) {
 }
 }

 return true;
 }

 @Override
 public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException {

262 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // Verify that in-house-defined signature permission is defined by in-house application.
 if (!SigPerm
 .test(getContext(), MY_PERMISSION, myCertHash(getContext()))) {
 throw new SecurityException(
 "In-house-defined signature permission is not defined by in-house application.");
 }

 File dir = getContext().getFilesDir();
 File file = new File(dir, FILENAME);

 // Always return read-only, since this is sample
 int modeBits = ParcelFileDescriptor.MODE_READ_ONLY;
 return ParcelFileDescriptor.open(file, modeBits);
 }

 @Override
 public String getType(Uri uri) {
 return "";
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 return null;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 return 0;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 return 0;
 }
}

InhouseUserActivity.java
package org.jssec.android.file.inhouseprovideruser;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.pm.PackageManager;

All rights reserved © Japan Smartphone Security Association. Handling Files 263

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.pm.ProviderInfo;
import android.net.Uri;
import android.os.Bundle;
import android.os.ParcelFileDescriptor;
import android.view.View;
import android.widget.TextView;

public class InhouseUserActivity extends Activity {

 // Content Provider information of destination (requested provider)
 private static final String AUTHORITY = "org.jssec.android.file.inhouseprovider";

 // In-house signature permission
 private static final String MY_PERMISSION = "org.jssec.android.file.inhouseprovider.MY_PERMISSION";

 // In-house certificate hash value
 private static String sMyCertHash = null;

 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of debug.keystore "androiddebugkey"
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of keystore "my company key"
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 // Get package name of destination (requested) content provider.
 private static String providerPkgname(Context context, String authority) {
 String pkgname = null;
 PackageManager pm = context.getPackageManager();
 ProviderInfo pi = pm.resolveContentProvider(authority, 0);
 if (pi != null)
 pkgname = pi.packageName;
 return pkgname;
 }

 public void onReadFileClick(View view) {

 logLine("[ReadFile]");

 // Verify that in-house-defined signature permission is defined by in-house application.
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 logLine(" In-house-defined signature permission is not defined by in-house application.");
 return;
 }

 // Verify that the certificate of destination (requested) content provider application is in-house certificat
e.
 String pkgname = providerPkgname(this, AUTHORITY);
 if (!PkgCert.test(this, pkgname, myCertHash(this))) {
 logLine(" Destination (Requested) Content Provider is not in-house application.");
 return;
 }

 // Only the information which can be disclosed to in-house only content provider application, can be included

264 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

in a request.
 ParcelFileDescriptor pfd = null;
 try {
 pfd = getContentResolver().openFileDescriptor(
 Uri.parse("content://" + AUTHORITY), "r");
 } catch (FileNotFoundException e) {

 }

 if (pfd != null) {
 FileInputStream fis = new FileInputStream(pfd.getFileDescriptor());

 if (fis != null) {
 try {
 byte[] buf = new byte[(int) fis.getChannel().size()];
 fis.read(buf);
 // *** POINT 2 *** Handle received result data carefully and securely,
 // even though the data came from in-house applications.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely
."
 logLine(new String(buf));
 } catch (IOException e) {
 } finally {
 try {
 fis.close();
 } catch (IOException e) {
 }
 }
 }
 try {
 pfd.close();
 } catch (IOException e) {
 }

 } else {
 logLine(" null file descriptor");
 }
 }

 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mLogView = (TextView) findViewById(R.id.logview);
 }

 private void logLine(String line) {
 mLogView.append(line);
 mLogView.append("¥n");
 }
}

4.6.3.2. Access Permission Setting for the Directory

Herein above, security considerations are explained, focusing on files. It's also necessary to consider

All rights reserved © Japan Smartphone Security Association. Handling Files 265

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

the security for directory which is a file container. Herein below, security considerations of access
permission setting for directory are explained.

In Android, there are some methods to get/create subdirectory in application directory. The major
ones are as per below Table 4.6-3.

Table 4.6-3 Methods to get/create subdirectory in application directory
 Specify access permission to

other application
Deletion by user

Context#getFilesDir() Impossible (Only execution
permission)

"Setting" > "Apps" > select target
application > "Clear data"

Context#getCacheDir() Impossible (Only execution
permission)

"Setting" > "Apps" > select target
application > "Clear cache"
It can be deleted by "Clear data," too

Context#getDir(String name,
int MODE)

Following can be set to
mode
MODE_PRIVATE
MODE_WORLD_READABLE
MODE_WORLD_WRITABLE

"Setting" > "Apps" > select target
application > "Clear data"

Here especially what needs to pay attention is access permission setting by Context#getDir(). As
explained in file creation, basically directory also should be set private from the security designing
point of view. When sharing information depends on access permission setting, there may be an
unexpected side effect, so other methods should be taken as information sharing.

MODE_WORLD_READABLE

This is a flag to give all applications read-only permission to directory. So all application can get
file list and individual file attribute information in the directory. Since secret files cannot be
placed under this directory, it's necessary to pay enough attention when using this flag.

MODE_WORLD_WRITABLE
This flag gives other applications write permission to directory. All applications can
create/move8/rename/delete files in the directory. These operations has no relation with access
permission setting (Read/Write/Execute) of file itself, so it's necessary to pay attention that
operations can be done only with write permission to directory. Normally this flag should not be
used since file may be deleted/replaced freely by other applications.

Regarding Table 4.6-3 "Deletion by User," refer to "4.6.2.4 Application Should Be Designed
Considering the Scope of File (Required)."

8 Files cannot be moved over mount point (e.g. from internal storage to external storage). Therefore,
moving the protected files from internal storage to external storage cannot be happened.

266 All rights reserved © Japan Smartphone Security Association. Handling Files

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.6.3.3. Access Permission Setting for Shared Preference and Database File

Shared Preference and database also consist of files. Regarding access permission setting, what are
explained for files are applied here. i.e., both Shared Preference and database, should be created as
private files same like files, and sharing contents should be achieved by the Android's
inter-application linkage system.

Herein below, the usage example of Shared Preference is shown. Shared Preference is crated as
private file by MODE_PRIVATE.

Example of setting access restriction to Shared Preference file.
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;

 Ommision of a passage

 // Get Shared Preference . (If there's no Shared Preference, it's to be created.)
 // Point:Basically, specify MODE_PRIVATE mode.
 SharedPreferences preference = getSharedPreferences(
 PREFERENCE_FILE_NAME, MODE_PRIVATE);

 // Example of writing preference which value is charcter string
 Editor editor = preference.edit();
 editor.putString("prep_key", "prep_value");// key:"prep_key", value:"prep_value"
 editor.commit();

Please refer to "4.5 Using SQLite" for database.

All rights reserved © Japan Smartphone Security Association. Handling Files 267

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.7. Using Browsable Intent

Android application can be designed to launch from browser corresponding with a webpage link.
This functionality is called 'Browsable Intent.' By specifying URI scheme in Manifest file, an application
responds the transition to the link (user tap etc) which has its URI scheme, and the application is
launched with the link as a parameter.

In addition, the method to launch the corresponding application from browser by using URI scheme
is supported not only in Android but also in iOS and other platforms, and this is generally used for
the linkage between Web application and external application, etc. For example, following URI
scheme is defined in Twitter application or Facebook application, and the corresponding applications
are launched from the browser both in Android and in iOS.

Table 4.7-1

URI scheme Corresponding application
fb:// Facebook
twitter:// Twitter

It seems very convenient function considering the linkage and convenience, but there are some risks
that this function is abused by a malicious third party. What can be supposed are as follows, they
abuse application functions by preparing a malicious Web site with a link in which URL has incorrect
parameter, or they get information which is included in URL by cheating a smartphone owner into
installing the Malware which responds the same URI scheme.

There are some points to be aware when using 'Browsable Intent' against these risks.

4.7.1. Sample Code

Sample codes of an application which uses 'Browsable Intent' are shown below.

Points:
1. (Webpage side) Sensitive information must not be included.
2. Handle the URL parameter carefully and securely.

Starter.html
<html>
 <body>
 <!-- *** POINT 1 *** Sensitive information must not be included -->
 <!-- Character strings to be passed as URL parameter, should be UTF-8 and URI encoded. -->
 Login
 </body>
</html>

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.browsableintent"

268 All rights reserved © Japan Smartphone Security Association. Using Browsable Intent

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".BrowsableIntentActivity"
 android:label="@string/title_activity_browsable_intent"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 // Accept implicit Intent
 <category android:name="android.intent.category.DEFAULT" />
 // Accept Browsable intent
 <category android:name="android.intent.category.BROWSABLE" />
 // Accept URI 'secure://jssec'
 <data android:scheme="secure" android:host="jssec"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

BrowsableIntentActivity.java
package org.jssec.android.browsableintent;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.widget.TextView;

public class BrowsableIntentActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_browsable_intent);

 Intent intent = getIntent();
 Uri uri = intent.getData();
 if (uri != null) {
 // Get UserID which is passed by URI parameter
 // *** POINT 2 *** Handle the URL parameter carefully and securely.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String userID = "User ID = " + uri.getQueryParameter("user");
 TextView tv = (TextView)findViewById(R.id.text_userid);
 tv.setText(userID);
 }
 }

All rights reserved © Japan Smartphone Security Association. Using Browsable Intent 269

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

}

270 All rights reserved © Japan Smartphone Security Association. Using Browsable Intent

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.7.2. Rule Book

Follow rules listed below when using "Browsable Intent".

1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link

 (Required)
2. Handle the URL Parameter Carefully and Securely (Required)

4.7.2.1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link
 (Required)

When tapping the link in browser, an intent which has a URL value in its data (It can be retrieve by
Intent#getData) is issued, and an application which has a corresponding Intent Filter is launched
from Android system.

At this moment, when there are several applications which Intent Filter is set to receive the same URI
scheme, application selection dialogue is shown in the same way as normal launch by implicit Intent,
and an application which user selected is launched. In case that a Malware is listed in the selection of
application selection dialogue, there is a risk that user may launch the Malware by mistake and
parameters in URL are sent to Malware.

As per above, it is necessary to avoid from include sensitive information directly in URL parameter as
it is for creating general Webpage link since all parameters which are included in Webpage link URL
can be given to Malware.

Example that User ID and Password are included in URL
insecure://sample/login?userID=12345&password=abcdef

In addition, there is a risk that user may launch a Malware and input password to it when it is defined
in specs that password input is executed in an application after being launched by 'Browsable Intent',
even if the URL parameter includes only non-sensitive information like User ID. So it should be
considered that specs like a whole Login process is completed within application side. It must be kept
in mind when designing an application and a service that launching application by 'Browsable Intent'
is equivalent to launching by implicit Intent and there is no guarantee that a valid application is
launched.

4.7.2.2. Handle the URL Parameter Carefully and Securely (Required)

URL parameters which are sent to an application are not always from a legitimate Web page, since a
link which is matched with URI scheme can be made by not only developers but anyone. In addition,
there is no method to verify whether the URL parameter is sent from a valid Web page or not.

So it is necessary to verify safety of a URL parameter before using it, e.g. check if an unexpected value
is included or not.

All rights reserved © Japan Smartphone Security Association. Using Browsable Intent 271

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.8. Outputting Log to LogCat

There's a logging mechanism called LogCat in Android, and not only system log information but also
application log information are also output to LogCat. Log information in LogCat can be read out
from other application in the same device9, so the application which outputs sensitive information to
Logcat, is considered that it has the vulnerability of the information leakage. The sensitive
information should not be output to LogCat.

From a security point of view, in release version application, it's preferable that any log should not be
output. However, even in case of release version application, log is output for some reasons in some
cases. In this chapter, we introduce some ways to output messages to LogCat in a safe manner even
in a release version application. Along with this explanation, please refer to "4.8.3.1 Two Ways of
Thinking for the Log Outputting in Release version application."

4.8.1. Sample Code

Herein after, the method to control the Log output to LogCat by ProGuard in release version
application. ProGuard is one of the optimization tools which automatically delete the unnecessary
code like unused methods, etc.

There are five types of log output methods, Log.e(), Log.w(), Log.i(), Log.d(), Log.v(), in
android.util.Log class. Regarding log information, intentionally output log information (hereinafter
referred to as the Operation log information) should be distinguished from logging which is
inappropriate for a release version application such as debug log (hereinafter referred to as the
Development log information). It's recommended to use Log.e()/w()/i() for outputting operation log
information, and to use Log.d()/v() for outputting development log. Refer to "4.8.3.2 Selection
Standards of Log Level and Log Output Method" for the details of proper usage of five types of log
output methods, in addition, also refer to "4.8.3.3 DEBUG Log and VERBOSE Log Are Not Always
Deleted Automatically."

Here's an example of how to use LogCat in a safe manner. This example includes Log.d() and Log.v()
for outputting debug log. If the application is for release, these two methods would be deleted
automatically. In this sample code, ProGuard is used to automatically delete code blocks where
Log.d()/v() is called.

9 The log information output to LogCat can be read by applications that declare using READ_LOGS
permission. However, in Android 4.1 and later, log information that is output by other application
cannot be read. But smartphone user can read every log information ouput to logcat through ADB.

272 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points:
1. Sensitive information must not be output by Log.e()/w()/i(), System.out/err.
2. Sensitive information should be output by Log.d()/v() in case of need.
3. The return value of Log.d()/v()should not be used (with the purpose of substitution or

comparison).
4. When you build an application for release, you should bring the mechanism that automatically

deletes inappropriate logging method like Log.d() or Log.v() in your code..
5. An APK file for the (public) release must be created in release build configurations.

ProGuardActivity.java
package org.jssec.android.log.proguard;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class ProGuardActivity extends Activity {

 final static String LOG_TAG = "ProGuardActivity";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_proguard);

 // *** POINT 1 *** Sensitive information must not be output by Log.e()/w()/i(), System.out/err.
 Log.e(LOG_TAG, "Not sensitive information (ERROR)");
 Log.w(LOG_TAG, "Not sensitive information (WARN)");
 Log.i(LOG_TAG, "Not sensitive information (INFO)");

 // *** POINT 2 *** Sensitive information should be output by Log.d()/v() in case of need.
 // *** POINT 3 *** The return value of Log.d()/v()should not be used (with the purpose of substitution or comp
arison).
 Log.d(LOG_TAG, "sensitive information (DEBUG)");
 Log.v(LOG_TAG, "sensitive information (VERBOSE)");
 }
}

A part of project.properties
ProGuard
proguard.config=proguard-project.txt

proguard-project.txt
prevent from changing class name and method name etc.
-dontobfuscate

*** POINT 4 *** In release build, the build configurations in which Log.d()/v() are deleted automatically should be
 constructed.
-assumenosideeffects class android.util.Log {
 public static int d(...);
 public static int v(...);
}

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 273

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 5 *** An APK file for the (public) release must be created in release build configurations.

Figure 4.8-1 How to create release version application in Eclipse (By Export)

The difference of LogCat output between development version application (debug build) and release
version application (release build) are shown in below Figure 4.8-2.

Figure 4.8-2 Difference of LogCat output

between development version application and release version application

Development version application (Debug build) Release version application (Release build)

274 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.8.2. Rule Book

When you output log messages, follow the rules below.

1. Sensitive Information Must Not Be Included in Operation Log Information (Required)
2. Construct the Build System to Auto-delete Codes which Output Development Log Information

When Build for the Release (Recommended)
3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)
4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

4.8.2.1. Sensitive Information Must Not Be Included in Operation Log Information (Required)

Log which was output to LogCat can be read out from other applications, so sensitive information like
user's login information should not be output by release version application. It's necessary not to
write code which outputs sensitive information to log during development, or it's necessary to delete
all of such codes before release.

To follow this rule, first, not to include sensitive information in operation log information. In addition,
it's recommended to construct the system to delete code which outputs sensitive information when
build for release. Please refer to "4.8.2.2 Construct the Build System to Auto-delete Codes which
Output Development Log Information When Build for the Release (Recommended)."

4.8.2.2. Construct the Build System to Auto-delete Codes which Output Development Log Information
When Build for the Release (Recommended)

When application development, sometimes it's preferable if sensitive information is output to log for
checking the process contents and for debugging, for example the interim operation result in the
process of complicated logic, information of program's internal state, communication data structure
of communication protocol. It doesn't matter to output the sensitive information as debug log during
developing, in this case, the corresponding log output code should be deleted before release, as
mentioned in "4.8.2.1 Sensitive Information Must Not Be Included in Operation Log Information
 (Required)."

To delete surely the code which outputs development log information when release builds, the
system which executes code deletion automatically by using some tools, should be constructed.
ProGuard, which was described in "4.8.1 Sample Code," can work for this method. As described
below, there are some noteworthy points on deleting code by ProGuard. Here it's supposed to apply
the system to applications which output development log information by either of Log.d()/v(), based
on "4.8.3.2 Selection Standards of Log Level and Log Output Method."

ProGuard deletes unnecessary code like unused methods, automatically. By specifying Log.d()/v()as
parameter of -assumenosideeffects option, call for Log.d(),Log.v() are granted as unnecessary code ,
and those are to be deleted.

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 275

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

By specifying -assumenosideeffects to Log.d()/v(), make it auto-deletion target
-assumenosideeffects class android.util.Log {
 public static int d(...);
 public static int v(...);
}

In case using this auto deletion system, pay attention that Log.v()/d() code is not deleted when using
returned value of Log.v(), Log.d(), so returned value of Log.v(), Log.d(), should not be used. For
example, Log.v() is not deleted in the next examination code.

Examination code which Log.v() that is specifeied to be deleted is not deketed
int i = android.util.Log.v("tag", "message");
System.out.println(String.format("Log.v() returned %d. ", i)); //Use the returned value of Log.v() for examination

If you'd like to reuse source code, you should keep the consistency of the project environment
including ProGuard settings. For example, source code that presupposes Log.d() and Log.v() are
deleted automatically by above ProGuard setting. If using this source code in another project which
ProGuard is not set, Log.d() and Log.v() are not to be deleted, so there's a risk that the sensitive
information may be leaked. When reusing source code, the consistency of project environment
including ProGuard setting should be secured.

4.8.2.3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)

As mentioned in "4.8.1 Sample Code" and "4.8.3.2 Selection Standards of Log Level and Log Output
Method," sensitive information should not be output to log through Log.e()/w()/i(). On the other hand,
in order that a developer wants to output the details of program abnormality to log, when exception
occurs, stack trace is output to LogCat by Log.e(..., Throwable tr)/w(..., Throwable tr)/i(..., Throwable
tr), in some cases. However, sensitive information may sometimes be included in the stack trace
because it shows detail internal structure of the program. For example, when SQLiteException is
output as it is, what type of SQL statement is issued is clarified, so it may give the clue for SQL
injection attack. Therefore, it's recommended that use only Log.d()/Log.v() methods, when
outputting throwable object.

4.8.2.4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

You may output log by System.out/err to verify the application's behavior whether it works as
expected or not, during development. Of course, log can be output to LogCat by print()/println()
method of System.out/err, but it's strongly recommended to use only methods of android.util.Log
class, by the following reasons.

When outputting log, generally, use the most appropriate output method properly based on the
urgency of the information, and control the output. For example, categories like serious error,
caution, simple application's information notice, etc are to be used. However, in this case,
information which needs to be output at the time of release (operation log information) and
information which may include the sensitive information (development log information) are output
by the same method. So, it may happen that when delete code which outputs sensitive information,
276 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

it's in danger that some deletion are dropped by oversight.

Along with this, when using android.util.Log and System.out/err for log output, compared with using
only android.util.Log, what needs to be considered will increase, so it's in danger that some mistakes
may occur, like some deletion are dropped by oversight.

To decrease risk of above mentioned mistakes occurrence, it's recommended to use only methods of
android.util.Log class.

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 277

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.8.3. Advanced Topics

4.8.3.1. Two Ways of Thinking for the Log Outputting in Release version application

There are two ways of thinking for log output in release version application. One is any log should
never be output, and another is necessary information for later analysis should be output as log. It's
favorable that any log should never be output in release version application from the security point of
view, but sometimes, log is output even in release version application for various reasons. Each way
of thinking is described as per below.

The former is "Any log should never be output," this is because outputting log in release version
application is not so much valuable, and there is a risk to leak sensitive information. This comes from
there's no method for developers to collect log information of the release version application in
Android application operation environment, which is different from many Web application operation
environments. Based on this thinking, the logging codes are used only in development phase, and all
the logging codes are deleted on building release version application.

The latter is "necessary information should be output as log for the later analysis," as a final option to
analyze application bugs in customer support, in case of any questions or doubt to your customer
support. Based on this idea, as introduced above, it is necessary to prepare the system that prevent
human errors and bring it in your project because if you don't have the system you have to keep in
mind to avoid logging the sensitive information in release version application.

For more details about logging method, refer to the following document.

Code Style Guidebook for Contributors / Log Sparingly
http://source.android.com/source/code-style.html#log-sparingly

4.8.3.2. Selection Standards of Log Level and Log Output Method

There are five levels of log level (ERROR, WARN, INFO, DEBUG, VERBOSE) are defined in
android.util.Log class in Android. You should select the most appropriate method when using the
android.util.Log class to output log messages according to Table 4.8-1 which shows the selection
standards of logging levels and methods.

Table 4.8-1 Selection standards of log levels and log output method

Log level Method Log information to be output Cautions for application release
ERROR Log.e() Log information which is output

when application is in a fatal state.
Log information as per left may be
referred by users, so it could be
output both in development
version application and in release
version application. Therefore,
sensitive information should not
be output in these levels.

WARN Log.w() Log information which is output
when application faces the
unexpected serious situation.

INFO Log.i() Other than above, log information
which is output to notify any

278 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

http://source.android.com/source/code-style.html%23log-sparingly

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

remarkable changes or results in
application state.

DEBUG Log.d() Program's internal state information
which needs to be output
temporarily for analyzing the cause
of specific bug when developing
application.

Log information as per left is only
for application developers.
Therefore, this type of
information should not be output
in case of release version
application. VERBOSE Log.v() Log information which is not

applied to any of above. Log
information which application
developer outputs for many
purposes, is applied this. For
example, in case of outputting
server communication data to
dump.

For more details about logging method, refer to the following document.

Code Style Guidebook for Contributors / Log Sparingly
http://source.android.com/source/code-style.html#log-sparingly

4.8.3.3. DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically

The following is quoted from the developer reference of android.util.Log class10.

The order in terms of verbosity, from least to most is ERROR, WARN, INFOFEBUG, VERBOSE. Verbose
should never be compiled into an application except during development. Debug logs are compiled
in but stripped at runtime. Error, warning and info logs are always kept.

After reading the above texts, some developers might have misunderstood the Log class behavior as
per below.

 Log.v() call is not compiled when release build, VERBOSE log is never output.
 Log.v() call is compiled, but DEBUG log is never output when execution.

However, logging methods never behave in above ways, and all messages are output regardless of
whether it is compiled with debug mode or release mode. If you read the document carefully, you will
be able to realize that the gist of the document is not about the behavior of logging methods but
basic policies for logging.

In this chapter, we introduced the sample code to get the expected result as described above by

10 http://developer.android.com/reference/android/util/Log.html

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 279

http://source.android.com/source/code-style.html%23log-sparingly

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

using ProGuard.

4.8.3.4. BuildConfig.DEBUG Should Be Used in ADT 21 or Later

Recent ADT plugin for Eclipse, the following BuildConfig.java file is automatically generated. The
following DEBUG consistent (BuildConfig.DEBUG) is automatically set as "false" in release build, and
as "true" in debug build, by ADT plugin.

BuildConfig.java
/** Automatically generated file. DO NOT MODIFY */
package com.example.buildconfig;

public final class BuildConfig {
 public final static boolean DEBUG = true;
}

By using BuildConfig.DEBUG as per below, log output is restrained when release build.

if (BuildConfig.DEBUG) android.util.Log.d(TAG, "Log output information");

Unfortunately, there are some bugs in ADT20 and earlier, and DEBUG consistent became true even in
release build in some cases. However, these bugs are fixed in ADT 21, and it's necessary to use
BuildConfig.DEBUG with ADT 21 or later.

4.8.3.5. Remove Sensitive Information from Assembly

If you build the following code with ProGuard for the purpose of deleting Log.d() method, it is
necessary to remember that ProGuard keeps the statement that construct the string for logging
message (the first line of the code) even though it remove the statement of calling Log.d() method
(the second line of the code).

 String debug_info = String.format("%s:%s", "Sensitive information1", "Sensitive information2");
 if (BuildConfig.DEBUG) android.util.Log.d(TAG, debug_info);

The following disassembly shows the result of release build of the code above with ProGuard.
Actually, there's no Log.d() call process, but you can see that character string consistence definition
like "Sensitive information1" and calling process of String#format() method, are not deleted and still
remaining there.

 const-string v1, "%s:%s"
 const/4 v2, 0x2
 new-array v2, v2, [Ljava/lang/Object;
 const/4 v3, 0x0
 const-string v4, "Sensitive information 1"
 aput-object v4, v2, v3
 const/4 v3, 0x1
 const-string v4, "Sensitive information 2"
 aput-object v4, v2, v3
 invoke-static {v1, v2}, Ljava/lang/String;->format(Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/String;

280 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 move-result-object v0

Actually, it's not easy to find the particular part that disassembled APK file and assembled log output
information as above. However, in some application which handles the very confidential information,
this type of process should not be remained in APK file in some cases.

You should implement your application like below to avoid such a consequence of remaining the
sensitive information in bytecode. In release build, the following codes are deleted completely by the
compiler optimization. However, you have to use BuildConfig.DEBUG with ADT 21 or later (Please
refer to "4.8.3.4 BuildConfig.DEBUG Should Be Used in ADT 21").

 if (BuildConfig.DEBUG) {
 String debug_info = String.format("%s:%s", " Snsitive information 1", "Sensitive information 2");
 if (BuildConfig.DEBUG) android.util.Log.d(TAG, debug_info);
 }

Besides, ProGuard cannot remove the log message of the following code ("result:" + value).

 Log.d(TAG, "result:" + value);

In this case, you can solve the problem in the following manner.

 if (BuildConfig.DEBUG) Log.d(TAG, "result:" + value);

4.8.3.6. The Contents of Intent Is Output to LogCat

When using Activity, it's necessary to pay attention, since ActivityManager outputs the content of
Intent to LogCat. Refer to "4.1.3.5 Log Output When using Activities."

4.8.3.7. Restrain Log which Is Output to System.out/err

System.out/err method outputs all messages to LogCat. Android could send some messages to
System.out/err even if developers did not use these methods in their code, for example, in the
following cases, Android sends stack trace to System.err method.

 When using Exception#printStackTrace()
 When it's output to System.err implicitly

(When the exception is not caught by application, it's given to Exception#printStackTrace() by the
system.)

You should handle errors and exceptions appropriately since the stack trace includes the unique
information of the application.

We introduce a way of changing default output destination of System.out/err. The following code
redirects the output of System.out/err method to nowhere when you build a release version

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 281

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

application. However, you should consider whether this redirection does not cause a malfunction of
application or system because the code temporarily overwrites the default behavior of
System.out/err method. Furthermore, this redirection is effective only to your application and is
worthless to system processes.

OutputRedirectApplication.java
package org.jssec.android.log.outputredirection;

import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintStream;

import android.app.Application;

public class OutputRedirectApplication extends Application {

 // PrintStream which is not output anywhere
 private final PrintStream emptyStream = new PrintStream(new OutputStream() {
 public void write(int oneByte) throws IOException {
 // do nothing
 }
 });

 @Override
 public void onCreate() {
 // Redirect System.out/err to PrintStream which doesn't output anywhere, when release build.

 // Save original stream of System.out/err
 PrintStream savedOut = System.out;
 PrintStream savedErr = System.err;

 // Once, redirect System.out/err to PrintStream which doesn't output anywhere
 System.setOut(emptyStream);
 System.setErr(emptyStream);

 // Restore the original stream only when debugging. (In release build, the following 1 line is deleted byProGu
ard.)
 resetStreams(savedOut, savedErr);
 }

 // All of the following methods are deleted byProGuard when release.
 private void resetStreams(PrintStream savedOut, PrintStream savedErr) {
 System.setOut(savedOut);
 System.setErr(savedErr);
 }
}

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.log.outputredirection"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="8" />

 <application

282 All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:name=".OutputRedirectApplication" >
 <activity
 android:name=".LogActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

project.properties
ProGuard
proguard.config=proguard-project.txt

proguard-project.txt
Prevent from changing class name and method name, etc
-dontobfuscate

In release build, delete call from Log.d()/v() automatically.
-assumenosideeffects class android.util.Log {
 public static int d(...);
 public static int v(...);
}

In release build, delete resetStreams() automatically.
-assumenosideeffects class org.jssec.android.log.outputredirection.OutputRedirectApplication {
 private void resetStreams(...);
}

The difference of LogCat output between development version application (debug build) and release
version application (release build) are shown as per below Figure 4.8-3.

Figure 4.8-3 Difference of System.out/err in LogCat output,
between development application and release application

Development version application (Debug build) Release version application (Release build)

All rights reserved © Japan Smartphone Security Association. Outputting Log to LogCat 283

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.9. Using WebView

WebView enables your application to integrate HTML/JavaScript content.

4.9.1. Sample Code

We need to take proper action, depending on what we'd like to show through WebView although we
can easily show web site and html file by it. And also we need to consider risk from WebView's
remarkable function; such as JavaScript-Java object bind.

Especially what we need to pay attention is JavaScript. (Please note that JavaScript is disabled as
default. And we can enable it by WebSettings#setJavaScriptEnabled()). With enabling JavaScript,
there is potential risk that malicious third party can get device information and operate your device.

The following is principle for application with WebView11:

(1) You can enable JavaScript if the application uses contents which are managed in house.
(2) You should NOT enable JavaScript other than the above case.

Figure 4.9-1 shows flow chart to choose sample code according to content characteristic.

11Strictly speaking, you can enable JavaScript if we can say the content is safe. If the contents are
managed in house, the contents should be guaranteed of security. And the company can secure them.
In other words, we need to have business representation’s decision to enable JavaScript for other
company’s contents. The contents which are developed by trusted partner might have security
guarantee. But there is still potential risk. Therefore the decision is needed by responsible person.

284 All rights reserved © Japan Smartphone Security Association. Using WebView

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 4.9-1 Flow Figure to select Sample code of WebView

Start

Application only accesses to
contents stored
in the apk only?

Show contents which are managed
in-house only

Show contents stored
under assets/ and res/ in the apk

No

NoApplication only accesses to
contents which are managed

in-house onlyY?

Yes

Yes

Show untrusted contents
(Required to take proper action)

All rights reserved © Japan Smartphone Security Association. Using WebView 285

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.9.1.1. Show Only Contents Stored under assets/res Directory in the APK

You can enable JavaScript if your application shows only contents stored under assets/ and res/
directory in apk.

The following sample code shows how to use WebView to show contents stored under assets/ and
res/.

Points:
1. Disable to access files (except files under assets/ and res/ in apk).
2. You may enable JavaScript.

WebViewAssetsActivity.java
package org.jssec.webview.assets;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebSettings;
import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {
 /**
 * Show contents in assets
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 WebView webView = (WebView) findViewById(R.id.webView);
 WebSettings webSettings = webView.getSettings();

 // *** POINT 1 *** Disable to access files (except files under assets/ and res/ in this apk)
 webSettings.setAllowFileAccess(false);

 // *** POINT 2 *** Enable JavaScript (Optional)
 webSettings.setJavaScriptEnabled(true);

 // Show contents which were stored under assets/ in this apk
 webView.loadUrl("file:///android_asset/sample/index.html");
 }
}

286 All rights reserved © Japan Smartphone Security Association. Using WebView

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.9.1.2. Show Only Contents which Are Managed In-house

You can enable JavaScript to show only contents which are managed in-house only if your web
service and your Android application can take proper actions to secure both of them.

 Web service side actions:

As Figure 4.9-2 shows, your web service can only refer to contents which are managed in-house.
In addition, the web service is needed to take appropriate security action. Because there is
potential risk if contents which your web service refers to may have risk; such as malicious attack
code injection, data manipulation, etc.
Please refer to "4.9.2.1 Enable JavaScript Only If Contents Are Managed In-house (Required)."

 Android application side actions:
Using HTTPS, the application should establish network connection to your managed web service
only if the certification is trusted.

The following sample code is an activity to show contents which are managed in-house.

Figure 4.9-2 Accessible contents and Non-accessible contents from application

≡

≡
≡

≡
≡

≡

In-house services

≡

≡

Contents

Reference relationship of contents

Services which are NOT
managed IN HOUSE

Application
Access by application

Not allowed

≡

Services/Contents
in Internet

Android Device

All rights reserved © Japan Smartphone Security Association. Using WebView 287

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points:
1. Handle SSL error from WebView appropriately.
2. (Optional) Enable JavaScript of WebView.
3. Restrict URLs to HTTPS protocol only.
4. Restrict URLs to in-house.

WebViewTrustedContentsActivity.java
package org.jssec.webview.trustedcontents;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.net.http.SslCertificate;
import android.net.http.SslError;
import android.os.Bundle;
import android.webkit.SslErrorHandler;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class WebViewTrustedContentsActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 WebView webView = (WebView) findViewById(R.id.webView);

 webView.setWebViewClient(new WebViewClient() {
 @Override
 public void onReceivedSslError(WebView view,
 SslErrorHandler handler, SslError error) {
 // *** POINT 1 *** Handle SSL error from WebView appropriately
 // Show SSL error dialog.
 AlertDialog dialog = createSslErrorDialog(error);
 dialog.show();

 // *** POINT 1 *** Handle SSL error from WebView appropriately
 // Abort connection in case of SSL error
 // Since, there may be some defects in a certificate like expiration of validity,
 // or it may be man-in-the-middle attack.
 handler.cancel();
 }
 });

 // *** POINT 2 *** Enable JavaScript (optional)
 // in case to show contents which are managed in house.
 webView.getSettings().setJavaScriptEnabled(true);

 // *** POINT 3 *** Restrict URLs to HTTPS protocol only
 // *** POINT 4 *** Restrict URLs to in-house
 webView.loadUrl("https://url.to.your.contents/");
 }

 private AlertDialog createSslErrorDialog(SslError error) {
 // Error message to show in this dialog
 String errorMsg = createErrorMessage(error);
 // Handler for OK button
 DialogInterface.OnClickListener onClickOk = new DialogInterface.OnClickListener() {
 @Override

288 All rights reserved © Japan Smartphone Security Association. Using WebView

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onClick(DialogInterface dialog, int which) {
 setResult(RESULT_OK);
 }
 };
 // Create a dialog
 AlertDialog dialog = new AlertDialog.Builder(
 WebViewTrustedContentsActivity.this).setTitle("SSL connection error")
 .setMessage(errorMsg).setPositiveButton("OK", onClickOk)
 .create();
 return dialog;
 }

 private String createErrorMessage(SslError error) {
 SslCertificate cert = error.getCertificate();
 StringBuilder result = new StringBuilder()
 .append("The site's certification is NOT valid. Connection was disconnected.¥n¥nError:¥n");
 switch (error.getPrimaryError()) {
 case SslError.SSL_EXPIRED:
 result.append("The certificate is no longer valid.¥n¥nThe expiration date is ")
 .append(cert.getValidNotAfter());
 return result.toString();
 case SslError.SSL_IDMISMATCH:
 result.append("Host name doesn't match. ¥n¥nCN=")
 .append(cert.getIssuedTo().getCName());
 return result.toString();
 case SslError.SSL_NOTYETVALID:
 result.append("The certificate isn't valid yet.¥n¥nIt will be valid from ")
 .append(cert.getValidNotBefore());
 return result.toString();
 case SslError.SSL_UNTRUSTED:
 result.append("Certificate Authority which issued the certificate is not reliable.¥n¥nCertificate Authori
ty¥n")
 .append(cert.getIssuedBy().getDName());
 return result.toString();
 default:
 result.append("Unknown error occured. ");
 return result.toString();

 }
 }

}

All rights reserved © Japan Smartphone Security Association. Using WebView 289

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.9.1.3. Show Contents which Are Not Managed In-house

Don't enable JavaScript if your application shows contents which are not managed in house because
there is potential risk to access to malicious content.

The following sample code is an activity to show contents which are not managed in-house.

This sample code shows contents specified by URL which user inputs through address bar. Please
note that JavaScript is disabled and connection is aborted when SSL error occurs. The error handling
is the same as "4.9.1.2 Show Only Contents which Are Managed In-house" for the details of HTTPS
communication. Please refer to "5.4 Communicating via HTTPS" for the details also.

Points:
1. Handle SSL error from WebView appropriately.
2. Disable JavaScript of WebView.

WebViewUntrustActivity.java
package org.jssec.webview.untrust;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.graphics.Bitmap;
import android.net.http.SslCertificate;
import android.net.http.SslError;
import android.os.Bundle;
import android.view.View;
import android.webkit.SslErrorHandler;
import android.webkit.WebView;
import android.webkit.WebViewClient;
import android.widget.Button;
import android.widget.EditText;

public class WebViewUntrustActivity extends Activity {
 /*
 * Show contents which are NOT managed in-house (Sample program works as a simple browser)
 */

 private EditText textUrl;
 private Button buttonGo;
 private WebView webView;

 // Activity definition to handle any URL request
 private class WebViewUnlimitedClient extends WebViewClient {

 @Override
 public boolean shouldOverrideUrlLoading(WebView webView, String url) {
 webView.loadUrl(url);
 textUrl.setText(url);
 return true;
 }

 // Start reading Web page
 @Override

290 All rights reserved © Japan Smartphone Security Association. Using WebView

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onPageStarted(WebView webview, String url, Bitmap favicon) {
 buttonGo.setEnabled(false);
 textUrl.setText(url);
 }

 // Show SSL error dialog
 // And abort connection.
 @Override
 public void onReceivedSslError(WebView webview,
 SslErrorHandler handler, SslError error) {

 // *** POINT 1 *** Handle SSL error from WebView appropriately
 AlertDialog errorDialog = createSslErrorDialog(error);
 errorDialog.show();
 handler.cancel();
 textUrl.setText(webview.getUrl());
 buttonGo.setEnabled(true);
 }

 // After loading Web page, show the URL in EditText.
 @Override
 public void onPageFinished(WebView webview, String url) {
 textUrl.setText(url);
 buttonGo.setEnabled(true);
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 webView = (WebView) findViewById(R.id.webview);
 webView.setWebViewClient(new WebViewUnlimitedClient());

 // *** POINT 2 *** Disable JavaScript of WebView
 // Explicitly disable JavaScript even though it is disabled by default.
 webView.getSettings().setJavaScriptEnabled(false);

 webView.loadUrl(getString(R.string.texturl));
 textUrl = (EditText) findViewById(R.id.texturl);
 buttonGo = (Button) findViewById(R.id.go);
 }

 public void onClickButtonGo(View v) {
 webView.loadUrl(textUrl.getText().toString());
 }

 private AlertDialog createSslErrorDialog(SslError error) {
 // Error message to show in this dialog
 String errorMsg = createErrorMessage(error);
 // Handler for OK button
 DialogInterface.OnClickListener onClickOk = new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 setResult(RESULT_OK);
 }
 };
 // Create a dialog
 AlertDialog dialog = new AlertDialog.Builder(

All rights reserved © Japan Smartphone Security Association. Using WebView 291

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 WebViewUntrustActivity.this).setTitle("SSL connection error")
 .setMessage(errorMsg).setPositiveButton("OK", onClickOk)
 .create();
 return dialog;
 }

 private String createErrorMessage(SslError error) {
 SslCertificate cert = error.getCertificate();
 StringBuilder result = new StringBuilder()
 .append("The site's certification is NOT valid. Connection was disconnected.¥n¥nError:¥n");
 switch (error.getPrimaryError()) {
 case SslError.SSL_EXPIRED:
 result.append("The certificate is no longer valid.¥n¥nThe expiration date is ")
 .append(cert.getValidNotAfter());
 return result.toString();
 case SslError.SSL_IDMISMATCH:
 result.append("Host name doesn't match. ¥n¥nCN=")
 .append(cert.getIssuedTo().getCName());
 return result.toString();
 case SslError.SSL_NOTYETVALID:
 result.append("The certificate isn't valid yet.¥n¥nIt will be valid from ")
 .append(cert.getValidNotBefore());
 return result.toString();
 case SslError.SSL_UNTRUSTED:
 result.append("Certificate Authority which issued the certificate is not reliable.¥n¥nCertificate Authori
ty¥n")
 .append(cert.getIssuedBy().getDName());
 return result.toString();
 default:
 result.append("Unknown error occured. ");
 return result.toString();
 }
 }
}

292 All rights reserved © Japan Smartphone Security Association. Using WebView

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.9.2. Rule Book

Comply with following rule when you need to use WebView.

1. Enable JavaScript Only If Contents Are Managed In-house (Required)
2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)
3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)
4. Handle SSL Error Properly (Required)

4.9.2.1. Enable JavaScript Only If Contents Are Managed In-house (Required)

What we have to pay attention on WebView is whether we enable the JavaScript or not. As principle,
we can only enable the JavaScript only IF the application will access to services which are managed
in-house. And you must not enable the JavaScript if there is possibility to access services which are
not managed in-house.

Services managed In-house

In case that application accesses contents which are developed IN HOUSE and are distributed
through servers which are managed IN HOUSE, we can say that the contents are ONLY modified
by your company. In addition, it is also needed that each content refers to only contents stored in
the servers which have proper security.

In this scenario, we can enable JavaScript on the WebView. Please refer to "4.9.1.2 Show Only
Contents which Are Managed In-house" also.

And you can also enable JavaScript if your application shows only contents stored under assets/
and res/ directory in the apk. Please refer to "4.9.1.1 Show Only Contents Stored under
assets/res Directory" also.

Services unmanaged in-house
You must NOT think you can secure safety on contents which are NOT managed IN HOUSE.
Therefore you have to disable JavaScript. Please refer to "4.9.1.3 Show Contents which Are Not
Managed In-house."

In addition, you have to disable JavaScript if the contents are stored in external storage devices;
such as microSD because other application can modify the contents.

4.9.2.2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)

You have to use HTTPS to communicate to servers which are managed in-house because there is
potential risk of spoofing the services by malicious third party.

Please refer to both "4.9.2.4 Handle SSL Error Properly (Required)," and "5.4 Communicating via
HTTPS" .

All rights reserved © Japan Smartphone Security Association. Using WebView 293

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.9.2.3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)

Don't enable JavaScript if your application needs to show URLs which are passed from other
application as Intent, etc. Because there is potential risk to show malicious web page with malicious
JavaScript.

Sample code in the section "4.9.1.2 Show Only Contents which Are Managed In-house," uses fixed
value URL to show contents which are managed in-house, to secure safety.

If you need to show URL which is received from Intent, etc, you have to confirm that URL is in
managed URL in-house. In short, the application has to check URL with white list which is regular
expression, etc. In addition, it should be HTTPS.

4.9.2.4. Handle SSL Error Properly (Required)

You have to terminate the network communication and inform error notice to user when SSL error
happens on HTTPS communication.

SSL error shows invalid server certification risk or MTIM (man-in-the-middle attack) risk. Please note
that WebView has NO error notice mechanism regarding SSL error. Therefore your application has to
show the error notice to inform the risk to the user. Please refer to sample code in the section of
"4.9.1.2 Show Only Contents which Are Managed In-house," and "4.9.1.3 Show Contents which Are
Not Managed In-house".

In addition, your application MUST terminate the communication with the error notice.
In other words, you MUST NOT do following.

 Ignore the error to keep the transaction with the service.
 Retry HTTP communication instead of HTTPS.

Please refer to the detail described in "5.4 Communicating via HTTPS".

WebView's default behavior is to terminate the communication in case of SSL error. Therefore what
we need to add is to show SSL error notice. And then we can handle SSL error properly.

294 All rights reserved © Japan Smartphone Security Association. Using WebView

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5. How to use Security Functions

There are various security functions prepared in Android, like encryption, digital signature and
permission etc. If these security functions are not used correctly, security functions don't work
efficiently and loophole will be prepared. This chapter will explain how to use the security functions
properly.

5.1. Creating Password Input Screens

5.1.1. Sample Code

When creating password input screen, some points to be considered in terms of security, are
described here. Only what is related to password input is mentioned, here. Regarding how to save
password, another articles is planned to be published is future edition.

Figure 5.1-1

Points:
1. The input password should be mask displayed (Display with *)
2. Provide the option to display the password in a plain text.
3. Alert a user that displaying password in a plain text has a risk.

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 295

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points: When handling the last Input password, pay attention the following points along with the
above points.
4. In the case there is the last input password in an initial display, display the fixed digit numbers of

black dot as dummy in order not that the digits number of last password is guessed.
5. When the dummy password is displayed and the "Show password" button is pressed, clear the

last input password and provide the state for new password input.
6. When last input password is displayed with dummy, in case user tries to input password, clear

the last input password and treat new user input as a new password.

password_activity.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
 android:padding="10dp" >

 <!-- Label for password item -->
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/password" />

 <!-- Label for password item -->
 <!-- *** POINT 1 *** The input password must be masked (Display with black dot) -->
 <EditText
 android:id="@+id/password_edit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="@string/hint_password"
 android:password="true" />

 <!-- *** POINT 2 *** Provide the option to display the password in a plain text -->
 <CheckBox
 android:id="@+id/password_display_check"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/display_password" />

 <!-- *** POINT 3 *** Alert a user that displaying password in a plain text has a risk. -->
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/alert_password" />

 <!-- Cancel/OK button -->
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="50dp"
 android:gravity="center"
 android:orientation="horizontal" >

 <Button
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"

296 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 android:onClick="onClickCancelButton"
 android:text="@android:string/cancel" />

 <Button
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:onClick="onClickOkButton"
 android:text="@android:string/ok" />
 </LinearLayout>
</LinearLayout>

Implementation for 3 methods which are located at the bottom of PasswordActivity.java, should be
adjusted depends on the purposes.

 private String getPreviousPassword()
 private void onClickCancelButton(View view)
 private void onClickOkButton(View view)

PasswordActivity.java
package org.jssec.android.password.passwordinputui;

import android.app.Activity;
import android.os.Bundle;
import android.text.Editable;
import android.text.InputType;
import android.text.TextWatcher;
import android.view.View;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.CompoundButton.OnCheckedChangeListener;
import android.widget.EditText;
import android.widget.Toast;

public class PasswordActivity extends Activity {

 // Key to save the state
 private static final String KEY_DUMMY_PASSWORD = "KEY_DUMMY_PASSWORD";

 // View inside Activity
 private EditText mPasswordEdit;
 private CheckBox mPasswordDisplayCheck;

 // Flag to show whether password is dummy display or not
 private boolean mIsDummyPassword;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.password_activity);

 // Get View
 mPasswordEdit = (EditText) findViewById(R.id.password_edit);
 mPasswordDisplayCheck = (CheckBox) findViewById(R.id.password_display_check);

 // Whether last Input password exist or not.

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 297

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (getPreviousPassword() != null) {
 // *** POINT 4 *** In the case there is the last input password in an initial display,
 // display the fixed digit numbers of black dot as dummy in order not that the digits number of last passw
ord is guessed.

 // Display should be dummy password.
 mPasswordEdit.setText("**********");
 // To clear the dummy password when inputting password, set text change listener.
 mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());
 // Set dummy password flag
 mIsDummyPassword = true;
 }

 // Set a listner to change check state of password display option.
 mPasswordDisplayCheck
 .setOnCheckedChangeListener(new OnPasswordDisplayCheckedChangeListener());
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.
 // Save Activity state
 outState.putBoolean(KEY_DUMMY_PASSWORD, mIsDummyPassword);
 }

 @Override
 public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.
 // Restore Activity state
 mIsDummyPassword = savedInstanceState.getBoolean(KEY_DUMMY_PASSWORD);
 }

 /**
 * Process in case password is input
 */
 private class PasswordEditTextWatcher implements TextWatcher {

 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) {
 // Not used
 }

 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 // *** POINT 6 *** When last Input password is displayed as dummy, in the case an user tries to input pass
word,
 // Clear the last Input password, and treat new user input as new password.
 if (mIsDummyPassword) {
 // Set dummy password flag
 mIsDummyPassword = false;
 // Trim space
 CharSequence work = s.subSequence(start, start + count);
 mPasswordEdit.setText(work);
 // Cursor position goes back the beginning, so bring it at the end.
 mPasswordEdit.setSelection(work.length());
 }

298 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 public void afterTextChanged(Editable s) {
 // Not used
 }

 }

 /**
 * Process when check of password display option is changed.
 */
 private class OnPasswordDisplayCheckedChangeListener implements
 OnCheckedChangeListener {

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 // *** POINT 5 *** When the dummy password is displayed and the "Show password" button is pressed,
 // clear the last input password and provide the state for new password input.
 if (mIsDummyPassword && isChecked) {
 // Set dummy password flag
 mIsDummyPassword = false;
 // Set password empty
 mPasswordEdit.setText(null);
 }

 // Cursor position goes back the beginning, so memorize the current cursor position.
 int pos = mPasswordEdit.getSelectionStart();

 // *** POINT 2 *** Provide the option to display the password in a plain text
 // Create InputType
 int type = InputType.TYPE_CLASS_TEXT;
 if (isChecked) {
 // Plain display when check is ON.
 type |= InputType.TYPE_TEXT_VARIATION_VISIBLE_PASSWORD;
 } else {
 // Masked display when check is OFF.
 type |= InputType.TYPE_TEXT_VARIATION_PASSWORD;
 }

 // Set InputType to password EditText
 mPasswordEdit.setInputType(type);

 // Set cursor position
 mPasswordEdit.setSelection(pos);
 }

 }

 // Implement the following method depends on application

 /**
 * Get the last Input password
 *
 * @return Last Input password
 */
 private String getPreviousPassword() {
 // When need to restore the saved password, return password character string
 // For the case password is not saved, return null
 return "hirake5ma";
 }

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 299

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 /**
 * Process when cancel button is clicked
 *
 * @param view
 */
 public void onClickCancelButton(View view) {
 // Close Activity
 finish();
 }

 /**
 * Process when OK button is clicked
 *
 * @param view
 */
 public void onClickOkButton(View view) {
 // Execute necessary processes like saving password or using for authentication

 String password = null;

 if (mIsDummyPassword) {
 // When dummy password is displayed till the final moment, grant last iInput password as fixed password.
 password = getPreviousPassword();
 } else {
 // In case of not dummy password display, grant the user input password as fixed password.
 password = mPasswordEdit.getText().toString();
 }

 // Display password by Toast
 Toast.makeText(this, "password is ¥"" + password + "¥"",
 Toast.LENGTH_SHORT).show();

 // Close Activity
 finish();
 }
}

300 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.1.2. Rule Book

Follow the below rules when creating password input screen.

1. Provide the Mask Display Feature, If the Password Is Entered (Required)
2. Provide the Option to Display Password in a Plain Text (Required)
3. Mask the Password when Activity Is Launched (Required)
4. When Displaying the Last Input Password, Dummy Password Must Be Displayed (Required)

5.1.2.1. Provide the Mask Display Feature, If the Password Is Entered (Required)

Smartphone is often used in crowded places like in a train or in a bus, and the risk that password is
peeked by someone. So the function to mask display password is necessary as an application spec.

There are 2 methods to mask display EditText which password is input, one is to specify by layout
XML statically and another is to switch in a program dynamically. The former one can be achieved by
setting android:password="true" to android:password attribute by EditText tab in layout XML. The
latter one can be achieved by adding InputType.TYPE_TEXT_VARIATION_PASSWORD in input type of
EditText, by setInputType() method of EditText class.

Sample code of each of them is shown below.

Method to specify in layout XML.
password_activity.xml
 <!—Password input item -->
 <!—Set true for the android:password attribute -->
 <EditText
 android:id="@+id/password_edit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="@string/hint_password"
 android:password="true" />

Method to specify in Activity.
PasswordActivity.java
 // Set password display type
 // Set TYPE_TEXT_VARIATION_PASSWORD for InputType.
 EditText passwordEdit = (EditText) findViewById(R.id.password_edit);
 int type = InputType.TYPE_CLASS_TEXT
 | InputType.TYPE_TEXT_VARIATION_PASSWORD;
 passwordEdit.setInputType(type);

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 301

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.1.2.2. Provide the Option to Display Password in a Plain Text (Required)

Password input in Smartphone is done by touch panel input, so compared with keyboard input in PC,
miss input may be easily happened. Because of the inconvenience of inputting, user may use the
simple password, and it makes more dangerous. In addition, when there's a policy like account is
locked due the several times of password input failure, it's necessary to avoid from miss input as
much as possible. As a solution of these problems, by preparing an option to display password in a
plain text, user can use the safe password.

However, when displaying password in a plain text, it may be sniffed, so when using this option. It's
necessary to call user cautions for sniffing from behind. In addition, in case option to display in a
plain text is implemented, it's also necessary to prepare the system to auto cancel the plain text
display like setting the time of plain display. The restrictions for password plain text display are
published in another article in future edition. So, the restrictions for password plain text display are
not included in sample code.

Figure 5.1-2

By specifying InputType of EditText, mask display and plain text display can be switched.

PasswordActivity.java
 /**
 * Process when check of password display option is changed.
 */
 private class OnPasswordDisplayCheckedChangeListener implements
 OnCheckedChangeListener {

Show check ON

302 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 // *** POINT 5 *** When the dummy password is displayed and the "Show password" button is pressed,
 // Clear the last input password and provide the state for new password input.
 if (mIsDummyPassword && isChecked) {
 // Set dummy password flag
 mIsDummyPassword = false;
 // Set password empty
 mPasswordEdit.setText(null);
 }

 // Cursor position goes back the beginning, so memorize the current cursor position.
 int pos = mPasswordEdit.getSelectionStart();

 // *** POINT 2 *** Provide the option to display the password in a plain text
 // Create InputType
 int type = InputType.TYPE_CLASS_TEXT;
 if (isChecked) {
 // Plain display when check is ON.
 type |= InputType.TYPE_TEXT_VARIATION_VISIBLE_PASSWORD;
 } else {
 // Masked display when check is OFF.
 type |= InputType.TYPE_TEXT_VARIATION_PASSWORD;
 }

 // Set InputType to password EditText
 mPasswordEdit.setInputType(type);

 // Set cursor position
 mPasswordEdit.setSelection(pos);
 }

 }

5.1.2.3. Mask the Password when Activity Is Launched (Required)

To prevent it from a password peeping out, the default value of password display option, should be
set OFF, when Activity is launched. The default value should be always defined as safer side,
basically.

5.1.2.4. When Displaying the Last Input Password, Dummy Password Must Be Displayed(Required)

When specifying the last input password, not to give the third party any hints for password, it should
be displayed as dummy with the fixed digits number of mask characters (* etc). In addition, in the
case pressing "Show password" when dummy display, clear password and switch to plain text display
mode. It can help to suppress the risk that the last input password is sniffed low, even if the device is
passed to a third person like when it's stolen. FYI, In case of dummy display and when a user tries to
input password, dummy display should be cancelled, it necessary to turn the normal input state.

When displaying the last Input password, display dummy password.
PasswordActivity.java
 @Override

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 303

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.password_activity);

 // Get View
 mPasswordEdit = (EditText) findViewById(R.id.password_edit);
 mPasswordDisplayCheck = (CheckBox) findViewById(R.id.password_display_check);

 // Whether last Input password exist or not.
 if (getPreviousPassword() != null) {
 // *** POINT 4 *** In the case there is the last input password in an initial display,
 // display the fixed digit numbers of black dot as dummy in order not that the digits number of last
password is guessed.

 // Display should be dummy password.
 mPasswordEdit.setText("**********");
 // To clear the dummy password when inputting password, set text change listener.
 mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());
 // Set dummy password flag
 mIsDummyPassword = true;
 }

 - Abbreviation -

 }

 /**
 * Get the last input password.
 *
 * @return the last input password
 */
 private String getPreviousPassword() {
 // To restore the saved password, return the password character string.
 // For the case password is not saved, return null.
 return "hirake5ma";
 }

In the case of dummy display, when password display option is turned ON, clear the displayed
contents.

PasswordActivity.java
 /**
 * Process when check of password display option is changed.
 */
 private class OnPasswordDisplayCheckedChangeListener implements
 OnCheckedChangeListener {

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 // *** POINT 5 *** When the dummy password is displayed and the "Show password" button is pressed,
 // Clear the last input password and provide the state for new password input.
 if (mIsDummyPassword && isChecked) {
 // Set dummy password flag
 mIsDummyPassword = false;
 // Set password empty
 mPasswordEdit.setText(null);
 }

304 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 - Abbreviation -

 }

 }

In case of dummy display, when user tries to input password, clear dummy display.

PasswordActivity.java
 // Key to save the state
 private static final String KEY_DUMMY_PASSWORD = "KEY_DUMMY_PASSWORD";

 - Abbreviation -

 // Flag to show whether password is dummy display or not.
 private boolean mIsDummyPassword;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 - Abbreviation -

 // Whether last Input password exist or not.
 if (getPreviousPassword() != null) {
 // *** POINT 4 *** In the case there is the last input password in an initial display,
 // display the fixed digit numbers of black dot as dummy in order not that the digits number of last passw
ord is guessed.

 // Display should be dummy password.
 mPasswordEdit.setText("**********");
 // To clear the dummy password when inputting password, set text change listener.
 mPasswordEdit.addTextChangedListener(new PasswordEditTextWatcher());
 // Set dummy password flag
 mIsDummyPassword = true;
 }

 - Abbreviation -

 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.
 // Save Activity state
 outState.putBoolean(KEY_DUMMY_PASSWORD, mIsDummyPassword);
 }

 @Override
 public void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);

 // Unnecessary when specifying not to regenerate Activity by the change in screen aspect ratio.
 // Restore Activity state
 mIsDummyPassword = savedInstanceState.getBoolean(KEY_DUMMY_PASSWORD);
 }

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 305

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 /**
 * Process when inputting password.
 */
 private class PasswordEditTextWatcher implements TextWatcher {

 public void beforeTextChanged(CharSequence s, int start, int count,
 int after) {
 // Not used
 }

 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 // *** POINT 6 *** When last Input password is displayed as dummy, in the case an user tries to input pass
word,
 // Clear the last Input password, and treat new user input as new password.
 if (mIsDummyPassword) {
 // Set dummy password flag
 mIsDummyPassword = false;
 // Trim space
 CharSequence work = s.subSequence(start, start + count);
 mPasswordEdit.setText(work);
 // Cursor position goes back the beginning, so bring it at the end.
 mPasswordEdit.setSelection(work.length());
 }
 }

 public void afterTextChanged(Editable s) {
 // Not used
 }

 }

306 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.1.3. Advanced Topics

5.1.3.1. Login Process

The representative example of where password input is required is login process. Here are some
Points that need cautions in Login process.

Error message when login fail

In login process, need to input 2 information which is ID(account) and password. When login
failure, there are 2 cases. One is ID doesn't exist. Another is ID exists but password is incorrect.
If either of these 2 cases is distinguished and displayed in a login failure message, attackers can
guess whether the specified ID exists or not. To stop this kind of guess, these 2 cases should not
be specified in login failure message, and this message should be displayed as per below.

Message example: Login ID or password is incorrect.

Auto Login function
There is a function to perform auto login by omitting login ID/password input in the next time
and later, after successful login process has been completed once. Auto login function can omit
the complicated input. So the convenience will increase, but on the other hand, when a
Smartphone is stolen, the risk which is maliciously being used by the third party, will follow.

Only the use when damages caused by the malicious third party is somehow acceptable, or only
in the case enough security measures can be taken, auto login function can be used. For example,
in the case of online banking application, when the device is operated by the third party, financial
damage may be caused. So in this case, security measures are necessary along with auto login
function. There are some possible counter-measures, like [Require re-inputting password just
before financial process like payment process occurs], [When setting auto login, call a user for
enough attentions and prompt user to secure device lock], etc. When using auto login, it's
necessary to investigate carefully considering the convenience and risks along with the assumed
counter measures.

5.1.3.2. Changing Password

When changing the password which was once set, following input items should be prepared on the
screen.

 Current password
 New password
 New password(for input validation)

When auto login function is introduced, there are possibilities that third party can use an application.
In that case, to avoid from changing password unexpectedly, it's necessary to require the current
password input. In addition, to decrease the risk of getting into unserviceable state due to miss

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 307

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

inputting new password, it's necessary to require new password input 2 times.

5.1.3.3. Regarding "Make passwords visible" Setting

There is a setting in Android's setting menu, called "Make passwords visible." In case of Android 4.4,
it's shown as below.

Setting > Security > Make passwords visible

Figure 5.1-3

When turning ON "Make passwords visible" setting, the last input character is displayed in a plain text.
After the certain time (about 2 seconds) passed, or after inputting the next character, the characters
which was displayed in a plain text is masked. When turning OFF, it's masked right after inputting.
This setting affects overall system, and it's applied to all applications which use password display
function of EditText.

308 All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.1-4

After certain time
or

next character
input

All rights reserved © Japan Smartphone Security Association. Creating Password Input Screens 309

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.2. Permission and Protection Level

There are four types of Protection Level within permission and they consist of normal, dangerous,
signature, and signatureOrSystem. Depending on the Protection Level, permission is referred to as
normal permission, dangerous permission, signature permission, or signatureOrSystem permission.
In the following sections, such names are used.

5.2.1. Sample Code

5.2.1.1. How to Use System Permissions of Android OS

Android OS has a security mechanism called "permission" that protects its user's assets such as
contacts and a GPS feature from a malware. When an application seeks access to such information
and/or features, which are protected under Android OS, the application needs to explicitly declare a
permission in order to access them. When an application, which has declared a permission that needs
user's consent to be used, is installed, the following confirmation screen appears.

Figure 5.2-1

From this confirmation screen, a user is able to know which types of features and/or information an
application is trying to access. If the behavior of an application is trying to access features and/or
information that are clearly unnecessary, then there is a high possibility that the application is a
malware. Hence, as your application is not suspected to be a malware, declarations of permission to
use needs to be minimized.

310 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points:
1. Declare a permission used in an application with uses-permission.
2. Do not declare any unnecessary permissions with uses-permission.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.permission.usespermission"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 1 *** Declare a permission used in an application with uses-permission -->
 <!-- Permission to access Internet -->
 <uses-permission android:name="android.permission.INTERNET"/>

 <!-- *** POINT 2 *** Do not declare any unnecessary permissions with uses-permission -->
 <!-- If declaring to use Permission that is unnecessary for application behaviors, it gives users a sense of dist
rust. -->

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 311

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.2.1.2. How to Communicate Between In-house Applications with In-house-defined Signature
Permission

Besides system permissions defined by Android OS, an application can define its own permissions as
well. If using an in-house-defined permission (it is an in-house-defined signature permission to be
more precise), you can build a mechanism where only communications between in-house
applications is permitted. By providing the composite function based on inter-application
communication between multiple in-house applications, the applications get more attractive and
your business could get more profitable by selling them as series. It is a case of using
in-house-defined signature permission.

The sample application "In-house-defined Signature Permission (UserApp)" launchs the sample
application "In-house-defined Signature Permission (ProtectedApp)" with Context.startActivity()
method. Both applications need to be signed with the same developer key. If keys for signing them
are different, the UserApp sends no Intent to the ProtectedApp, and the ProtectedApp processes no
Intent received from the UserApp. Furthermore, it prevents malwares from circumventing your own
signature permission using the matter related to the installation order as explained in the Advanced
section.

Figure 5.2-2

Points: Application Providing Component
1. Define a permission with protectionLevel="signature".
2. For a component, enforce the permission with its permission attribute.
3. If the component is an activity, you must define no intent-filter.
4. At run time, verify if the signature permission is defined by itself on the program code.
5. When exporting an APK from Eclipse, sign the APK with the same developer key that applications

using the component use.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.permission.protectedapp"
 android:versionCode="1"
 android:versionName="1.0" >

Application that uses component Application provided component

312 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 1 *** Define a permission with protectionLevel="signature" -->
 <permission
 android:name="org.jssec.android.permission.protectedapp.MY_PERMISSION"
 android:protectionLevel="signature" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- *** POINT 2 *** For a component, enforce the permission with its permission attribute -->
 <activity
 android:name=".ProtectedActivity"
 android:exported="true"
 android:label="@string/app_name"
 android:permission="org.jssec.android.permission.protectedapp.MY_PERMISSION" >

 <!-- *** POINT 3 *** If the component is an activity, you must define no intent-filter -->
 </activity>
 </application>
</manifest>

ProtectedActivity.java
package org.jssec.android.permission.protectedapp;

import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.widget.TextView;

public class ProtectedActivity extends Activity {

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.permission.protectedapp.MY_PERMISSION";

 // Hash value of in-house certificate
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" of debug.keystore
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" of keystore
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 private TextView mMessageView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 313

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 setContentView(R.layout.main);
 mMessageView = (TextView) findViewById(R.id.messageView);

 // *** POINT 4 *** At run time, verify if the signature permission is defined by itself on the program code
 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 mMessageView.setText("In-house defined signature permission is not defined by in-house application.");
 return;
 }

 // *** POINT 4 *** Continue processing only when the certificate matches
 mMessageView.setText("In-house-defined signature permission is defined by in-house application, was confirmed
.");
 }
}

SigPerm.java
package org.jssec.android.shared;

import android.content.Context;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.PermissionInfo;

public class SigPerm {

 public static boolean test(Context ctx, String sigPermName, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, sigPermName));
 }

 public static String hash(Context ctx, String sigPermName) {
 if (sigPermName == null) return null;
 try {
 // Get the package name of the application which declares a permission named sigPermName.
 PackageManager pm = ctx.getPackageManager();
 PermissionInfo pi;
 pi = pm.getPermissionInfo(sigPermName, PackageManager.GET_META_DATA);
 String pkgname = pi.packageName;

 // Fail if the permission named sigPermName is not a Signature Permission
 if (pi.protectionLevel != PermissionInfo.PROTECTION_SIGNATURE) return null;

 // Return the certificate hash value of the application which declares a permission named sigPermName.
 return PkgCert.hash(ctx, pkgname);

 } catch (NameNotFoundException e) {
 return null;
 }
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

314 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 315

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 5 *** When exporting an APK from Eclipse, sign the APK with the same developer key that
applications using the component have used.

Figure 5.2-3

Points:Application Using Component
6. The same signature permission that the application uses must not be defined.
7. Declare the in-house permission with uses-permission tag.
8. Verify if the in-house signature permission is defined by the application that provides the

component on the program code.
9. Verify if the destination application is an in-house application.
10. Use an explicit intent when the destination component is an activity.
11. When exporting an APK from Eclipse, sign the APK with the same developer key that the

destination application uses.

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.permission.userapp"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="8" />

 <!-- *** POINT 6 *** The same signature permission that the application uses must not be defined -->

 <!-- *** POINT 7 *** Declare the in-house permission with uses-permission tag -->
 <uses-permission
 android:name="org.jssec.android.permission.protectedapp.MY_PERMISSION" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".UserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

316 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 </application>
</manifest>

UserActivity.java
package org.jssec.android.permission.userapp;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.SigPerm;
import org.jssec.android.shared.Utils;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class UserActivity extends Activity {

 // Requested (Destination) application's Activity information
 private static final String TARGET_PACKAGE = "org.jssec.android.permission.protectedapp";
 private static final String TARGET_ACTIVITY = "org.jssec.android.permission.protectedapp.ProtectedActivity";

 // In-house Signature Permission
 private static final String MY_PERMISSION = "org.jssec.android.permission.protectedapp.MY_PERMISSION";

 // Hash value of in-house certificate
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" of debug.keystore.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" of keystore.
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onSendButtonClicked(View view) {

 // *** POINT 8 *** Verify if the in-house signature permission is defined by the application that provides the
 component on the program code.

 if (!SigPerm.test(this, MY_PERMISSION, myCertHash(this))) {
 Toast.makeText(this, "In-house-defined signature permission is not defined by In house application.", Toa
st.LENGTH_LONG).show();
 return;
 }

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 317

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 9 *** Verify if the destination application is an in-house application.
 if (!PkgCert.test(this, TARGET_PACKAGE, myCertHash(this))) {
 Toast.makeText(this, "Requested (Destination) application is not in-house application.", Toast.LENGTH_LON
G).show();
 return;
 }

 // *** POINT 10 *** Use an explicit intent when the destination component is an activity.
 try {
 Intent intent = new Intent();
 intent.setClassName(TARGET_PACKAGE, TARGET_ACTIVITY);
 startActivity(intent);
 } catch(Exception e) {
 Toast.makeText(this,
 String.format("Exception occurs:%s", e.getMessage()),
 Toast.LENGTH_LONG).show();
 }
 }
}

PkgCertWhitelists.java
package org.jssec.android.shared;

import java.util.HashMap;
import java.util.Map;

import android.content.Context;

public class PkgCertWhitelists {
 private Map<String, String> mWhitelists = new HashMap<String, String>();

 public boolean add(String pkgname, String sha256) {
 if (pkgname == null) return false;
 if (sha256 == null) return false;

 sha256 = sha256.replaceAll(" ", "");
 if (sha256.length() != 64) return false; // SHA-256 -> 32 bytes -> 64 chars
 sha256 = sha256.toUpperCase();
 if (sha256.replaceAll("[0-9A-F]+", "").length() != 0) return false; // found non hex char

 mWhitelists.put(pkgname, sha256);
 return true;
 }

 public boolean test(Context ctx, String pkgname) {
 // Get the correct hash value which corresponds to pkgname.
 String correctHash = mWhitelists.get(pkgname);

 // Compare the actual hash value of pkgname with the correct hash value.
 return PkgCert.test(ctx, pkgname, correctHash);
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;

318 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 319

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

*** Point 11 *** When exporting an APK from Eclipse, sign the APK with the same developer key that
the destination application uses.

Figure 5.2-4

320 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.2.1.3. How to Verify the Hash Value of an Application's Certificate

We will provide an explanation on how to verify the hash value of an application's certificate that
appears at different points in this Guidebook. Strictly speaking, the hash value means "the SHA256
hash value of the public key certificate for the developer key used to sign the APK."

How to verify it with Keytool

Using a program called keytool that is bundled with JDK, you can get the hash value (also known
as certificate fingerprint) of a public key certificate for the developer key. There are various hash
methods such as MD5, SHA1, and SHA256 due to the differences in hash algorithm. However,
considering the security strength of the encryption bit length, this Guidebook recommends the
use of SHA256. Unfortunately, the keytool bundled to JDK6 that is used in Android SDK does not
support SHA256 for calculating hash values. Therefore, it is necessary to use the keytool that is
bundled to JDK7.

Example of outputting the content of a debugging certicate of an Android through a keytool
> keytool -list -v -keystore < keystore file > -storepass < password >

Type of keystore: JKS
Keystore provider: SUN

One entry is included in a keystore

Other name: androiddebugkey
Date of creation: 2012/01/11
Entry type: PrivateKeyEntry
Length of certificate chain: 1
Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4f0cef98
Start date of validity period: Wed Jan 11 11:10:32 JST 2012 End date: Fri Jan 03 11:10:32 JST 2042
Certificate fingerprint:
 MD5: 9E:89:53:18:06:B2:E3:AC:B4:24:CD:6A:56:BF:1E:A1
 SHA1: A8:1E:5D:E5:68:24:FD:F6:F1:ED:2F:C3:6E:0F:09:A3:07:F8:5C:0C
 SHA256: FB:75:E9:B9:2E:9E:6B:4D:AB:3F:94:B2:EC:A1:F0:33:09:74:D8:7A:CF:42:58:22:A2:56:85:1B:0F:85:C6:35
 Signatrue algorithm name: SHA1withRSA
 Version: 3

How to Verify it with JSSEC Certificate Hash Value Checker

Without installing JDK7, you can easily verify the certificate hash value by using JSSEC Certificate
Hash Value Checker.

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 321

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.2-5

This is an Android application that displays a list of certificate hash values of applications which
are installed in the device. In the Figure above, the 64-character hexadecimal notation string that
is shown on the right of "sha-256" is the certificate hash value. The sample code folder, "JSSEC
CertHash Checker" that comes with this Guidebook is the set of source codes. If you would like,
you can compile the codes and use it.

322 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.2.2. Rule Book

Be sure to follow the rules below when using in-house permission.

1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets

 (Required)
2. Your Own Dangerous Permission Must Not Be Used (Required)
3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application

 (Required)
4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application

 (Required)
5. Your Own Normal Permission Should Not Be Used (Recommended)
6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of

Application (Recommended)

5.2.2.1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets
 (Required)

Since the use of your own dangerous permission is not recommended (please refer to "5.2.2.2 Your
Own Dangerous Permission Must Not Be Used (Required)", we will proceed on the premise of using
system dangerous permission of Android OS.

Unlike the other three types of permissions, dangerous permission has a feature that requires the
user's consent to the grant of the permission to the application. When installing an application on a
device that has declared a dangerous permission to use, the following screen will be displayed.
Subsequently, the user is able to know what level of permission (dangerous permission and normal
permission) the application is trying to use. When the user taps "install," the application will be
granted the permission and then it will be installed.

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 323

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.2-6

An application can handle user assets and assets that the developer wants to protect. We must be
aware that dangerous permission can protect only user assets because the user is just who the
granting of permission is entrusted to. On the other hand, assets that the developer wants to protect
cannot be protected by the method above.

For example, suppose that an application has a Component that communicates only with an
In-house application, it doesn't permit the access to the Component from any applications of the
other companies, and it is implemented that it's protected by dangerous permission. When a user
grants permission to an application of another company based on the user's judgment, in-house
assets that need to be protected may be exploited by the application granted. In order to provide
protection for in-house assets in such cases, we recommend the usage of in-house-defined
signature permission.

5.2.2.2. Your Own Dangerous Permission Must Not Be Used (Required)

Even when in-house-defined Dangerous Permission is used, the screen prompt "Asking for the
Allowance of Permission from User" is not displayed in some cases. This means that at times the
feature that asks for permission based on the judgment of a user, which is the characteristic of
Dangerous Permission, does not function. Accordingly, the Guidebook will make the rule "In-house
-defined dangerous permission must not be used."

In order to explain it, we assume two types of applications. The first type of application defines a
in-house dangerous permission, and it is an application that makes a Component, which is protected
by this permission, public. We call this ProtectedApp. The other is another application which we call
AttackerApp and it tries to exploit the Component of ProtectedApp. Also we assume that the

324 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

AttackerApp not only declares the permission to use it, but also defines the same permission.

AttackerApp can use the Component of a ProtectedApp without the consent of a user in the following
cases:

1. When the user installs the AttackerApp, the installation will be completed without the screen

prompt that asks for the user to grant the application the dangerous permission.
2. Similarly, when the user installs the ProtectedApp, the installation will be completed without any

special warnings.
3. When the user launches the AttackerApp afterwards, the AttackerApp can access the Component

of the ProtectedApp without being detected by the user, which can potentially lead to damage.

The cause of this case is explained in the following. When the user tries to install the AttackerApp
first, the permission that has been declared for usage with uses-permission is not defined on the
particular device yet. Finding no error, Android OS will continue the installation. Since the user
consent for dangerous permission is required only at the time of installation, an application that has
already been installed will be handled as if it has been granted permission. Accordingly, if the
Component of an application which is installed later is protected with the dangerous permission of
the same name, the application which was installed beforehand without the user permission will be
able to exploit the Component.

Furthermore, since the existence of system dangerous permissions defined by Android OS is
guaranteed when an application is installed, the user verification prompt will be displayed every time
an application with uses-permission is installed. This problem arises only in the case of self-defined
dangerous permission.

At the time of this writing, no viable method to protect the access to the Component in such cases
has been developed yet. Therefore, your own dangerous permission must not be used.

5.2.2.3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application
 (Required)

As demonstrated in, "5.2.1.2 How to Communicate Between In-house Applications with
In-house-defined Signature Permission," the security can be assured by checking the signature
permission at the time of executing inter-communications between In-house applications. When
using this mechanism, the definition of the permission whose Protection Level is signature must be
written in AndroidManifest.xml of the provider-side application that has the Component, but the
user-side application must not define the signature permission.
This rule is applied to signatureOrSystem Permission as well.

The reason for this is as follows.

We assume that there are multiple user-side applications that have been installed prior to the
provider-side application and every user-side application not only has required the signature
permission that the provider-side application has defined, but also has defined the same permission.
Under these circumstances, all user-side applications will be able to access the provider-side
application just after the provider-side application is installed. Subsequently, when the user-side
application that was installed first is uninstalled, the definition of the permission also will be deleted

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 325

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

and then the permission will turn out to be undefined. As a result, the remaining user-side
applications will be unable to access to the provider-side application.

In this manner, when the user-side application defines a self-defined permission, it can
unexpectedly turn out the permission to be undefined. Therefore, only the provider-side application
providing the Component that needs to be protected should define the permission, and defining the
permission on the user-side must be avoided.

By doing as mentioned just above, the self-defined permission will be applied by Android OS at the
time of the installation of the provider-side application, and the permission will turn out to be
undefined at the time of the uninstallation of the application. Therefore, since the existance of the
permission's definition always corresponds to that of the provider-side application, it is possible to
provide an appropriate Component and protect it. Please be aware that this argument stands because
regarding in-house-defined signature permission the user-side application is granted the
permission regardless of the installation order of applications in inter-communication 12 (post
Android 2.2).

5.2.2.4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application
 (Required)

Actuality, you cannot say to be secure enough only by declaring a signature permission through
AnroidManifest.xml and protecting the Component with the permission. For the details of this issue,
please refer to, "5.2.3.1 Characteristics of Android OS that Avoids Self-defined Signature Permission
and Its Counter-measures" in the Advanced Topics section.

The following are the steps for using in-house-defined signature permission securely and correctly.

First, write as the followings in AndroidManifest.xml:

1. Define an in-house signature permission in the AndroidManifest.xml of the provider-side

application. (definition of permission)
Example: <permission android:name="xxx" android:protectionLevel="signature" />

2. Enforce the permission with the permission attribute of the Component to be protected in the
AndroidManifest.xml of the provider-side application. (enforcement of permission)
Example: <activity android:permission="xxx" ... >...</activity>

3. Declare the in-house-defined signature permission with the uses-permission tag in the
AndroidManifest.xml of every user-side application to access the Component to be protected.
(declaration of using permission)
Example: <uses-permission android:name="xxx" />

Next, implement the followings in the source code.

4. Before processing a request to the Component, first verify that the in-house-defined signature

12 If utilizing the protection provided by signature permission for devices Android 2.1 or earlier (outside
of the scope of this Guidebook), or If using normal/dangerous permission, the permission will not be
granted the user-side application if the user-side application is installed before the provider-side
application, the permission remains undefined. Therefore, the Component cannot be accessed even
after the provider-side application has been installed.

326 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

permission has been defined by an in-house application. If not, ignore the request. (protection
in the provider-side component)

5. Before accessing the Component, first verify that the in-house-defined signature permission has
been defined by an in-house application. If not, do not access the Component (protection in the
user-side component).

Lastly, execute the following with the Export function of Eclipse.

6. Sign APKs of all inter-communicating applications with the same developer key.

Here, for specific points on how to implement "Verify that the in-house-defined signature
permission has been defined by an In house application", please refer to "5.2.1.2 How to
Communicate Between In-house Applications with In-house-defined Signature Permission".

This rule is applied to signatureOrSystem Permission as well.

5.2.2.5. Your Own Normal Permission Should Not Be Used (Recommended)

An application can use a normal permission just by declaring it with uses-permission in
AndroidManifest.xml. Therefore, you cannot use a normal permission for the purpose of protecting a
Component from a malware installed.

Furthermore, in the case of inter-application communication with self-defined normal permission,
whether an application can be granted the permission depends on the order of installation. For
example, when you install an application (user-side) that has declared to use a normal permission
prior to another application (provider-side) that possesses a Component which has defined the
permission, the user-side application will not be able to access the Component protected with the
permission even if the provider-side application is installed later.

As a way to prevent the loss of inter-application communication due to the order of installation, you
may think of defining the permission in every application in the communication. By this way, even if
an user-side application has been installed prior to the provider-side application, all user-side
applications will be able to access the provider-side application. However, it will create a situation
that the permission is undefined when the user-side application installed first is uninstalled. As a
result, even if there are other user-side applications, they will not be able to gain access to the
provider-side application.

As stated above, there is a concern of damaging the availability of an application, thus your own
normal permission should not be used.

5.2.2.6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of
Application (Recommended)

When multiple applications define permissions under the same name, the Protection Level that has
been defined by an application installed first will be applied. Protection by signature permission will
not be available in the case that the application installed first defines a normal permission and the
application installed later defines a signature permission under the same name. Even in the absence
of malicious intent, a conflict of permission names among multiple applications could cause behavior
All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 327

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

s of any applications as an unintended Protection Level. To prevent such accidents, it is
recommended that a permission name extends (starts with) the package name of the application
definding the permission as below.

(package name).permission.(identifying string)

For example, the following name would be preferred when defining a permission of READ access for
the package of org.jssec.android.sample.

org.jssec.android.sample.permission.READ

328 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.2.3. Advanced Topics

5.2.3.1. Characteristics of Android OS that Avoids Self-defined Signature Permission and Its
Counter-measures

Self-defined signature permission is a permission that actualizes inter-application communication
between the applications signed with the same developer key. Since a developer key is a private key
and must not be public, there is a tendency to use signature permission for protection only in cases
where in-house applications communicate with each other.

First, we will describe the basic usage of self-defined signature permission that is explained in the
Developer Guide (http://developer.android.com/guide/topics/security/security.html) of Android.
However, as it will be explained later, there are problems with regard to the avoidance of permission.
Consequently, counter-measures that are described in this Guidebook are necessary.

The followings are the basic usage of self-defined Signature Permission.

1. Define an self-defined signature permission in the AndroidManifest.xml of the provider-side

application. (definition of permission)
Example: <permission android:name="xxx" android:protectionLevel="signature" />

2. Enforce the permission with the permission attribute of the Component to be protected in the
AndroidManifest.xml of the provider-side application. (enforcement of permission)
Example: <activity android:permission="xxx" ... >...</activity>

3. Declare the self-defined signature permission with the uses-permission tag in the
AndroidManifest.xml of every user-side application to access the Component to be protected.
(declaration of using permission)
Example: <uses-permission android:name="xxx" />

4. Sign APKs of all inter-communicating applications with the same developer key.

Actually, if the following conditions are fullfilled, this approach will create a loophole to avoid
signature permission from being performed.

For the sake of explanation, we call an application that is protected by self-defined signature
permission as ProtectedApp, and AttackerApp for an application that has been signed by a different
developer key from the ProtectedApp. What a loophole to avoid signature permission from being
performed means is, despite the mismatch of the signature for AttackerApp, it is possible to gain
access to the Component of ProtectedApp.

Condition 1. An AttackerApp also defines a normal permission (strictly speaking, signature
permission is also acceptable) under the same name as the signature permission which has been
defined by the ProtectedApp.
Example: <permission android:name=" xxx" android:protectionLevel="normal" />

Condition 2. The AttackerApp declares the self-defined normal permission with uses-permission.
Example: <uses-permission android:name="xxx" />

Condition 3. The AttackerApp has installed on the device prior to the ProtectedApp.

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 329

http://developer.android.com/guide/topics/security/security.html

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.2-7

The permission name that is necessary to meet Condition 1 and Condition 2 can easily be known by
an attacker taking AndroidManifest.xml out from an APK file. The attacker also could satisfy
Condition 3 with a certain amount of effort (e.g. deceiving a user).

There is a risk of self-defined signature permission to evade protection if only the basic usage is
adopted, and a counter-measure to prevent such loopholes is needed. Specificcally, you could find
how to solve the above-mentioned issues by using the method described in "5.2.2.4 Verify If the
In-house-defined Signature Permission Is Defined by an In-house Application".

5.2.3.2. Falsification of AndroidManifest.xml by a User

We have already touched on the case that a Protection Level of self-defined permission could be
changed as not intended. To prevent malfunctioning due to such cases, it has been needed to
implement some sort of counter-measures on the source-code side of Java. From the viewpoint of
AndroidManifest.xml falsification, we will talk about the counter-measures to be taken on the
source-code side. We will demonstrate a simple case of installation that can detect falsifications.
However, please note that these counter-measures are little effective against professional hackers
who falsify with criminal intent.

This section is about the falsification of an application and users with malicious intent. Although this
is originally outside of the scope of a Guidebook, from the fact that this is related to Permission and
the tools for such falsification are provided in public as Android applications, we decided to mention
it as "Simple counter-measures against amateur hackers".

It must be remembered that applications that can be installed from market are applications that can

ProtectedApp

<permission
android:name=“xxx”
android:protectionLevel=“signature”
… />

<activity …
android:permission=“xxx” >

</activity>

AndroidManifest.xml

AttackerApp

<permission
android:name=“xxx”
android:protectionLevel=“normal”
… />

<uses-permission android:name=“xxx” />

AndroidManifest.xml

Sign with the different developer
key than ProtectedApp

Install before
ProtectedApp

Accessible

Condition 1

Condition 2

Condition 3

330 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

be falsified without root privilege. The reason is that applications that can rebuild and sign APK files
with altered AndroidManifest.xml are distributed. By using these applications, anyone can delete any
permission from applications they have installed.

As an example, there seems to be cases of rebuilding APKs with different signatures altering
AndroidManifest.xml with INTERNET permission removed to render advertising modules attached in
applications as useless. There are some users who praise these types of tools due to the fact that no
personal information is leaked anywhere. As these ads which are attached in applications stop
functioning, such actions cause monetary damage for developers who are counting on ad revenue.
And it is believed that most of the users don't have any compunction.

In the following code, we show an instance of implementation that an application that has declared
INTERNET permission with uses-permission verifies if INTERNET permission is described in the
AndroidManifest.xml of itself at run time.

public class CheckPermissionActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Acquire Permission defined in AndroidManifest.xml
 List<String> list = getDefinedPermissionList();

 // Detect falsification
 if(checkPermissions(list)){
 // OK
 Log.d("dbg", "OK.");
 }else{
 Log.d("dbg", "manifest file is stale.");
 finish();
 }
 }

 /**
 * Acquire Permission through list that was defined in AndroidManifest.xml
 * @return
 */
 private List<String> getDefinedPermissionList(){
 List<String> list = new ArrayList<String>();
 list.add("android.permission.INTERNET");
 return list;
 }

 /**
 * Verify that Permission has not been changed Permission
 * @param permissionList
 * @return
 */
 private boolean checkPermissions(List<String> permissionList){
 try {
 PackageInfo packageInfo = getPackageManager().getPackageInfo(
 getPackageName(), PackageManager.GET_PERMISSIONS);
 String[] permissionArray = packageInfo.requestedPermissions;
 if (permissionArray != null) {

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 331

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 for (String permission : permissionArray) {
 if(! permissionList.remove(permission)){
 // Unintended Permission has been added
 return false;
 }
 }
 }

 if(permissionList.size() == 0){
 // OK
 return true;
 }

 } catch (NameNotFoundException e) {
 }

 return false;
 }
}

5.2.3.3. Detection of APK Falsification

We explained about detecting the falsification of permissions by a user in "5.2.3.2 Falsification of
AndroidManifest.xml by a User". However, the falsification of applications is not limited to
permission only, and there are many other cases where applications are appropriated without any
changes in the source code. For example, it is a case where they distribute other developers'
applications (falsified) in the market as if they were their own applications just by replacing resources
to their own. Here, we will show a more generic method to detect the falsification of an APK file.

In order to falsify an APK, it is needed to decode the APK file into folders and files, modify their
contents, and then rebuild them into a new APK file. Since the falsifier does not have the key of the
original developer, he would have to sign the new APK file with his own key. As the falsification of an
APK inevitably brings with a change in signature (certificate), it is possible to detect whether an APK
has been falsified at run time by comparing the certificate in the APK and the developer's certificate
embedded in the source code as below.

The following is a sample code. Also, a professional hacker will be able to easily circumvent the
detection of falsification if this implementation example is used as it is. Please apply this sample
code to your application by being aware that this is a simple implementation example.

Points:
1. Verify that an application's certificate belongs to the developer before major processing is

started.

SignatureCheckActivity.java
package org.jssec.android.permission.signcheckactivity;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.Utils;

import android.app.Activity;

332 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.Context;
import android.os.Bundle;
import android.widget.Toast;

public class SignatureCheckActivity extends Activity {
 // Self signed certificate hash value
 private static String sMyCertHash = null;
 private static String myCertHash(Context context) {
 if (sMyCertHash == null) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of "androiddebugkey" of debug.
 sMyCertHash = "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of "my company key" of keystore
 sMyCertHash = "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }
 return sMyCertHash;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // *** POINT 1 *** Verify that an application's certificate belongs to the developer before major processing i
s started
 if (!PkgCert.test(this, this.getPackageName(), myCertHash(this))) {
 Toast.makeText(this, "Self-sign match NG", Toast.LENGTH_LONG).show();
 finish();
 return;
 }
 Toast.makeText(this, "Self-sign match OK", Toast.LENGTH_LONG).show();
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 333

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

5.2.3.4. Permission Re-delegation Problem

An application must declare to use permission when accessing contacts or GPS with its information
and features that are protected by Android OS. When the permission required is granted, the
permission is delegated to the application and the application would be able to access the
information and features protected with the permission.

Depending on how the program is designed, the application to which has been delegated (granted)
the permission is able to acquire data that is protected with the permission. Furthermore, the
application can offer another application the protected data without enforcing the same permission.
This is nothing less than permission-less application to access data that is protected by permission.
This is virtually the same thing as re-delegating the permission, and this is referred to the Permission
Re-delegation Problem. Accordingly, the specification of the permission mechanism of Android only
is able to manage permission of direct access from an application to protected data.

A specific example is shown in Figure 5.2-8. The application in the center shows that an application
which has declared android.permission.READ_CONTACTS to use it reads contacts and then stores
them into its own database. The Permission Re-delegation Problem occurs when information that has
been stored is offered to another application without any restriction via Content Provider.

334 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.2-8 An Application without Permission Acquires Contacts

As a similar example, an application that has declared android.permission.CALL_PHONE to use it
receives a phone number (maybe input by a user) from another application that has not declared the
same permission. If that number is being called without the verification of a user, then also there is
the Permission Re-delegation Problem.

There are cases where the secondary provision of another application with nearly-intact information
asset or functional asset acquired with the permission is needed. In those cases, the provider-side
application must demand the same permission for the provision in order to maintain the original
level of protection. Also, in the case of only providing a portion of information asset as well as
functional asset in a secondary fashion, an appropriate amount of protection is necessary in
accordance with the degree of damage that is incurred when a portion of that information or
functional asset is exploited. We can use protective measures such as demanding permission as
similar to the former, verifying user consent, and setting up restrictions for target applications by
using "4.1.1.1 Creating/Using Private Activities," or "4.1.1.4 Creating/Using In-house Activities" etc.

Such Permission Re-delegation Problem is not only limited to the issue of the Android permission.
For an Android application, it is generic that the application aquires necessary information/functions
from different applications, networks, and storage media. And in many cases, some permissions as
well as restrictions are needed to access them. For example, if the provider source is an Android
application, it is the permission, if it is a network, then it is the log-in, and if it is a storage media,
there will be access restrictions. Therefore, such measures need to be implemented for an
application after carefully considering as information/functions are not used in the contrary manner
of the user's intention. This is especially important at the time of providing aquired
information/functions to another application in a secondary manner or transfering to networks or
storage media. Depending on the necessity, you have to enforce permission or restrict usage like the
Android permission. Asking for the user's consent is part of the solution.

Contacts

Application that
has declared

uses-permission

Application without
declaration of

uses-permission
AAA

BBB

CCC

Android Device

If appropriate permission setup does not exist in a
content provider, an application that has not declared
uses-permission can acquire contact data without permission.

Content Provider

AAA

BBB

CCC

AAA

BBB

CCC

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 335

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

In the following code, we demonstrate a case where an application that acquires a list from the
contact database by using READ_CONTACTS permission enforces the same READ_CONTACTS
permission on the information destination source.

Point
1. Enforce the same permission that the provider does.

AndroidManifest.xml
<?xml version="1.0" encofing="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.permission.transferpermission"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8" />
 <uses-permission android:name="android.permission.READ_CONTACTS"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".TransferPermissionActivity"
 android:label="@string/title_activity_transfer_permission" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <provider
 android:name=".TransferPermissionContentProvider"
 <!-- *** Point1 *** Enforce the same permission that the provider does. -->
 android:authorities="org.jssec.android.permission.transferpermission"
 android:enabled="true"
 android:exported="true"
 android:readPermission="android.permission.READ_CONTACTS" >
 </provider>
 </application>

</manifest>

When an application enforces multiple permissions, the above method will not solve it. By using
Context#checkCallingPermission() or PackageManager#checkPermission() from the source code,
verify whether the invoker application has declared all permissions with uses-permission in the
Manifest.

In the case of an Activity
public void onCreate(Bundle savedInstanceState) {
...(Snip)
 if (checkCallingPermission("android.permission.READ_CONTACTS") == PackageManager.PERMISSION_GRANTED
 && checkCallingPermission("android.permission.WRITE_CONTACTS") == PackageManager.PERMISSION_GRANTED) {
 // Processing during the time when an invoker is correctly declaring to use
 return;
 }

336 All rights reserved © Japan Smartphone Security Association. Permission and Protection Level

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 finish();
}

All rights reserved © Japan Smartphone Security Association. Permission and Protection Level 337

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.3. Add In-house Accounts to Account Manager

Account Manager is the Android OS's system which centrally manages account information (account
name, password) which is necessary for applications to access to online service and authentication
token. A user needs to register the account information to Account Manager in advance, and when an
application tries to access to online service, Account Manager will automatically provide application
authentication token after getting user's permission. The advantage of Account Manager is that an
application doesn't need to handle the extremely sensitive information, password.

The structure of account management function which uses Account Manager is as per below Figure
5.3-1. "Requesting application" is the application which accesses the online service, by getting
authentication token, and this is above mentioned application. On the other hand, "Authenticator
application" is function extension of Account Manager, and by providing Account Manager of an
object called Authenticator, as a result Account Manager can manage centrally the account
information and authentication token of the online service.Requesting application and Authenticator
application don't need to be the separate ones, so these can be implemented as a single application.

Figure 5.3-1Configuration of account management function which uses Account Manager

Originally, the developer's signature key of user application (requesting application) and
Authenticator application can be the different ones. However, only in Android 4.0.x devices, there's
an Android Framework bug, and when the signature key of user application and Authenticator
application are different, exception occurs in user application, and in-house account cannot be used.
The following sample code does not implement any workarounds against this defect. Please refer to
"5.3.3.2 Exception Occurs When Signature Keys of User Application and Authenticator Application
Are Different, in Android 4.0.x" for details.

5.3.1. Sample Code

"5.3.1.1 Creating In-house account" is prepared as a sample of Authenticator application, and
"5.3.1.2 Using In-house Account" is prepared as a sample of requesting application. In sample code
set which is distributed in JSSEC's Web site, each of them is corresponded to AccountManager
Authenticator and AccountManager User.

Web serverAndroid device

Online service AAuthenticator application

User
Application

Android Framework

Account
Manager

Authenticator of
online service A

Account
management

function

Get authentication
token, Add accounts

etc.

Eace function
Of serviceUse each function of service by using authentication token.

338 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.3.1.1. Creating In-house accounts

Here is the sample code of Authenticator application which enables Account Manager to use the
in-house account. There is no Activity which can be launched from home screen in this application.
Please pay attention that it's called indirectly via Account Manager from another sample code "5.3.1.2
Using In-house Account."

Points:
1. The service that provides an authenticator must be private.
2. The login screen activity must be implemented in an authenticator application.
3. The login screen activity must be made as a public activity.
4. The explicit intent which the class name of the login screen activity is specified must be set to

KEY_INTENT.
5. Sensitive information (like account information or authentication token) must not be output to

the log.
6. Password should not be saved in Account Manager.
7. HTTPS should be used for communication between an authenticator and the online services.

Service which gives Account Manager IBinder of Authenticator is defined in AndroidManifest.xml.
Specify resource XML file which Authenticator is written, by meta-data.

AccountManager Authenticator/AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.accountmanager.authenticator"
 android:versionCode="1"
 android:versionName="1.0" xmlns:tools="http://schemas.android.com/tools">

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <!-- Necessary Permission to implement Authenticator -->
 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <!-- Service which gives IBinder of Authenticator to AccountManager -->
 <!-- *** POINT 1 *** The service that provides an authenticator must be private. -->
 <service
 android:name=".AuthenticationService"
 android:exported="false" >
 <!-- intent-filter and meta-data are usual pattern. -->
 <intent-filter>
 <action android:name="android.accounts.AccountAuthenticator" />
 </intent-filter>
 <meta-data
 android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 339

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 </service>

 <!-- Activity for for login screen which is displayed when adding an account -->
 <!-- *** POINT 2 *** The login screen activity must be implemented in an authenticator application. -->
 <!-- *** POINT 3 *** The login screen activity must be made as a public activity. -->
 <activity
 android:name=".LoginActivity"
 android:exported="true"
 android:label="@string/login_activity_title"
 android:theme="@android:style/Theme.Dialog"
 tools:ignore="ExportedActivity" />

</application>

</manifest>

Define Authenticator by XML file. Specify account type etc of in-house account.

res/xml/authenticator.xml
<account-authenticator xmlns:android="http://schemas.android.com/apk/res/android"
 android:accountType="org.jssec.android.accountmanager"
 android:icon="@drawable/ic_launcher"
 android:label="@string/label"
 android:smallIcon="@drawable/ic_launcher" />

Service which gives Authenticator's Instance to AccountManager. Easy implementation which returns
Instance of JssecAuthenticator class that is Authenticator implemented in this sample by onBind(), is
enough.

AuthenticationService.java
package org.jssec.android.accountmanager.authenticator;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class AuthenticationService extends Service {

 private JssecAuthenticator mAuthenticator;

 @Override
 public void onCreate() {
 mAuthenticator = new JssecAuthenticator(this);
 }

 @Override
 public IBinder onBind(Intent intent) {
 return mAuthenticator.getIBinder();
 }
}

340 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

JssecAuthenticator is the Authenticator which is implemented in this sample. It inherits
AbstractAccountAuthenticator, and all abstract methods are implemented. These methods are called
by Account Manager. At addAccount() and at getAuthToken(), the intent for launching LoginActivity
to get authentication token from online service are returned to Account Manager.

JssecAuthenticator.java
package org.jssec.android.accountmanager.authenticator;

import android.accounts.AbstractAccountAuthenticator;
import android.accounts.Account;
import android.accounts.AccountAuthenticatorResponse;
import android.accounts.AccountManager;
import android.accounts.NetworkErrorException;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;

public class JssecAuthenticator extends AbstractAccountAuthenticator {

 public static final String JSSEC_ACCOUNT_TYPE = "org.jssec.android.accountmanager";
 public static final String JSSEC_AUTHTOKEN_TYPE = "webservice";
 public static final String JSSEC_AUTHTOKEN_LABEL = "JSSEC Web Service";
 public static final String RE_AUTH_NAME = "reauth_name";

 protected final Context mContext;

 public JssecAuthenticator(Context context) {
 super(context);
 mContext = context;
 }

 @Override
 public Bundle addAccount(AccountAuthenticatorResponse response, String accountType,
 String authTokenType, String[] requiredFeatures, Bundle options)
 throws NetworkErrorException {

 AccountManager am = AccountManager.get(mContext);
 Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);
 Bundle bundle = new Bundle();
 if (accounts.length > 0) {
 // In this sample code, when an account already exists, consider it as an error.
 bundle.putString(AccountManager.KEY_ERROR_CODE, String.valueOf(-1));
 bundle.putString(AccountManager.KEY_ERROR_MESSAGE,
 mContext.getString(R.string.error_account_exists));
 } else {
 // *** POINT 2 *** The login screen activity must be implemented in an authenticator application.
 // *** POINT 4 *** The explicit intent which the class name of the login screen activity is specified must
 be set to KEY_INTENT.
 Intent intent = new Intent(mContext, LoginActivity.class);
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 }
 return bundle;
 }

 @Override
 public Bundle getAuthToken(AccountAuthenticatorResponse response, Account account,
 String authTokenType, Bundle options) throws NetworkErrorException {

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 341

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 Bundle bundle = new Bundle();
 if (accountExist(account)) {
 // *** POINT 4 *** KEY_INTENT must be given an explicit intent that is specified the class name of the log
in screen activity.
 Intent intent = new Intent(mContext, LoginActivity.class);
 intent.putExtra(RE_AUTH_NAME, account.name);
 bundle.putParcelable(AccountManager.KEY_INTENT, intent);
 } else {
 // When the specified account doesn't exist, consider it as an error.
 bundle.putString(AccountManager.KEY_ERROR_CODE, String.valueOf(-2));
 bundle.putString(AccountManager.KEY_ERROR_MESSAGE,
 mContext.getString(R.string.error_account_not_exists));
 }
 return bundle;
 }

 @Override
 public String getAuthTokenLabel(String authTokenType) {
 return JSSEC_AUTHTOKEN_LABEL;
 }

 @Override
 public Bundle confirmCredentials(AccountAuthenticatorResponse response, Account account,
 Bundle options) throws NetworkErrorException {
 return null;
 }

 @Override
 public Bundle editProperties(AccountAuthenticatorResponse response, String accountType) {
 return null;
 }

 @Override
 public Bundle updateCredentials(AccountAuthenticatorResponse response, Account account,
 String authTokenType, Bundle options) throws NetworkErrorException {
 return null;
 }

 @Override
 public Bundle hasFeatures(AccountAuthenticatorResponse response, Account account,
 String[] features) throws NetworkErrorException {
 Bundle result = new Bundle();
 result.putBoolean(AccountManager.KEY_BOOLEAN_RESULT, false);
 return result;
 }

 private boolean accountExist(Account account) {
 AccountManager am = AccountManager.get(mContext);
 Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);
 for (Account ac : accounts) {
 if (ac.equals(account)) {
 return true;
 }
 }
 return false;
 }
}

342 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

This is Login activity which sends an account name and password to online service, and perform login
authentication, and as a result, get an authentication token. It's displayed when adding a new
account or when getting authentication token again. It's supposed that the actual access to online
service is implemented in WebService class.

LoginActivity.java
package org.jssec.android.accountmanager.authenticator;

import org.jssec.android.accountmanager.webservice.WebService;

import android.accounts.Account;
import android.accounts.AccountAuthenticatorActivity;
import android.accounts.AccountManager;
import android.content.Intent;
import android.os.Bundle;
import android.text.InputType;
import android.text.TextUtils;
import android.util.Log;
import android.view.View;
import android.view.Window;
import android.widget.EditText;

public class LoginActivity extends AccountAuthenticatorActivity {
 private static final String TAG = AccountAuthenticatorActivity.class.getSimpleName();
 private String mReAuthName = null;
 private EditText mNameEdit = null;
 private EditText mPassEdit = null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 // Display alert icon
 requestWindowFeature(Window.FEATURE_LEFT_ICON);
 setContentView(R.layout.login_activity);
 getWindow().setFeatureDrawableResource(Window.FEATURE_LEFT_ICON,
 android.R.drawable.ic_dialog_alert);

 // Find a widget in advance
 mNameEdit = (EditText) findViewById(R.id.username_edit);
 mPassEdit = (EditText) findViewById(R.id.password_edit);

 // *** POINT 3 *** The login screen activity must be made as a public activity, and suppose the attack access
from other application.
 // Regarding external input, only RE_AUTH_NAME which is String type of Intent#extras, are handled.
 // This external input String is passed toextEdit#setText(), WebService#login(),new Account(),
 // as a parameter,it's verified that there's no problem if any character string is passed.
 mReAuthName = getIntent().getStringExtra(JssecAuthenticator.RE_AUTH_NAME);
 if (mReAuthName != null) {
 // Since LoginActivity is called with the specified user name, user name should not be editable.
 mNameEdit.setText(mReAuthName);
 mNameEdit.setInputType(InputType.TYPE_NULL);
 mNameEdit.setFocusable(false);
 mNameEdit.setEnabled(false);
 }
 }

 // It's executed when login button is pressed.

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 343

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void handleLogin(View view) {
 String name = mNameEdit.getText().toString();
 String pass = mPassEdit.getText().toString();

 if (TextUtils.isEmpty(name) || TextUtils.isEmpty(pass)) {
 // Process when the inputed value is incorrect
 setResult(RESULT_CANCELED);
 finish();
 }

 // Login to online service based on the inpputted account information.
 WebService web = new WebService();
 String authToken = web.login(name, pass);
 if (TextUtils.isEmpty(authToken)) {
 // Process when authentication failed
 setResult(RESULT_CANCELED);
 finish();
 }

 // Process when login was successful, is as per below.

 // *** POINT 5 *** Sensitive information (like account information or authentication token) must not be outpu
t to the log.
 Log.i(TAG, "WebService login succeeded");

 if (mReAuthName == null) {
 // Register accounts which logged in successfully, to aAccountManager
 // *** POINT 6 *** Password should not be saved in Account Manager.
 AccountManager am = AccountManager.get(this);
 Account account = new Account(name, JssecAuthenticator.JSSEC_ACCOUNT_TYPE);
 am.addAccountExplicitly(account, null, null);
 am.setAuthToken(account, JssecAuthenticator.JSSEC_AUTHTOKEN_TYPE, authToken);
 Intent intent = new Intent();
 intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, name);
 intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE,
 JssecAuthenticator.JSSEC_ACCOUNT_TYPE);
 setAccountAuthenticatorResult(intent.getExtras());
 setResult(RESULT_OK, intent);
 } else {
 // Return authentication token
 Bundle bundle = new Bundle();
 bundle.putString(AccountManager.KEY_ACCOUNT_NAME, name);
 bundle.putString(AccountManager.KEY_ACCOUNT_TYPE,
 JssecAuthenticator.JSSEC_ACCOUNT_TYPE);
 bundle.putString(AccountManager.KEY_AUTHTOKEN, authToken);
 setAccountAuthenticatorResult(bundle);
 setResult(RESULT_OK);
 }
 finish();
 }
}

Actually, WebService class is dummy implementation here, and this is the sample implementation
which supposes authentication is always successful, and fixed character string is returned as an
authentication token.

344 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

WebService.java
package org.jssec.android.accountmanager.webservice;

public class WebService {

 /**
 * Suppose to access to account managemnet function of online service.
 *
 * @param username Account name character string
 * @param password password character string
 * @return Return authentication token
 */
 public String login(String username, String password) {
 // *** POINT 7 *** HTTPS should be used for communication between an authenticator and the online services.
 // Actually, communication process with servers is implemented here, but Omit here, since this is a sample.
 return getAuthToken(username, password);
 }

 private String getAuthToken(String username, String password) {
 // In fact, get the value which uniqueness and impossibility of speculation are guaranteed by the server,
 // but the fixed value is returned without communication here, since this is sample.
 return "c2f981bda5f34f90c0419e171f60f45c";
 }
}

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 345

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.3.1.2. Using In-house Accounts

Here is the sample code of an application which adds an in-house account and gets an authentication
token. When another sample application "5.3.1.1 Creating In-house account" is installed in a device,
in-house account can be added or authentication token can be got. "Access request" screen is
displayed only when the signature keys of both applications are different.

Figure 5.3-2 Behavior screen of sample application AccountManager User

Point:
1. Execute the account process after verifying if the authenticator is regular one.

AndroidManifest.xml of AccountManager user application. Declare to use necessary Permission.
Refer to "5.3.3.1 Usage of Account Manager and Permission" for the necessary Permission.

AccountManager User/AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.accountmanager.user"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />
 <uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
 <uses-permission android:name="android.permission.USE_CREDENTIALS" />

 <application
 android:allowBackup="false"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".UserActivity"
 android:label="@string/app_name"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

346 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Activity of user application. When tapping the button on the screen, either addcount() or
getAuthToken() is to be executed. Authenticator which corresponds to the specific account type may
be fake in some cases, so pay attention that the account process is started after verifying that the
Authenticator is regular one.

UserActivity.java
package org.jssec.android.accountmanager.user;

import java.io.IOException;

import org.jssec.android.shared.PkgCert;
import org.jssec.android.shared.Utils;

import android.accounts.Account;
import android.accounts.AccountManager;
import android.accounts.AccountManagerCallback;
import android.accounts.AccountManagerFuture;
import android.accounts.AuthenticatorDescription;
import android.accounts.AuthenticatorException;
import android.accounts.OperationCanceledException;
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;

public class UserActivity extends Activity {

 // Information of the Authenticator to be used
 private static final String JSSEC_ACCOUNT_TYPE = "org.jssec.android.accountmanager";
 private static final String JSSEC_TOKEN_TYPE = "webservice";
 private TextView mLogView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.user_activity);

 mLogView = (TextView)findViewById(R.id.logview);
 }

 public void addAccount(View view) {
 logLine();
 logLine("Add a new account");

 // *** POINT 1 *** Execute the account process after verifying if the authenticator is regular one.
 if (!checkAuthenticator()) return;

 AccountManager am = AccountManager.get(this);

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 347

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 am.addAccount(JSSEC_ACCOUNT_TYPE, JSSEC_TOKEN_TYPE, null, null, this,
 new AccountManagerCallback<Bundle>() {
 @Override
 public void run(AccountManagerFuture<Bundle> future) {
 try {
 Bundle result = future.getResult();
 String type = result.getString(AccountManager.KEY_ACCOUNT_TYPE);
 String name = result.getString(AccountManager.KEY_ACCOUNT_NAME);
 if (type != null && name != null) {
 logLine("Add the following accounts:");
 logLine(" Account type: %s", type);
 logLine(" Account name: %s", name);
 } else {
 String code = result.getString(AccountManager.KEY_ERROR_CODE);
 String msg = result.getString(AccountManager.KEY_ERROR_MESSAGE);
 logLine("The account cannot be added");
 logLine(" Error code %s: %s", code, msg);
 }
 } catch (OperationCanceledException e) {
 } catch (AuthenticatorException e) {
 } catch (IOException e) {
 }
 }
 },
 null);
 }

 public void getAuthToken(View view) {
 logLine();
 logLine("Get token");

 // *** POINT 1 *** After checking that the Authenticator is the regular one, execute account process.
 if (!checkAuthenticator()) return;

 AccountManager am = AccountManager.get(this);
 Account[] accounts = am.getAccountsByType(JSSEC_ACCOUNT_TYPE);
 if (accounts.length > 0) {
 Account account = accounts[0];
 am.getAuthToken(account, JSSEC_TOKEN_TYPE, null, this,
 new AccountManagerCallback<Bundle>() {
 @Override
 public void run(AccountManagerFuture<Bundle> future) {
 try {
 Bundle result = future.getResult();
 String name = result.getString(AccountManager.KEY_ACCOUNT_NAME);
 String authtoken = result.getString(AccountManager.KEY_AUTHTOKEN);
 logLine("%s-san's token:", name);
 if (authtoken != null) {
 logLine(" %s", authtoken);
 } else {
 logLine(" Couldn't get");
 }
 } catch (OperationCanceledException e) {
 logLine(" Exception: %s",e.getClass().getName());
 } catch (AuthenticatorException e) {
 logLine(" Exception: %s",e.getClass().getName());
 } catch (IOException e) {
 logLine(" Exception: %s",e.getClass().getName());
 }
 }

348 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }, null);
 } else {
 logLine("Account is not registered.");
 }
 }

 // *** POINT 1 *** Verify that Authenticator is regular one.
 private boolean checkAuthenticator() {
 AccountManager am = AccountManager.get(this);
 String pkgname = null;
 for (AuthenticatorDescription ad : am.getAuthenticatorTypes()) {
 if (JSSEC_ACCOUNT_TYPE.equals(ad.type)) {
 pkgname = ad.packageName;
 break;
 }
 }

 if (pkgname == null) {
 logLine("Authenticator cannot be found.");
 return false;
 }

 logLine(" Account type: %s", JSSEC_ACCOUNT_TYPE);
 logLine(" Package name of Authenticator: ");
 logLine(" %s", pkgname);

 if (!PkgCert.test(this, pkgname, getTrustedCertificateHash(this))) {
 logLine(" It's not regular Authenticator(certificate is not matched.)");
 return false;
 }

 logLine(" This is regular Authenticator.");
 return true;
 }

 // Certificate hash value of regular Authenticator application
 // Certificate hash value can be checked in sample applciation JSSEC CertHash Checker
 private String getTrustedCertificateHash(Context context) {
 if (Utils.isDebuggable(context)) {
 // Certificate hash value of debug.keystore "androiddebugkey"
 return "0EFB7236 328348A9 89718BAD DF57F544 D5CCB4AE B9DB34BC 1E29DD26 F77C8255";
 } else {
 // Certificate hash value of keystore "my company key"
 return "D397D343 A5CBC10F 4EDDEB7C A10062DE 5690984F 1FB9E88B D7B3A7C2 42E142CA";
 }
 }

 private void log(String str) {
 mLogView.append(str);
 }

 private void logLine(String line) {
 log(line + "¥n");
 }

 private void logLine(String fmt, Object... args) {
 logLine(String.format(fmt, args));
 }

 private void logLine() {

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 349

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 log("¥n");
 }
}

PkgCert.java
package org.jssec.android.shared;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import android.content.Context;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.content.pm.Signature;

public class PkgCert {

 public static boolean test(Context ctx, String pkgname, String correctHash) {
 if (correctHash == null) return false;
 correctHash = correctHash.replaceAll(" ", "");
 return correctHash.equals(hash(ctx, pkgname));
 }

 public static String hash(Context ctx, String pkgname) {
 if (pkgname == null) return null;
 try {
 PackageManager pm = ctx.getPackageManager();
 PackageInfo pkginfo = pm.getPackageInfo(pkgname, PackageManager.GET_SIGNATURES);
 if (pkginfo.signatures.length != 1) return null; // Will not handle multiple signatures.
 Signature sig = pkginfo.signatures[0];
 byte[] cert = sig.toByteArray();
 byte[] sha256 = computeSha256(cert);
 return byte2hex(sha256);
 } catch (NameNotFoundException e) {
 return null;
 }
 }

 private static byte[] computeSha256(byte[] data) {
 try {
 return MessageDigest.getInstance("SHA-256").digest(data);
 } catch (NoSuchAlgorithmException e) {
 return null;
 }
 }

 private static String byte2hex(byte[] data) {
 if (data == null) return null;
 final StringBuilder hexadecimal = new StringBuilder();
 for (final byte b : data) {
 hexadecimal.append(String.format("%02X", b));
 }
 return hexadecimal.toString();
 }
}

350 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.3.2. Rule Book

Follow the rules below when implementing Authenticator application.

1. Service that Provides Authenticator Must Be Private (Required)
2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)
3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by

Other Applications (Required)
4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity

 (Required)
5. Sensitive Information (like Account Information and Authentication Token) Must Not Be Output to

the Log (Required)
6. Password Should Not Be Saved in Account Manager (Recommended)
7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service

 (Required)

Follow the rules below when implementing user application.

8. Account Process Should Be Executed after verifying if the Authenticator is the regular one

 (Required)

5.3.2.1. Service that Provides Authenticator Must Be Private (Required)

It's presupposed that the Service which provides with Authenticator is used by Account Manager, and
it should not be accessed by other applications. So, by making it Private Service, it can exclude
accesses by other applications. In addition, Account Manager runs with system privilege, so Account
Manager can access even if it's private Service.

5.3.2.2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)

Login screen which is displayed when adding new account and getting authentication token again,
should be implemented by Authenticator application. Own Login screen should not be prepared in
user application side. As mentioned at the beginning of this article, [The advantage of
AccountManager is that the extremely sensitive information/password is not necessarily to be
handled by application.], If login screen is prepared in user application side, password is handled by
user application, and its design becomes what is beyond the policy of Account Manager.

By preparing login screen by Authenticator application, who can operate login screen is limited only
the device's user. It means that there's no way to attack the account for malicious applications by
attempting to login directly, or by creating an account.

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 351

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.3.2.3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by
Other Applications (Required)

Login screen Activity is the system launched by the user application's priviledge. In order that the
login screen Activity is displayed even when the signature keys of user application and Authenticator
application are different, login screen Activity should be implemented as Public Activity.

What login screen Activity is public Activity means, that there's a chance that it may be launched by
malicious applications. Never trust on any input data. Hence, it's necessary to take the
counter-measures mentioned in "3.2 Handling Input Data Carefully and Securely"

5.3.2.4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity
 (Required)

When Authenticator needs to open login screen Activity, Intent which launches login screen Activity is
to be given in the Bundle that is returned to Account Manager, by KEY_INTENT. The Intent to be given,
should be the explicit Intent which specifies class name of login screen Activity. In the case of
specifying implicit Intent which specifies Action name, there's a possibility that not login screen
Activity which Authenticator application prepared by itself, but an Activity which other application
prepared, is launched. When a malicious application prepares a login screen which looks like the
regular login screen, there's a risk that a user may input password in the fake login screen.

5.3.2.5. Sensitive Information (like Account Information and Authentication Token) Must Not Be
Output to the Log (Required)

Applications which access to online service sometimes face a trouble like it cannot access to online
service successfully. The causes of unsuccessful access are various, like lack in network environment
arrangement, mistakes in implementing communication protocol, lack of Permission, authentication
error, etc. A common implementation is that a program outputs the detailed information to log, so
that developer can analyze the cause of a problem later.

Sensitive information like password or authentication token should not be output to log. Log
information can be read from other applications, so it may become the cause of information leakage.
Also, account names should not be output to log, if it could be lead the damage of leakage.

5.3.2.6. Password Should Not Be Saved in Account Manager (Recommended)

Two of authentication information, password and authentication token, can be saved in an account to
be register to AccountManager. This information is to be saved in /data/system/accounts.db, in a
plain text (i.e. without encryption). To read in the contents of accounts.db, either root privilege or
system privilege is required, and it cannot be read from the marketed Android devices. In the case
there is any vulnerability in Android OS, which root privilege or system privilege may be taken over by
attackers, authentication information which is saved in accounts.db will be on the edge of the risk.

352 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

The Authentication application which is introduced in this article, is designed to save authentication
token in AccountManager without saving user password. When accessing to online service
continuously in a certain period, generally the expiration period of authentication token is extended,
so the design that password is not saved is enough in most cases.

In general, valid date of authentication token is shorter than password, and it's characteristic that it
can be disabled anytime. In case, authentication token is leaked, it can be disabled, so authentication
token is comparatively safer, compared with password. In the case authentication token is disabled,
user can input the password again to get a new authentication token.

If disabling password when it's leaked, user cannot use online service any more. In this case, it
requires call center support etc, and it will take huge cost. Hence, it's better to avoid from the design
to save password in AccountManager. In case, the design to save password cannot be avoided, high
level of reverse engineering counter-measures like encrypting password and obfuscating the key of
that encryption, should be taken.

5.3.2.7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service
 (Required)

Password or authentication token is so called authentication information, and if it's taken over by the
third party, the third party can masquerade as the valid user. Since Authenticator sends/receives
these types of authentication information with online service, reliable encrypted communication
method like an HTTPS should be used.

5.3.2.8. Account Process Should Be Executed after verifying if the Authenticator is the regular one
 (Required)

In the case there are several Authenticators which the same account type is defined in a device,
Authenticator which was installed earlier becomes valid. So, when the own Authenticator was
installed later, it's not to be used.

If the Authenticator which was installed earlier, is the malware's masquerade, account information
inputted by user may be taken over by malware. User application should verify the account type
which performs account operation, whether the regular Authenticator is allocated to it or not, before
executing account operation.

Whether the Authenticator which is allocated to one account type is regular one or not, can be
verified by checking whether the certificate hash value of the package of Authenticator matches with
pre-confirmed valid certificate hash value. If the certificate hash values are found to be not matched,
a measure to prompt user to uninstall the package which includes the unexpected Authenticator
allocated to that account type, is preferable.

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 353

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.3.3. Advanced Topics

5.3.3.1. Usage of Account Manager and Permission

To use each method of AccountManager class, it's necessary to declare to use the appropriate
Permission respectively, in application's AndroidManifest.xml. Table 5.3-1 shows correspondence of
Permission and methods.

Table 5.3-1 Function of Account Manager and Permission
 Functions that Account Manager provides

Permission Method Explanation

AUTHENTICATE_ACCOUNTS

(Only Packages which are

signed by the same key of

Authenticator, can use.)

getPassword() To get password

getUserData() To get user information

addAccountExplicitly() To add accounts to DB

peekAuthToken() To get cached token

setAuthToken() To register authentication token

setPassword() To change password

setUserData() To set user information

GET_ACCOUNTS getAccounts() To get a list of all accounts

getAccountsByType() To get a list of accounts which

account types are same

getAccountsByTypeAndFeatures() To get a list of accounts which

have the specified function

addOnAccountsUpdatedListener() To register event listener

hasFeatures() Whether it has the specified

function or not

MANAGE_ACCOUNTS getAuthTokenByFeatures() To get authentication token of the

accounts which have the

specified function

addAccount() To request a user to add accounts

removeAccount() To remove an account

clearPassword() Initialize password

updateCredentials() Request a user to change

password

editProperties() Change Authenticator setting

VerifyCredentials() Request a user to input password

again

USE_CREDENTIALS getAuthToken() To get authentication token

blockingGetAuthToken() To get authentication token

MANAGE_ACCOUNTS invalidateAuthToken() To delete cached token

354 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 or

USE_CREDENTIALS

In case using methods group which AUTHENTICATE_ACCOUNTS Permission is necessary, there is a
restriction related to package signature key along with Permission. Specifically, the key for signature
of package that provides Authenticator and the key for signature of package in the application that
uses methods, should be the same. So, when distributing an application which uses method group
which AUTHENTICATE_ACCOUNTS Permission is necessary other than Authenticator, signature
should be signed by the key which is the same as Authenticator.

In a development phase by Eclipse, since a fixed debug keystore might be shared by some eclipse
projects, developers might implement and test Acount Manager by considering only permissions and
no signature. It's necessary for especially developers who use the different signature keys per
applications, to be very careful when selecting which key to use for applications, considering this
restriction. In addition, since the data which is obtained by AccountManager includes the sensitive
information, so need to handle with care in order to decrease the risk like leakage or unauthorized
use.

5.3.3.2. Exception Occurs When Signature Keys of User Application and Authenticator Application Are
Different, in Android 4.0.x

When authentication token acquisition function, is required by the user application which is signed
by the developer key which is different from the signature key of Authenticator application that
includes Authenticator, AccountManager verifies users whether to grant the usage of authentication
token or not, by displaying the authentication token license screen
(GrantCredentialsPermissionActivity.) However, there's a bug in Android Framework of Android 4.0.x,
as soon as this screen in opened by AccountManager, exception occurs, and application is force
closed. (Figure 5.3-3). See https://code.google.com/p/android/issues/detail?id=23421 for the
details of the bug. This bug cannot be found in Android 2.3.x and earlier, and Android 4.1.x. and
later.

All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager 355

https://code.google.com/p/android/issues/detail?id=23421

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.3-3 When displaying Android standard authentication token license screen.

Android 4.1.xAndroid 4.0.x

356 All rights reserved © Japan Smartphone Security Association. Add In-house Accounts to Account Manager

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4. Communicating via HTTPS

Most of smartphone applications communicate with Web servers on the Internet. As methods of
communications, here we focus on the 2 methods of HTTP and HTTPS. From the security point of
view, HTTPS communication is preferable. Lately, major Web services like Google or Facebook have
been coming to use HTTPS as default.

In 2012, many defects in implementation of HTTPS communication were pointed out in Android
applications. These defects might have been implemented for accessing testing Web servers
operated by server certificates that are not issued by trusted third party certificate authorities, but
issued privately (hereinafter, called private certificates).

In this section, communication methods of HTTP and HTTPS are explained and the method to access
safely with HTTPS to a Web server operated by a private certificate is also described.

5.4.1. Sample Code

You can find out which type of HTTP/HTTPS communication you are supposed to implement through
the following chart (Figure 5.4-1) shown below.

Figure 5.4-1 Flow Figure to select sample code of HTTP/HTTPS

When sensitive information is sent or received, HTTPS communication is to be used because its
communication channel is encrypted with SSL/TLS. HTTPS communication is required for the

Start

Send/Receive
the sensitive information?

Communicate by HTTPSCommunicate by HTTP

Yes

No

Authenticate the server
to connect to?

No

Yes

No

Yes

Use server certificate
that is issued by
the public CA?

Communicate by HTTPS
with private certificate

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 357

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

following sensitive information.

 Login ID/Password for Web services.
 Information for keeping authentication state (session ID, token, Cookie etc.)
 Important/confidential information depending on Web services (personal information, credit

card information etc.)

A smartphone application with network communication is a part of "system" as well as a Web server.
And you have to select HTTP or HTTPS for each communication based on secure design and coding
considering the whole "system". Table 5.4-1 is for a comparison between HTTP and HTTPS. And
Table 5.4-2 is for the differences in sample codes.

Table 5.4-1 Comparison between HTTP communication method and HTTPS communication method
 HTTP HTTPS
Characteristics URL

Encrypting contents
Tampering detection of contents
Authenticating a server

Starting with http://
Not available
Impossible
Impossible

Starting with https://
Available
Possible
Possible

Damage
Risk

Reading contents by attackers
Modifying contents by attackers
Application's access to a fake server

High
High
High

Low
Low
Low

Table 5.4-2 Explanation of HTTP/HTTPS communication Sample code

Sample code Communi-
cation

Sending/Receiving
sensitive information

Server certificate

Communicating
via HTTP

HTTP Not applicable -

Communicating
via HTTPS

HTTPS OK Server certificates issued by trusted third
party's certificate authorities like
Cybertrust and VeriSign etc.

Communicating
via HTTPS with
private certificate

HTTPS OK Private certificate
* Operation mode which can be often
seen in intra server or in test server.

There are two major APIs for HTTP/HTTPS communications supported by Android. In this article and
sample codes, Apache HttpClient library is used because applications can control communication
way in detail.

 java.net.HttpURLConnection/javax.net.ssl.HttpsURLConnection comes from JavaSDK
 Apache HttpClient library comes from Apache HttpComponent

358 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.1.1. Communicating via HTTP

It is based on two premises that all contents sent/received through HTTP communications may be
sniffed and tampered by attackers and your destination server may be replaced with fake servers
prepared by attackers. HTTP communication can be used only if no damage is caused or the damage
is within the permissible extent even under the premises. If an application cannot accept the
premises, please refer to "5.4.1.2 Communicating via HTTPS" and "5.4.1.3 Communicating via HTTPS
with private certificate."

The following sample code shows an application which performs an image search on a Web server,
gets the result image and shows it. HTTP communication with the server is performed twice a search.
The first communication is for searching image data and the second is for getting it. The worker
thread for communication process using AsyncTask is created to avoid the communications
performing on the UI thread. Contents sent/received in the communications with the server are not
considered as sensitive (e.g. the character string for searching, the URL of the image, or the image
data) here. So, the received data such as the URL of the image and the image data may be provided by
attackers. To show the sample code simply, any countermeasures are not taken in the sample code
by considering the received attacking data as tolerable. Also, the handlings for possible exceptions
during JSON purse or showing image data are omitted. It is necessary to handle the exceptions
properly depending on the application specs.

Points:
1. Sensitive information must not be contained in send data.
2. Suppose that received data may be sent from attackers.

HttpImageSearch.java
package org.jssec.android.https.imagesearch;

import org.apache.http.HttpException;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.util.EntityUtils;
import org.json.JSONObject;

import android.net.Uri;
import android.os.AsyncTask;

public abstract class HttpImageSearch extends AsyncTask<String, Void, Object> {

 @Override
 protected Object doInBackground(String... params) {

 // Since use HttpClient for 2 times of GET requests, it shutdown at finally block.
 DefaultHttpClient client = new DefaultHttpClient();

 try {
 // --
 // Communication 1st time: Execute image search
 // --

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 359

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // *** POINT 1 *** Sensitive information must not be contained in send data.
 // Send image search character string
 String search_url = Uri
 .parse("http://ajax.googleapis.com/ajax/services/search/images?v=1.0")
 .buildUpon()
 .appendQueryParameter("q", params[0])
 .build().toString();
 HttpGet request = new HttpGet(search_url);
 HttpResponse response = client.execute(request);
 checkResponse(response);

 // *** POINT 2 *** Suppose that received data may be sent from attackers.
 // This is sample, so omit the process in case of the searching result is the data from an attacker.
 // This is sample, so omit the exception process in case of JSON purse.
 String result_json = EntityUtils.toString(response.getEntity(), "UTF-8");
 String image_url = new JSONObject(result_json).getJSONObject("responseData")
 .getJSONArray("results").getJSONObject(0).getString("url");

 // --
 // Communication 2nd time: Get images
 // --

 // *** POINT 1 *** Sensitive information must not be contained in send data.
 request = new HttpGet(image_url);
 response = client.execute(request);
 checkResponse(response);

 // *** POINT 2 *** Suppose that received data may be sent from attackers.
 return EntityUtils.toByteArray(response.getEntity());
 } catch(Exception e) {
 return e;
 } finally {
 // Shutdown HttpClient without fail
 client.getConnectionManager().shutdown();
 }
 }

 private void checkResponse(HttpResponse response) throws HttpException {
 int statusCode = response.getStatusLine().getStatusCode();
 if (HttpStatus.SC_OK != statusCode) {
 throw new HttpException("HttpStatus: " + statusCode);
 }
 }
}

ImageSearchActivity.java
package org.jssec.android.https.imagesearch;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.TextView;

360 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

public class ImageSearchActivity extends Activity {

 private EditText mQueryBox;
 private TextView mMsgBox;
 private ImageView mImgBox;
 private AsyncTask<String, Void, Object> mAsyncTask ;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mQueryBox = (EditText)findViewById(R.id.querybox);
 mMsgBox = (TextView)findViewById(R.id.msgbox);
 mImgBox = (ImageView)findViewById(R.id.imageview);
 }

 @Override
 protected void onPause() {
 // After this, Activity may be deleted, so cancel the asynchronization process in advance.
 if (mAsyncTask != null) mAsyncTask.cancel(true);
 super.onPause();
 }

 public void onHttpSearchClick(View view) {
 String query = mQueryBox.getText().toString();
 mMsgBox.setText("HTTP:" + query);
 mImgBox.setImageBitmap(null);

 // Cancel, since the last asynchronous process might not have been finished yet.
 if (mAsyncTask != null) mAsyncTask.cancel(true);

 // Since cannot communicate by UI thread, communicate by worker thread by AsynchTask.
 mAsyncTask = new HttpImageSearch() {
 @Override
 protected void onPostExecute(Object result) {
 // Process the communication result by UI thread.
 if (result instanceof Exception) {
 Exception e = (Exception)result;
 mMsgBox.append("¥nException occurs¥n" + e.toString());
 } else {
 // Exception process when image display is omitted here, since it's sample.
 byte[] data = (byte[])result;
 Bitmap bmp = BitmapFactory.decodeByteArray(data, 0, data.length);
 mImgBox.setImageBitmap(bmp);
 }
 }
 }.execute(query); // pass search character string and start asynchronous process
 }

 public void onHttpsSearchClick(View view) {
 String query = mQueryBox.getText().toString();
 mMsgBox.setText("HTTPS:" + query);
 mImgBox.setImageBitmap(null);

 // Cancel, since the last asynchronous process might not have been finished yet.
 if (mAsyncTask != null) mAsyncTask.cancel(true);

 // Since cannot communicate by UI thread, communicate by worker thread by AsynchTask.

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 361

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 mAsyncTask = new HttpsImageSearch() {
 @Override
 protected void onPostExecute(Object result) {
 // Process the communication result by UI thread.
 if (result instanceof Exception) {
 Exception e = (Exception)result;
 mMsgBox.append("¥nException occurs¥n" + e.toString());
 } else {
 byte[] data = (byte[])result;
 Bitmap bmp = BitmapFactory.decodeByteArray(data, 0, data.length);
 mImgBox.setImageBitmap(bmp);
 }
 }
 }.execute(query); // pass search character string and start asynchronous process
 }
}

AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.jssec.android.https.imagesearch"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="8" />
 <uses-permission android:name="android.permission.INTERNET"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".ImageSearchActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Light"
 android:exported="true" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

362 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.1.2. Communicating via HTTPS

Transmitted and received data with HTTPS are encrypted. In addition HTTPS checks whether a
connected server is trusted or not. To authenticate the server, Android HTTPS library verifies "server
certificate" which is transmitted from the server in the handshake phase of HTTPS transaction with
following points:

 The server certificate is signed by a trusted third party certificate authority
 The period and other properties of the server certificate are valid
 CN in Subject of the server certificate equals to the host name of the serve.

When an error is encountered during the verification above, a server certificate verification exception
(SSLException) is thrown. The error occurs due to any defects in the server certificate or
man-in-the-middle attacks by attackers. You have to handle the exception with an appropriate
sequence based on the application specifications.

The next a sample code is for HTTPS communication which connects to a Web server with a server
certificate issued by a trusted third party certificate authority. For HTTPS communication with a
server certificate issued privately, please refer to "5.4.1.3 Communicating via HTTPS with private
certificate."

The following sample code shows an application which performs an image search on a Web server,
gets the result image and shows it. HTTPS communication with the server is performed twice a search.
The first communication is for searching image data and the second is for getting it. The worker
thread for communication process using AsyncTask is created to avoid the communications
performing on the UI thread. All contents sent/received in the communications with the server are
considered as sensitive (e.g. the character string for searching, the URL of the image, or the image
data) here. To show the sample code simply, no special handling for SSLException is performed. It is
necessary to handle the exceptions properly depending on the application specifications.

Points:
1. URI starts with https://.
2. Sensitive information may be contained in send data.
3. Handle the received data carefully and securely, even though the data was sent from the server

connected by HTTPS.
4. SSLException should be handled with an appropriate sequence in an application.

HttpsImageSearch.java
package org.jssec.android.https.imagesearch;

import javax.net.ssl.SSLException;

import org.apache.http.HttpException;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 363

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import org.apache.http.util.EntityUtils;
import org.json.JSONObject;

import android.net.Uri;
import android.os.AsyncTask;

public abstract class HttpsImageSearch extends AsyncTask<String, Void, Object> {

 @Override
 protected Object doInBackground(String... params) {

 // Since HttpClient is used for 2 times of GET requests,it shutdown at finally block.
 DefaultHttpClient client = new DefaultHttpClient();

 try {
 // --
 // Communication 1st time : Execute image search
 // --

 // *** POINT 1 *** URI starts with https://.
 // *** POINT 2 *** Sensitive information may be contained in send data.
 String search_url = Uri
 .parse("https://ajax.googleapis.com/ajax/services/search/images?v=1.0")
 .buildUpon()
 .appendQueryParameter("q", params[0])
 .build().toString();
 HttpGet request = new HttpGet(search_url);
 HttpResponse response = client.execute(request);
 checkResponse(response);

 // *** POINT 3 *** Handle the received data carefully and securely,
 // even though the data was sent from the server connected by HTTPS.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 String result_json = EntityUtils.toString(response.getEntity(), "UTF-8");
 String image_url = new JSONObject(result_json).getJSONObject("responseData")
 .getJSONArray("results").getJSONObject(0).getString("url");

 // --
 // Communication 2nd time : Get image
 // --

 // *** POINT 1 *** URI starts with https://.
 // *** POINT 2 *** Sensitive information may be contained in send data.
 request = new HttpGet(image_url);
 response = client.execute(request);
 checkResponse(response);

 // *** POINT 3 *** Handle the received data carefully and securely,
 // even though the data was sent from the server connected by HTTPS.
 // Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely."
 return EntityUtils.toByteArray(response.getEntity());
 } catch(SSLException e) {
 // *** POINT 4 *** SSLException should be handled with an appropriate sequence in an application.
 // Omit exception process, since it's sample
 return e;
 } catch(Exception e) {
 return e;
 } finally {
 // Shutdown HttpClient without fail.
 client.getConnectionManager().shutdown();

364 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 }

 private void checkResponse(HttpResponse response) throws HttpException {
 int statusCode = response.getStatusLine().getStatusCode();
 if (HttpStatus.SC_OK != statusCode) {
 throw new HttpException("HttpStatus: " + statusCode);
 }
 }
}

Other sample code files are the same as "5.4.1.1 Communicating via HTTP," so please refer to
"5.4.1.1 Communicating via HTTP."

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 365

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.1.3. Communicating via HTTPS with private certificate

This section shows a sample code of HTTPS communication with a server certificate issued privately
(private certificate), but not with that issued by a trusted third party authority. Please refer to "5.4.3.1
How to Create Private Certificate and Configure Server Settings" for creating a root certificate of a
private certificate authority and private certificates and setting HTTPS settings in a Web server. The
sample program has a cacert.crt file in assets. It is a root certificate file of private certificate
authority.

The following sample code shows an application which gets an image on a Web server and shows it.
HTTPS is used for the communication with the server. The worker thread for communication process
using AsyncTask is created to avoid the communications performing on the UI thread. All contents
(the URL of the image and the image data) sent/received in the communications with the server are
considered as sensitive here. To show the sample code simply, no special handling for SSLException
is performed. It is necessary to handle the exceptions properly depending on the application
specifications.

Points:
1. Verify a server certificate with the root certificate of a private certificate authority.
2. URI starts with https://.
3. Sensitive information may be contained in send data.
4. Received data can be trusted as same as the server.
5. SSLException should be handled with an appropriate sequence in an application.

PrivateCertificathettpsGet.java
package org.jssec.android.https.privatecertificate;

import java.security.KeyStore;

import javax.net.ssl.SSLException;

import org.apache.http.HttpException;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.conn.scheme.Scheme;
import org.apache.http.conn.ssl.SSLSocketFactory;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.util.EntityUtils;

import android.content.Context;
import android.os.AsyncTask;

public abstract class PrivateCertificateHttpsGet extends AsyncTask<String, Void, Object> {

 private Context mContext;

 public PrivateCertificateHttpsGet(Context context) {
 mContext = context;
 }

366 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 protected Object doInBackground(String... params) {

 DefaultHttpClient client = new DefaultHttpClient();

 try {
 // *** POINT 1 *** Verify a server certificate with the root certificate of a private certificate authorit
y.
 // Set keystore which includes only private certificate that is stored in assets, to client.
 KeyStore ks = KeyStoreUtil.getEmptyKeyStore();
 KeyStoreUtil.loadX509Certificate(ks,
 mContext.getResources().getAssets().open("cacert.crt"));
 Scheme sch = new Scheme("https", new SSLSocketFactory(ks), 443);
 client.getConnectionManager().getSchemeRegistry().register(sch);

 // *** POINT 2 *** URI starts with https://.
 // *** POINT 3 *** Sensitive information may be contained in send data.
 HttpGet request = new HttpGet(params[0]);
 HttpResponse response = client.execute(request);
 checkResponse(response);

 // *** POINT 4 *** Received data can be trusted as same as the server.
 return EntityUtils.toByteArray(response.getEntity());
 } catch(SSLException e) {
 // *** POINT 5 *** SSLException should be handled with an appropriate sequence in an application.
 // Exception process is omitted here since it's sample.
 return e;
 } catch(Exception e) {
 return e;
 } finally {
 // Shutdown HttpClient without fail.
 client.getConnectionManager().shutdown();
 }
 }

 private void checkResponse(HttpResponse response) throws HttpException {
 int statusCode = response.getStatusLine().getStatusCode();
 if (HttpStatus.SC_OK != statusCode) {
 throw new HttpException("HttpStatus: " + statusCode);
 }
 }
}

KeyStoreUtil.java
package org.jssec.android.https.privatecertificate;

import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.cert.Certificate;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.util.Enumeration;

public class KeyStoreUtil {

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 367

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public static KeyStore getEmptyKeyStore() throws KeyStoreException,
 NoSuchAlgorithmException, CertificateException, IOException {
 KeyStore ks = KeyStore.getInstance("BKS");
 ks.load(null);
 return ks;
 }

 public static void loadAndroidCAStore(KeyStore ks)
 throws KeyStoreException, NoSuchAlgorithmException,
 CertificateException, IOException {
 KeyStore aks = KeyStore.getInstance("AndroidCAStore");
 aks.load(null);
 Enumeration<String> aliases = aks.aliases();
 while (aliases.hasMoreElements()) {
 String alias = aliases.nextElement();
 Certificate cert = aks.getCertificate(alias);
 ks.setCertificateEntry(alias, cert);
 }
 }

 public static void loadX509Certificate(KeyStore ks, InputStream is)
 throws CertificateException, KeyStoreException {
 try {
 CertificateFactory factory = CertificateFactory.getInstance("X509");
 X509Certificate x509 = (X509Certificate)factory.generateCertificate(is);
 String alias = x509.getSubjectDN().getName();
 ks.setCertificateEntry(alias, x509);
 } finally {
 try { is.close(); } catch (IOException e) { }
 }
 }
}

PrivateCertificathettpsActivity.java
package org.jssec.android.https.privatecertificate;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.TextView;

public class PrivateCertificateHttpsActivity extends Activity {

 private EditText mUrlBox;
 private TextView mMsgBox;
 private ImageView mImgBox;
 private AsyncTask<String, Void, Object> mAsyncTask ;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

368 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 mUrlBox = (EditText)findViewById(R.id.urlbox);
 mMsgBox = (TextView)findViewById(R.id.msgbox);
 mImgBox = (ImageView)findViewById(R.id.imageview);
 }

 @Override
 protected void onPause() {
 // After this, Activity may be discarded, so cancel asynchronous process in advance.
 if (mAsyncTask != null) mAsyncTask.cancel(true);
 super.onPause();
 }

 public void onClick(View view) {
 String url = mUrlBox.getText().toString();
 mMsgBox.setText(url);
 mImgBox.setImageBitmap(null);

 // Cancel, since the last asynchronous process might have not been finished yet.
 if (mAsyncTask != null) mAsyncTask.cancel(true);

 // Since cannot communicate through UI thread, communicate by worker thread by AsynchTask.
 mAsyncTask = new PrivateCertificateHttpsGet(this) {
 @Override
 protected void onPostExecute(Object result) {
 // Process the communication result through UI thread.
 if (result instanceof Exception) {
 Exception e = (Exception)result;
 mMsgBox.append("¥nException occurs¥n" + e.toString());
 } else {
 byte[] data = (byte[])result;
 Bitmap bmp = BitmapFactory.decodeByteArray(data, 0, data.length);
 mImgBox.setImageBitmap(bmp);
 }
 }
 }.execute(url); // Pass URL and start asynchronization process
 }
}

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 369

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.2. Rule Book

Follow the rules below to communicate with HTTP/HTTPS.

1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)
2. Received Data over HTTP Must be Handled Carefully and Securely (Required)
3. SSLException Must Be Handled Appropriately like Notification to User (Required)
4. TrustManager Must Not Be Changed and Custom TrustManager Must Not Be Created

 (Required)
5. HostnameVerifier Must Not Be Changed and Custom HostnameVerifier Must Not Be Created

 (Required)

5.4.2.1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)

In HTTP transaction, sent and received information might be sniffed or tampered and the connected
server might be masqueraded. Sensitive information must be sent/ received by HTTPS
communication.

5.4.2.2. Received Data over HTTP Must be Handled Carefully and Securely (Required)

Received data in HTTP communications might be generated by attackers for exploiting vulnerability
of an application. So you have to suppose that the application receives any values and formats of data
and then carefully implement data handlings for processing received data so as not to put any
vulnerabilities in. Furthermore you should not blindly trust the data from HTTPS server too. Because
the HTTPS server may be made by the attacker or the received data may be made in other place from
the HTTPS server. Please refer to "3.2 Handling Input Data Carefully and Securely"

5.4.2.3. SSLException Must Be Handled Appropriately like Notification to User (Required)

In HTTPS communication, SSLException occurs as a verification error when a server certificate is not
valid or the communication is under the man-in-the-middle attack. So you have to implement an
appropriate exception handling for SSLException. Notifying the user of the communication failure,
logging the failure and so on can be considered as typical implementations of exception handling.
On the other hand, no special notice to the user might be required in some case. Like this, because
how to handle SSLException depends on the application specs and characteristics you need to
determine it after first considering thoroughly.

As mentioned above, the application may be attacked by man-in-the-middle attack when
SSLException occurs, so it must not be implemented like trying to send/receive sensitive information
again via non secure protocol such as HTTP.

5.4.2.4. TrustManager Must Not Be Changed and Custom TrustManager Must Not Be Created
 (Required)

370 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Just Changing KeyStore which is used for verifying server certificates is enough to communicate via
HTTPS with a private certificate like self-signed certificate. However, as explained in "5.4.3.3 Risky
Code that Disables Certificate Verification," there are so many dangerous TrustManager
implementations as sample codes for such purpose on the Internet. An Application implemented by
referring to these sample codes may have the vulnerability.

When you need to communicate via HTTPS with a private certificate, refer to the secure sample code
in "5.4.1.3 Communicating via HTTPS with private certificate."

Of course, custom TrustManager can be implemented securely, but enough knowledge for
encryption processing and encryption communication is required so as not to implement vulnerable
codes. So this rule dare be (Required).

5.4.2.5. HostnameVerifier Must Not Be Changed and Custom HostnameVerifier Must Not Be Created
 (Required)

Just Changing KeyStore which is used for verifying server certificates is enough to communicate via
HTTPS with a private certificate like self-signed certificate. However, as explained in "5.4.3.3 Risky
Code that Disables Certificate Verification," there are so many dangerous HostnameVerifier
implementations as sample codes for such purpose on the Internet. An Application implemented by
referring to these sample codes may have the vulnerability.

When you need to communicate via HTTPS with a private certificate, refer to the secure sample code
in "5.4.1.3 Communicating via HTTPS with private certificate."

Of course, custom HostnameVerifier can be implemented securely, but enough knowledge for
encryption processing and encryption communication is required so as not to implement vulnerable
codes. So this rule dare be (Required).

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 371

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.3. Advanced Topics

5.4.3.1. How to Create Private Certificate and Configure Server Settings

In this section, how to create a private certificate and configure server settings in Linux such as
Ubuntu and CentOS is described. Private certificate means a server certificate which is issued
privately and is told from server certificates issued by trusted third party certificate authorities like
Cybertrust and VeriSign.

Create private certificate authority

First of all, you need to create a private certificate authority to issue a private certificate. Private
certificate authority means a certificate authority which is created privately as well as private
certificate. You can issue plural private certificates by using the single private certificate
authority. PC in which the private certificate authority is stored should be limited strictly to be
accessed just by trusted persons.

To create a private certificate authority, you have to create two files such as the following shell
script newca.sh and the setting file openssl.cnf and then execute them. In the shell script,
CASTART and CAEND stand for the valid period of certificate authority and CASUBJ stands for the
name of certificate authority. So these values need to be changed according to a certificate
authority you create. While executing the shell script, the password for accessing the certificate
authority is asked for 3 times in total, so you need to input it every time.

newca.sh – Shell Script to create certificate authority
#!/bin/bash

umask 0077

CONFIG=openssl.cnf
CATOP=./CA
CAKEY=cakey.pem
CAREQ=careq.pem
CACERT=cacert.pem
CAX509=cacert.crt
CASTART=130101000000Z # 2013/01/01 00:00:00 GMT
CAEND=230101000000Z # 2023/01/01 00:00:00 GMT
CASUBJ="/CN=JSSEC Private CA/O=JSSEC/ST=Tokyo/C=JP"

mkdir -p ${CATOP}
mkdir -p ${CATOP}/certs
mkdir -p ${CATOP}/crl
mkdir -p ${CATOP}/newcerts
mkdir -p ${CATOP}/private
touch ${CATOP}/index.txt

openssl req -new -newkey rsa:2048 -sha256 -subj "${CASUBJ}" ¥
 -keyout ${CATOP}/private/${CAKEY} -out ${CATOP}/${CAREQ}
openssl ca -selfsign -md sha256 -create_serial -batch ¥
 -keyfile ${CATOP}/private/${CAKEY} ¥
 -startdate ${CASTART} -enddate ${CAEND} -extensions v3_ca ¥

372 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 -in ${CATOP}/${CAREQ} -out ${CATOP}/${CACERT} ¥
 -config ${CONFIG}
openssl x509 -in ${CATOP}/${CACERT} -outform DER -out ${CATOP}/${CAX509}

openssl.cnf - Setting file of openssl command which 2 shell scripts refers in common.
[ca]
default_ca = CA_default # The default ca section

[CA_default]
dir = ./CA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#Proprietary-defined _subject = no # Set to 'no' to allow creation of
 # several ctificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.
certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number
 # must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem# The private key
RANDFILE = $dir/private/.rand # private random number file
x509_extensions = usr_cert # The extentions to add the cert
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options
policy = policy_match

[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = supplied
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[usr_cert]
basicConstraints=CA:FALSE
nsComment = "OpenSSL Generated Certificate"
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

[v3_ca]
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer
basicConstraints = CA:true

After executing the above shall script, a directory named CA is created just under the work
directory. This CA directory is just a private certificate authority. CA/cacert.crt file is the root
certificate of the private certificate authority. And it's stored in assets directory of an application
as described in "5.4.1.3 Communicating via HTTPS with private certificate," or it's installed in
Android device as described in "5.4.3.2 Install Root Certificate of Private Certificate Authority to
Android OS's Certification Store (Android 4.0 and later)."

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 373

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Create private certificate

To create a private certificate, you have to create a shell script like the following newca.sh and
execute it. In the shell script, SVSTART and SVEND stand for the valid period of private certificate,
and SVSUBJ stands for the name of Web server, so these values need to be changed according to
the target Web server. Especially, you need to make sure not to set a wrong host name to /CN of
SVSUBJ with which the host name of Web server is to be specified. While executing the shell script,
the password for accessing the certificate authority is asked, so you need to input the password
which you have set when creating the private certificate authority. After that, y/n is asked 2 times
in total and you need to input y every time.

newsv.sh - Shell script which issues private certificate
#!/bin/bash

umask 0077

CONFIG=openssl.cnf
CATOP=./CA
CAKEY=cakey.pem
CACERT=cacert.pem
SVKEY=svkey.pem
SVREQ=svreq.pem
SVCERT=svcert.pem
SVX509=svcert.crt
SVSTART=130101000000Z # 2013/01/01 00:00:00 GMT
SVEND=230101000000Z # 2023/01/01 00:00:00 GMT
SVSUBJ="/CN=selfsigned.jssec.org/O=JSSEC Secure Cofing Group/ST=Tokyo/C=JP"

openssl genrsa -out ${SVKEY} 2048
openssl req -new -key ${SVKEY} -subj "${SVSUBJ}" -out ${SVREQ}
openssl ca -md sha256 ¥
 -keyfile ${CATOP}/private/${CAKEY} -cert ${CATOP}/${CACERT} ¥
 -startdate ${SVSTART} -enddate ${SVEND} ¥
 -in ${SVREQ} -out ${SVCERT} -config ${CONFIG}
openssl x509 -in ${SVCERT} -outform DER -out ${SVX509}

After executing the above shell script, both svkey.pem (private key file) and svcert.pem (private
certificate file) for Web server are generated just under work directory.

When Web server is Apache, you will specify prikey.pem and cert.pem in the confituration file as
follows.

SSLCertificateFile "/path/to/svcert.pem"
SSLCertificateKeyFile "/path/to/svkey.pem"

374 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.3.2. Install Root Certificate of Private Certificate Authority to Android OS's Certification Store
(Android 4.0 and later)

In the sample code of "5.4.1.3 Communicating via HTTPS with private certificate," the method to
establish HTTPS sessions to a Web server from one application using a private certificate by installing
the root certificate into the application is introduced. In this section, the method to establish HTTPS
sessions to Web servers from all applications using private certificates by installing the root
certificate into Android OS is to be introduced. Note that all you install should be certificates issued
by trusted certificate authorities including your own certificate authorities. This step can be applied
to just devices with Android 4.0 or later.

First of all, you need to copy the root certificate file "cacert.crt" to the internal storage of an Android
device. You can also get the root certificate file used in the sample code from
https://selfsigned.jssec.org/cacert.crt.

And then, you will open Security page from Android Settings and you can install the root certificate in
an Android device by doing as follows.

Figure 5.4-2 Steps to install root certificate of private certificate authority

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 375

https://selfsigned.jssec.org/cacert.crt

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.4-3 Checking if root certificate is installed or not

Once the root certificate is installed in Android OS, all applications can correctly verify every private
certificate issued by the certificate authority. The following figure shows an example when displaying
https://selfsigned.jssec.org/droid_knight.png in Chrome browser.

376 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

https://selfsigned.jssec.org/droid_knight.png

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.4-4 Once root certificate installed, private certificates can be verified correctly.

By installing the root certificate this way, even applications using the sample code "5.4.1.2
Communicating via HTTPS" can correctly connect via HTTPS to a Web server which is operated with a
private certificate.

Install root certificate

Server certificate
validation error occurs

Possible to communicate
securely and correctry

https://selfsigned.jssec.org/droid_knight.png

All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS 377

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.4.3.3. Risky Code that Disables Certificate Verification

A lot of incorrect samples (code snipets), which allow applications to continue to communicate via
HTTPS with Web servers even after certificate verification errors occur, are found on the Internet.
Since they are introduced as the way to communicate via HTTPS with a Web server using a private
certificate, there have been so many applications created by developers who have used those sample
codes by copy and paste. Unfortunately, most of them are vulnerable to man-in-the-middle attack.
As mentioned in the top of this article, "In 2012, many defects in implementation of HTTPS
communication were pointed out in Android applications", many Android applications which would
have implemented such vulnerable codes have been reported.

Several code snipets to cause vulnerable HTTPS communication are shown below. When you find this
type of code snipets, it's highly recommended to replace the sample code of "5.4.1.3 Communicating
via HTTPS with private certificate."

Risk:Case which creates empty TrustManager
 TrustManager tm = new X509TrustManager() {

 @Override
 public void checkClientTrusted(X509Certificate[] chain,
 String authType) throws CertificateException {
 // Do nothing -> accept any certificates
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain,
 String authType) throws CertificateException {
 // Do nothing -> accept any certificates
 }

 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
 };

Risk:Case which creates empty HostnameVerifier
 HostnameVerifier hv = new HostnameVerifier() {
 @Override
 public boolean verify(String hostname, SSLSession session) {
 // Always return true -> Accespt any host names
 return true;
 }
 };

Risk:Case that ALLOW_ALL_HOSTNAME_VERIFIER is used.
 SSLSocketFactory sf;
 ...
 sf.setHostnameVerifier(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

378 All rights reserved © Japan Smartphone Security Association. Communicating via HTTPS

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.5. Handling privacy data

Applications that make use of user data in smartphones must take steps to ensure that users may use
the application safely and securely without fears regarding privacy and personal data. These steps
include handling user data appropriately and asking users to choose whether or not an application
may use certain data. To this end, each application must prepare and display an application privacy
policy indicating which information the application will use and how it will use that information;
moreover, when fetching and using certain information, the application must first ask the user’s
permission. Note that application privacy policies differ from other documents that may have been
present in the past—such as “Personal Data Protection Policies” or “Terms of Use”—and must be
created separately from any such documents.

For details on the creation and execution of privacy policies, see the document “Smartphone Privacy
Initiative” and “Smartphone Privacy Initiative II” (JMIC’s SPI) released by Japan’s Ministry of Internal
Affairs and Communications (MIC).

The terminology used in this section is defined in the text and in Section “5.5.3.2Glossary of Terms“.

5.5.1. Sample Code

When preparing application privacy policy, you may use the “Tools to Assist in Creating Application
Privacy Policies 13“. These tools output two files—a summary version and a detailed version of the
application privacy policy —both in HTML format and XML format. The HTML and XML content of
these files comports with the recommendations of MIC’s SPI including features such as search tags.
In the sample code below, we will demonstrate the use of this tool to present application privacy
policy using the HTML files prepared by this tool.

13 http://www.kddilabs.jp/tech/public-tech/appgen.html

All rights reserved © Japan Smartphone Security Association. Handling privacy data 379

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.5-1 Sample of Abstract Application Privacy Policy

More specifically, you may use the following flowchart to determine which sample code to use.

Figure 5.5-2 Flow Figure to select sample code of handling privacy data

Here the phrase “broad consent” refers to a broad permission, granted by the user to the application

Start

The user data obtained will be transmitted
to an external server

Broad consent is not needed:
Applications that incorporate

application privacy policy

Both broad consent and
specific consent are granted:
Applications that incorporate

application privacy policy

Data that is difficult for the
user to change will be

transmitted to the server

Yes No

Yes No

Applications that do not
incorporate

an application privacy policy

Broad consent is granted:
Applications that incorporate

application privacy policy

Data that requires delicate handling
will be transmitted to the server

Yes No

380 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

upon the first launch of the application through display and review of the application privacy policy,
for the application to transmit user data to servers.
In contrast, the phrase “specific consent” refers to pre consent obtained immediately prior to the
transmission of specific user data.

5.5.1.1. Both broad consent and specific consent are granted: Applications that incorporate
application privacy policy

Points: (Both broad consent and specific consent are granted: Applications that incorporate
application privacy policy)
1. On first launch (or application update), obtain broad consent to transmit user data that will be

handled by the application.
2. If the user does not grant broad consent, do not transmit user data.
3. Obtain specific consent before transmitting user data that requires particularly delicate handling.
4. If the user does not grant specific consent, do not transmit the corresponding data.
5. Provide methods by which the user can review the application privacy policy.
6. Provide methods by which transmitted data can be deleted by user operations.
7. Provide methods by which transmitting data can be stopped by user operations.
8. Use UUIDs or cookies to keep track of user data.
9. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java
package org.jssec.android.privacypolicy;

import java.io.IOException;
import org.json.JSONException;
import org.json.JSONObject;
import org.jssec.android.privacypolicy.ConfirmFragment.DialogListener;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.GooglePlayServicesClient;
import com.google.android.gms.common.GooglePlayServicesUtil;
import com.google.android.gms.location.LocationClient;

import android.location.Location;
import android.os.AsyncTask;
import android.os.Bundle;
import android.content.Intent;
import android.content.IntentSender;
import android.content.SharedPreferences;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentManager;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

All rights reserved © Japan Smartphone Security Association. Handling privacy data 381

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

public class MainActivity extends FragmentActivity implements GooglePlayServicesClient.ConnectionCallbacks, GooglePl
ayServicesClient.OnConnectionFailedListener, DialogListener {
 private final String BASE_URL = "https://www.example.com/pp";
 private final String GET_ID_URI = BASE_URL + "/get_id.php";
 private final String SEND_DATA_URI = BASE_URL + "/send_data.php";
 private final String DEL_ID_URI = BASE_URL + "/del_id.php";

 private final String ID_KEY = "id";
 private final String LOCATION_KEY = "location";
 private final String NICK_NAME_KEY = "nickname";

 private final String PRIVACY_POLICY_AGREED_KEY = "privacyPolicyAgreed";

 private final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";
 private final int CONNECTION_FAILURE_RESOLUTION_REQUEST = 257;

 private String UserId = "";
 private LocationClient mLocationClient = null;

 private final int DIALOG_TYPE_COMPREHENSIVE_AGREEMENT = 1;
 private final int DIALOG_TYPE_PRE_CONFIRMATION = 2;

 private final int VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW = 1;

 private TextWatcher watchHandler = new TextWatcher() {

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 boolean buttonEnable = (s.length() > 0);

 MainActivity.this.findViewById(R.id.buttonStart).setEnabled(buttonEnable);
 }

 @Override
 public void afterTextChanged(Editable s) {
 }
 };

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Fetch user ID from serverFetch user ID from server
 new GetDataAsyncTask().execute();

 findViewById(R.id.buttonStart).setEnabled(false);
 ((TextView) findViewById(R.id.editTextNickname)).addTextChangedListener(watchHandler);

 int resultCode = GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 if (resultCode == ConnectionResult.SUCCESS) {
 mLocationClient = new LocationClient(this, this, this);
 }
 }

382 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 protected void onStart() {
 super.onStart();

 SharedPreferences pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);
 int privacyPolicyAgreed = pref.getInt(PRIVACY_POLICY_AGREED_KEY, -1);

 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {
 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha
t will be handled by the application.
 // When the application is updated, it is only necessary to renew the user’s grant of broad consent if the
 updated application will handle new types of user data.
 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.privacyPolicy, R.string.agreePrivacyPolicy,
 DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);
 dialog.setDialogListener(this);
 FragmentManager fragmentManager = getSupportFragmentManager();
 dialog.show(fragmentManager, "dialog");
 }

 // Used to obtain location data
 if (mLocationClient != null) {
 mLocationClient.connect();
 }
 }

 @Override
 protected void onStop() {
 if (mLocationClient != null) {
 mLocationClient.disconnect();
 }
 super.onStop();
 }

 public void onSendToServer(View view) {
 // *** POINT 3 *** Obtain specific consent before transmitting user data that requires particularly delicate
handling.
 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.sendLocation, R.string.cofirmSendLocation, DIA
LOG_TYPE_PRE_CONFIRMATION);
 dialog.setDialogListener(this);
 FragmentManager fragmentManager = getSupportFragmentManager();
 dialog.show(fragmentManager, "dialog");
 }

 public void onPositiveButtonClick(int type) {
 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {
 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha
t will be handled by the application.
 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();
 pref.putInt(PRIVACY_POLICY_AGREED_KEY, getVersionCode());
 pref.apply();
 } else if (type == DIALOG_TYPE_PRE_CONFIRMATION) {
 // *** POINT 3 *** Obtain specific consent before transmitting user data that requires particularly delica
te handling.
 if (mLocationClient != null && mLocationClient.isConnected()) {
 Location currentLocation = mLocationClient.getLastLocation();
 if (currentLocation != null) {
 String locationData = "Latitude:" + currentLocation.getLatitude() + ", Longitude:" + currentLocati
on.getLongitude();
 String nickname = ((TextView) findViewById(R.id.editTextNickname)).getText().toString();

All rights reserved © Japan Smartphone Security Association. Handling privacy data 383

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + "¥n - nickname : " + nickname
+ "¥n - location : " + locationData, Toast.LENGTH_SHORT).show();

 new SendDataAsyncTack().execute(SEND_DATA_URI, UserId, locationData, nickname);
 }
 }
 }
 }

 public void onNegativeButtonClick(int type) {
 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {
 // *** POINT 2 *** If the user does not grant general consent, do not transmit user data.
 // In this sample application we terminate the application in this case.
 finish();
 } else if (type == DIALOG_TYPE_PRE_CONFIRMATION) {
 // *** POINT 4 *** If the user does not grant specific consent, do not transmit the corresponding data.
 // The user did not grant consent, so we do nothing.
 }
 }

 private int getVersionCode() {
 int versionCode = -1;
 PackageManager packageManager = this.getPackageManager();
 try {
 PackageInfo packageInfo = packageManager.getPackageInfo(this.getPackageName(), PackageManager.GET_ACTIVIT
IES);
 versionCode = packageInfo.versionCode;
 } catch (NameNotFoundException e) {
 }

 return versionCode;
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_show_pp:
 // *** POINT 5 *** Provide methods by which the user can review the application privacy policy.
 Intent intent = new Intent();
 intent.setClass(this, WebViewAssetsActivity.class);
 startActivity(intent);
 return true;
 case R.id.action_del_id:
 // *** POINT 6 *** Provide methods by which transmitted data can be deleted by user operations.
 new SendDataAsyncTack().execute(DEL_ID_URI, UserId);
 return true;
 case R.id.action_donot_send_id:
 // *** POINT 7 *** Provide methods by which transmitting data can be stopped by user operations.

 // If the user stop sending data, user consent is deemed to have been revoked.
 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();
 pref.putInt(PRIVACY_POLICY_AGREED_KEY, 0);
 pref.apply();

384 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // In this sample application if the user data cannot be sent by user operations,
 // finish the application because we do nothing.
 String message = getString(R.string.stopSendUserData);
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + message, Toast.LENGTH_SHORT).
show();
 finish();

 return true;
 }

 return false;
 }

 @Override
 public void onConnected(Bundle connectionHint) {
 if (mLocationClient != null && mLocationClient.isConnected()) {
 Location currentLocation = mLocationClient.getLastLocation();
 if (currentLocation != null) {
 String locationData = "Latitude ¥t: " + currentLocation.getLatitude() + "¥n¥tLongitude ¥t: " + current
Location.getLongitude();

 String text = "¥n" + getString(R.string.your_location_title) + "¥n¥t" + locationData;

 TextView appText = (TextView) findViewById(R.id.appText);
 appText.setText(text);
 }
 }
 }

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 if (result.hasResolution()) {
 try {
 result.startResolutionForResult(this, CONNECTION_FAILURE_RESOLUTION_REQUEST);
 } catch (IntentSender.SendIntentException e) {
 e.printStackTrace();
 }
 }
 }

 @Override
 public void onDisconnected() {
 mLocationClient = null;
 }

 private class GetDataAsyncTask extends AsyncTask<String, Void, String> {
 private String extMessage = "";

 @Override
 protected String doInBackground(String... params) {
 // *** POINT 8 *** Use UUIDs or cookies to keep track of user data
 // In this sample we use an ID generated on the server side
 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);
 UserId = sp.getString(ID_KEY, null);
 if (UserId == null) {
 // No token in SharedPreferences; fetch ID from server
 try {
 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");
 } catch (IOException e) {
 // Catch exceptions such as certification errors

All rights reserved © Japan Smartphone Security Association. Handling privacy data 385

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 extMessage = e.toString();
 }

 // Store the fetched ID in SharedPreferences
 sp.edit().putString(ID_KEY, UserId).commit();
 }
 return UserId;
 }

 @Override
 protected void onPostExecute(final String data) {
 String status = (data != null) ? "success" : "error";
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T
oast.LENGTH_SHORT).show();
 }
 }

 private class SendDataAsyncTack extends AsyncTask<String, Void, Boolean> {
 private String extMessage = "";

 @Override
 protected Boolean doInBackground(String... params) {
 String url = params[0];
 String id = params[1];
 String location = params.length > 2 ? params[2] : null;
 String nickname = params.length > 3 ? params[3] : null;

 Boolean result = false;
 try {
 JSONObject jsonData = new JSONObject();
 jsonData.put(ID_KEY, id);
 if (location != null)
 jsonData.put(LOCATION_KEY, location);

 if (nickname != null)
 jsonData.put(NICK_NAME_KEY, nickname);

 NetworkUtil.sendJSON(url, "", jsonData.toString());

 result = true;
 } catch (IOException e) {
 // Catch exceptions such as certification errors
 extMessage = e.toString();
 } catch (JSONException e) {
 extMessage = e.toString();
 }
 return result;
 }

 @Override
 protected void onPostExecute(Boolean result) {
 String status = result ? "Success" : "Error";
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T
oast.LENGTH_SHORT).show();
 }
 }
}

386 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

ConfirmFragment.java
package org.jssec.android.privacypolicy;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.TextView;

public class ConfirmFragment extends DialogFragment {

 private DialogListener mListener = null;

 public static interface DialogListener {
 public void onPositiveButtonClick(int type);

 public void onNegativeButtonClick(int type);
 }

 public static ConfirmFragment newInstance(int title, int sentence, int type) {
 ConfirmFragment fragment = new ConfirmFragment();
 Bundle args = new Bundle();
 args.putInt("title", title);
 args.putInt("sentence", sentence);
 args.putInt("type", type);
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public Dialog onCreateDialog(Bundle args) {
 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data that wi
ll be handled by the application.
 // *** POINT 3 *** Obtain specific consent before transmitting user data that requires particularly delicate
handling.
 final int title = getArguments().getInt("title");
 final int sentence = getArguments().getInt("sentence");
 final int type = getArguments().getInt("type");

 LayoutInflater inflater = (LayoutInflater) getActivity().getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 View content = inflater.inflate(R.layout.fragment_comfirm, null);
 TextView linkPP = (TextView) content.findViewById(R.id.tx_link_pp);
 linkPP.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 // *** POINT 5 *** Provide methods by which the user can review the application privacy policy.
 Intent intent = new Intent();
 intent.setClass(getActivity(), WebViewAssetsActivity.class);
 startActivity(intent);
 }
 });

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

All rights reserved © Japan Smartphone Security Association. Handling privacy data 387

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 builder.setIcon(R.drawable.ic_launcher);
 builder.setTitle(title);
 builder.setMessage(sentence);
 builder.setView(content);

 builder.setPositiveButton(R.string.buttonConsent, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 if (mListener != null) {
 mListener.onPositiveButtonClick(type);
 }
 }
 });
 builder.setNegativeButton(R.string.buttonDonotConsent, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 if (mListener != null) {
 mListener.onNegativeButtonClick(type);
 }
 }
 });

 Dialog dialog = builder.create();
 dialog.setCanceledOnTouchOutside(false);

 return dialog;
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 if (activity instanceof DialogListener == false) {
 throw new ClassCastException(activity.toString() + " must implement DialogListener.");
 }
 mListener = (DialogListener) activity;
 }

 public void setDialogListener(DialogListener listener) {
 mListener = listener;
 }
}

WebViewAssetsActivity.java
package org.jssec.android.privacypolicy;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebSettings;
import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {
 // *** POINT 9 *** Place a summary version of the application privacy policy in the assets folder
 private final String ABST_PP_URL = "file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_webview);

 WebView webView = (WebView) findViewById(R.id.webView);

388 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 WebSettings webSettings = webView.getSettings();

 webSettings.setAllowFileAccess(false);

 webView.loadUrl(ABST_PP_URL);
 }
}

5.5.1.2. Broad consent is granted: Applications that incorporate application privacy policy

Points: (Broad consent is granted: Applications that incorporate application privacy policy)
1. On first launch (or application update), obtain broad consent to transmit user data that will be

handled by the application.
1. If the user does not grant broad consent, do not transmit user data.
2. Provide methods by which the user can review the application privacy policy.
3. Provide methods by which transmitted data can be deleted by user operations.
4. Provide methods by which transmitting data can be stopped by user operations.
5. Use UUIDs or cookies to keep track of user data.
6. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java
package org.jssec.android.privacypolicynopreconfirm;

import java.io.IOException;
import org.json.JSONException;
import org.json.JSONObject;
import org.jssec.android.privacypolicynopreconfirm.MainActivity;
import org.jssec.android.privacypolicynopreconfirm.R;
import org.jssec.android.privacypolicynopreconfirm.ConfirmFragment.DialogListener;

import android.os.AsyncTask;
import android.os.Bundle;
import android.content.Intent;
import android.content.SharedPreferences;
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
import android.content.pm.PackageManager.NameNotFoundException;
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentManager;
import android.telephony.TelephonyManager;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends FragmentActivity implements DialogListener {
 private final String BASE_URL = "https://www.example.com/pp";
 private final String GET_ID_URI = BASE_URL + "/get_id.php";
 private final String SEND_DATA_URI = BASE_URL + "/send_data.php";
 private final String DEL_ID_URI = BASE_URL + "/del_id.php";

All rights reserved © Japan Smartphone Security Association. Handling privacy data 389

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private final String ID_KEY = "id";
 private final String NICK_NAME_KEY = "nickname";
 private final String IMEI_KEY = "imei";

 private final String PRIVACY_POLICY_AGREED_KEY = "privacyPolicyAgreed";

 private final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";

 private String UserId = "";

 private final int DIALOG_TYPE_COMPREHENSIVE_AGREEMENT = 1;

 private final int VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW = 1;

 private TextWatcher watchHandler = new TextWatcher() {

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 boolean buttonEnable = (s.length() > 0);

 MainActivity.this.findViewById(R.id.buttonStart).setEnabled(buttonEnable);
 }

 @Override
 public void afterTextChanged(Editable s) {
 }
 };

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Fetch user ID from serverFetch user ID from server
 new GetDataAsyncTask().execute();

 findViewById(R.id.buttonStart).setEnabled(false);
 ((TextView) findViewById(R.id.editTextNickname)).addTextChangedListener(watchHandler);
 }

 @Override
 protected void onStart() {
 super.onStart();

 SharedPreferences pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);
 int privacyPolicyAgreed = pref.getInt(PRIVACY_POLICY_AGREED_KEY, -1);

 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {
 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha
t will be handled by the application.
 // When the application is updated, it is only necessary to renew the user’s grant of broad consent if the
 updated application will handle new types of user data.
 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.privacyPolicy, R.string.agreePrivacyPolicy,
 DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);
 dialog.setDialogListener(this);

390 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 FragmentManager fragmentManager = getSupportFragmentManager();
 dialog.show(fragmentManager, "dialog");
 }
 }

 public void onSendToServer(View view) {
 String nickname = ((TextView) findViewById(R.id.editTextNickname)).getText().toString();
 TelephonyManager tm = (TelephonyManager) getSystemService(TELEPHONY_SERVICE);
 String imei = tm.getDeviceId();
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + "¥n - nickname : " + nickname + ", imei =
 " + imei, Toast.LENGTH_SHORT).show();
 new SendDataAsyncTack().execute(SEND_DATA_URI, UserId, nickname, imei);
 }

 public void onPositiveButtonClick(int type) {
 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {
 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data tha
t will be handled by the application.
 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();
 pref.putInt(PRIVACY_POLICY_AGREED_KEY, getVersionCode());
 pref.apply();
 }
 }

 public void onNegativeButtonClick(int type) {
 if (type == DIALOG_TYPE_COMPREHENSIVE_AGREEMENT) {
 // *** POINT 2 *** If the user does not grant general consent, do not transmit user data.
 // In this sample application we terminate the application in this case.
 finish();
 }
 }

 private int getVersionCode() {
 int versionCode = -1;
 PackageManager packageManager = this.getPackageManager();
 try {
 PackageInfo packageInfo = packageManager.getPackageInfo(this.getPackageName(), PackageManager.GET_ACTIVIT
IES);
 versionCode = packageInfo.versionCode;
 } catch (NameNotFoundException e) {
 }

 return versionCode;
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_show_pp:
 // *** POINT 3 *** Provide methods by which the user can review the application privacy policy.
 Intent intent = new Intent();
 intent.setClass(this, WebViewAssetsActivity.class);
 startActivity(intent);
 return true;

All rights reserved © Japan Smartphone Security Association. Handling privacy data 391

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 case R.id.action_del_id:
 // *** POINT 4 *** Provide methods by which transmitted data can be deleted by user operations.
 new SendDataAsyncTack().execute(DEL_ID_URI, UserId);
 return true;
 case R.id.action_donot_send_id:
 // *** POINT 5 *** Provide methods by which transmitting data can be stopped by user operations.

 // If the user stop sending data, user consent is deemed to have been revoked.
 SharedPreferences.Editor pref = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE).edit();
 pref.putInt(PRIVACY_POLICY_AGREED_KEY, 0);
 pref.apply();

 // In this sample application if the user data cannot be sent by user operations,
 // finish the application because we do nothing.
 String message = getString(R.string.stopSendUserData);
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + message, Toast.LENGTH_SHORT).
show();
 finish();

 return true; }
 return false;
 }

 private class GetDataAsyncTask extends AsyncTask<String, Void, String> {
 private String extMessage = "";

 @Override
 protected String doInBackground(String... params) {
 // *** POINT 6 *** Use UUIDs or cookies to keep track of user data
 // In this sample we use an ID generated on the server side
 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);
 UserId = sp.getString(ID_KEY, null);
 if (UserId == null) {
 // No token in SharedPreferences; fetch ID from server
 try {
 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");
 } catch (IOException e) {
 // Catch exceptions such as certification errors
 extMessage = e.toString();
 }

 // Store the fetched ID in SharedPreferences
 sp.edit().putString(ID_KEY, UserId).commit();
 }
 return UserId;
 }

 @Override
 protected void onPostExecute(final String data) {
 String status = (data != null) ? "success" : "error";
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T
oast.LENGTH_SHORT).show();
 }
 }

 private class SendDataAsyncTack extends AsyncTask<String, Void, Boolean> {
 private String extMessage = "";

 @Override
 protected Boolean doInBackground(String... params) {

392 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 String url = params[0];
 String id = params[1];
 String nickname = params.length > 2 ? params[2] : null;
 String imei = params.length > 3 ? params[3] : null;

 Boolean result = false;
 try {
 JSONObject jsonData = new JSONObject();
 jsonData.put(ID_KEY, id);

 if (nickname != null)
 jsonData.put(NICK_NAME_KEY, nickname);

 if (imei != null)
 jsonData.put(IMEI_KEY, imei);

 NetworkUtil.sendJSON(url, "", jsonData.toString());

 result = true;
 } catch (IOException e) {
 // Catch exceptions such as certification errors
 extMessage = e.toString();
 } catch (JSONException e) {
 extMessage = e.toString();
 }
 return result;
 }

 @Override
 protected void onPostExecute(Boolean result) {
 String status = result ? "Success" : "Error";
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T
oast.LENGTH_SHORT).show();
 }
 }
}

ConfirmFragment.java
package org.jssec.android.privacypolicynopreconfirm;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.Context;
import android.content.DialogInterface;
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.TextView;

public class ConfirmFragment extends DialogFragment {

 private DialogListener mListener = null;

 public static interface DialogListener {

All rights reserved © Japan Smartphone Security Association. Handling privacy data 393

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 public void onPositiveButtonClick(int type);

 public void onNegativeButtonClick(int type);
 }

 public static ConfirmFragment newInstance(int title, int sentence, int type) {
 ConfirmFragment fragment = new ConfirmFragment();
 Bundle args = new Bundle();
 args.putInt("title", title);
 args.putInt("sentence", sentence);
 args.putInt("type", type);
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public Dialog onCreateDialog(Bundle args) {
 // *** POINT 1 *** On first launch (or application update), obtain broad consent to transmit user data that wi
ll be handled by the application.
 final int title = getArguments().getInt("title");
 final int sentence = getArguments().getInt("sentence");
 final int type = getArguments().getInt("type");

 LayoutInflater inflater = (LayoutInflater) getActivity().getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 View content = inflater.inflate(R.layout.fragment_comfirm, null);
 TextView linkPP = (TextView) content.findViewById(R.id.tx_link_pp);
 linkPP.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 // *** POINT 3 *** Provide methods by which the user can review the application privacy policy.
 Intent intent = new Intent();
 intent.setClass(getActivity(), WebViewAssetsActivity.class);
 startActivity(intent);
 }
 });

 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());
 builder.setIcon(R.drawable.ic_launcher);
 builder.setTitle(title);
 builder.setMessage(sentence);
 builder.setView(content);

 builder.setPositiveButton(R.string.buttonConsent, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 if (mListener != null) {
 mListener.onPositiveButtonClick(type);
 }
 }
 });
 builder.setNegativeButton(R.string.buttonDonotConsent, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 if (mListener != null) {
 mListener.onNegativeButtonClick(type);
 }
 }
 });

 Dialog dialog = builder.create();
 dialog.setCanceledOnTouchOutside(false);

394 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return dialog;
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 if (activity instanceof DialogListener == false) {
 throw new ClassCastException(activity.toString() + " must implement DialogListener.");
 }
 mListener = (DialogListener) activity;
 }

 public void setDialogListener(DialogListener listener) {
 mListener = listener;
 }
}

WebViewAssetsActivity.java
package org.jssec.android.privacypolicynopreconfirm;

import org.jssec.android.privacypolicynopreconfirm.R;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebSettings;
import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {
 // *** POINT 7 *** Place a summary version of the application privacy policy in the assets folder
 private final String ABST_PP_URL = "file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_webview);

 WebView webView = (WebView) findViewById(R.id.webView);
 WebSettings webSettings = webView.getSettings();

 webSettings.setAllowFileAccess(false);

 webView.loadUrl(ABST_PP_URL);
 }
}

5.5.1.3. Broad consent is not needed: Applications that incorporate application privacy policy

All rights reserved © Japan Smartphone Security Association. Handling privacy data 395

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points: (Broad consent is not needed: Applications that incorporate application privacy policy)
1. Provide methods by which the user can review the application privacy policy.
2. Provide methods by which transmitted data can be deleted by user operations.
3. Provide methods by which transmitting data can be stopped by user operations
4. Use UUIDs or cookies to keep track of user data.
5. Place a summary version of the application privacy policy in the assets folder.

MainActivity.java
package org.jssec.android.privacypolicynocomprehensive;

import java.io.IOException;
import org.json.JSONException;
import org.json.JSONObject;

import android.os.AsyncTask;
import android.os.Bundle;
import android.content.Intent;
import android.content.SharedPreferences;
import android.support.v4.app.FragmentActivity;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends FragmentActivity {
 private final String BASE_URL = "https://www.example.com/pp";
 private final String GET_ID_URI = BASE_URL + "/get_id.php";
 private final String SEND_DATA_URI = BASE_URL + "/send_data.php";
 private final String DEL_ID_URI = BASE_URL + "/del_id.php";

 private final String ID_KEY = "id";
 private final String NICK_NAME_KEY = "nickname";

 private final String PRIVACY_POLICY_PREF_NAME = "privacypolicy_preference";

 private String UserId = "";

 private TextWatcher watchHandler = new TextWatcher() {

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 boolean buttonEnable = (s.length() > 0);

 MainActivity.this.findViewById(R.id.buttonStart).setEnabled(buttonEnable);
 }

 @Override
 public void afterTextChanged(Editable s) {
 }
 };

396 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Fetch user ID from serverFetch user ID from server
 new GetDataAsyncTask().execute();

 findViewById(R.id.buttonStart).setEnabled(false);
 ((TextView) findViewById(R.id.editTextNickname)).addTextChangedListener(watchHandler);
 }

 public void onSendToServer(View view) {
 String nickname = ((TextView) findViewById(R.id.editTextNickname)).getText().toString();
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + "¥n - nickname : " + nickname, Toast.LENG
TH_SHORT).show();
 new sendDataAsyncTack().execute(SEND_DATA_URI, UserId, nickname);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_show_pp:
 // *** POINT 1 *** Provide methods by which the user can review the application privacy policy.
 Intent intent = new Intent();
 intent.setClass(this, WebViewAssetsActivity.class);
 startActivity(intent);
 return true;
 case R.id.action_del_id:
 // *** POINT 2 *** Provide methods by which transmitted data can be deleted by user operations.
 new sendDataAsyncTack().execute(DEL_ID_URI, UserId);
 return true;
 case R.id.action_donot_send_id:
 // *** POINT 3 *** Provide methods by which transmitting data can be stopped by user operations.

 // In this sample application if the user data cannot be sent by user operations,
 // finish the application because we do nothing.
 String message = getString(R.string.stopSendUserData);
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + message, Toast.LENGTH_SHORT).
show();
 finish();

 return true;
 }
 return false;
 }

 private class GetDataAsyncTask extends AsyncTask<String, Void, String> {
 private String extMessage = "";

 @Override
 protected String doInBackground(String... params) {
 // *** POINT 4 *** Use UUIDs or cookies to keep track of user data

All rights reserved © Japan Smartphone Security Association. Handling privacy data 397

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 // In this sample we use an ID generated on the server side
 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);
 UserId = sp.getString(ID_KEY, null);
 if (UserId == null) {
 // No token in SharedPreferences; fetch ID from server
 try {
 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");
 } catch (IOException e) {
 // Catch exceptions such as certification errors
 extMessage = e.toString();
 }

 // Store the fetched ID in SharedPreferences
 sp.edit().putString(ID_KEY, UserId).commit();
 }
 return UserId;
 }

 @Override
 protected void onPostExecute(final String data) {
 String status = (data != null) ? "success" : "error";
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T
oast.LENGTH_SHORT).show();
 }
 }

 private class sendDataAsyncTack extends AsyncTask<String, Void, Boolean> {
 private String extMessage = "";

 @Override
 protected Boolean doInBackground(String... params) {
 String url = params[0];
 String id = params[1];
 String nickname = params.length > 2 ? params[2] : null;

 Boolean result = false;
 try {
 JSONObject jsonData = new JSONObject();
 jsonData.put(ID_KEY, id);

 if (nickname != null)
 jsonData.put(NICK_NAME_KEY, nickname);

 NetworkUtil.sendJSON(url, "", jsonData.toString());

 result = true;
 } catch (IOException e) {
 // Catch exceptions such as certification errors
 extMessage = e.toString();
 } catch (JSONException e) {
 extMessage = e.toString();
 }
 return result;
 }

 @Override
 protected void onPostExecute(Boolean result) {
 String status = result ? "Success" : "Error";
 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + " - " + status + " : " + extMessage, T
oast.LENGTH_SHORT).show();

398 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 }
}

WebViewAssetsActivity.java
package org.jssec.android.privacypolicynocomprehensive;

import org.jssec.android.privacypolicynocomprehensive.R;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebSettings;
import android.webkit.WebView;

public class WebViewAssetsActivity extends Activity {
 // *** POINT 5 *** Place a summary version of the application privacy policy in the assets folder
 private final String ABST_PP_URL = "file:///android_asset/PrivacyPolicy/app-policy-abst-privacypolicy-1.0.html";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_webview);

 WebView webView = (WebView) findViewById(R.id.webView);
 WebSettings webSettings = webView.getSettings();

 webSettings.setAllowFileAccess(false);

 webView.loadUrl(ABST_PP_URL);
 }
}

5.5.1.4. Applications that do not incorporate an application privacy policy

Points: (Applications that do not incorporate an application privacy policy)
1. You do not need to display an application privacy policy if your application will only use the

information it obtains within the device.
2. In the documentation for marketplace applications or similar applications, note that the

application does not transmit the information it obtains to the outside world

MainActivity.java
package org.jssec.android.privacypolicynoinfosent;

import org.jssec.android.privacypolicynoinfosent.MainActivity;
import org.jssec.android.privacypolicynoinfosent.R;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.GooglePlayServicesClient;
import com.google.android.gms.location.LocationClient;

import android.location.Location;
import android.net.Uri;
import android.os.Bundle;
import android.content.Intent;

All rights reserved © Japan Smartphone Security Association. Handling privacy data 399

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

import android.content.IntentSender;
import android.support.v4.app.FragmentActivity;
import android.view.Menu;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends FragmentActivity implements GooglePlayServicesClient.ConnectionCallbacks, GooglePl
ayServicesClient.OnConnectionFailedListener {
 private LocationClient mLocationClient = null;

 private final int CONNECTION_FAILURE_RESOLUTION_REQUEST = 257;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mLocationClient = new LocationClient(this, this, this);
 }

 @Override
 protected void onStart() {
 super.onStart();

 // Used to obtain location data
 if (mLocationClient != null) {
 mLocationClient.connect();
 }
 }

 @Override
 protected void onStop() {
 if (mLocationClient != null) {
 mLocationClient.disconnect();
 }
 super.onStop();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 public void onStartMap(View view) {
 // *** POINT 1 *** You do not need to display an application privacy policy if your application will only use
the information it obtains within the device.
 if (mLocationClient != null && mLocationClient.isConnected()) {
 Location currentLocation = mLocationClient.getLastLocation();
 if (currentLocation != null) {
 Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse("geo:" + currentLocation.getLatitude() + ","
+ currentLocation.getLongitude()));
 startActivity(intent);
 }
 }
 }

 @Override
 public void onConnected(Bundle connectionHint) {

400 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 if (mLocationClient != null && mLocationClient.isConnected()) {
 Location currentLocation = mLocationClient.getLastLocation();
 if (currentLocation != null) {
 String locationData = "Latitude ¥t: " + currentLocation.getLatitude() + "¥n¥tLongitude ¥t: " + current
Location.getLongitude();

 String text = "¥n" + getString(R.string.your_location_title) + "¥n¥t" + locationData;

 Toast.makeText(MainActivity.this, this.getClass().getSimpleName() + text, Toast.LENGTH_SHORT).show();

 TextView appText = (TextView) findViewById(R.id.appText);
 appText.setText(text);
 }
 }
 }

 @Override
 public void onConnectionFailed(ConnectionResult result) {
 if (result.hasResolution()) {
 try {
 result.startResolutionForResult(this, CONNECTION_FAILURE_RESOLUTION_REQUEST);
 } catch (IntentSender.SendIntentException e) {
 e.printStackTrace();
 }
 }
 }

 @Override
 public void onDisconnected() {
 mLocationClient = null;
 Toast.makeText(this, "Disconnected. Please re-connect.", Toast.LENGTH_SHORT).show();
 }
}

All rights reserved © Japan Smartphone Security Association. Handling privacy data 401

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Description on the marketplace

Figure 5.5-3 Description on the marketplace

402 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.5.2. Rule Book

When working with private date, obey the following rules.

1. Restrict transmissions of user data to the minimum necessary (Required)
2. On first launch (or application update), obtain broad consent to transmit user data that requires

particularly delicate handling or that may be difficult for users to change (Required)
3. Obtain specific consent before transmitting user data that requires particularly delicate handling

 (Required)
4. Provide methods by which the user can review the application privacy policy (Required)
5. Place a summary version of the application privacy policy in the assets folder(Recommended)
6. Provide methods by which transmitted data can be deleted and transmitting data can be stopped

by user operations (Recommended)
7. Separate device-specific IDs from UUIDs and cookies (Recommended)
8. If you will only be using user data within the device, notify the user that data will not be

transmitted externally. (Recommended)

5.5.2.1. Restrict transmissions of user data to the minimum necessary (Required)

When transmitting usage data to external servers or other destinations, restrict transmissions to the

bare minimum necessary to provide service. In particular, you should design that applications have
access to only user data of which purpose of use the user can imagine on the basis of the application
description.

For example, an application that the user can imagine it is an alerm application, must not have
access location data. On the other hand, if an alerm application can sound the alrem depending on
the location of user and its feature is written on the description of the application, the application
may have access to location data.
In cases where information need only be accessed within an application, avoid transmitting it

externally and take other steps to minimize the possibility of inadvertent leakage of user data.

5.5.2.2. On first launch (or application update), obtain broad consent to transmit user data that
requires particularly delicate handling or that may be difficult for users to change (Required)

If an application will transmit to external servers any user data that may be difficult for users to
change, or any user data that requires particularly delicate handling, the application must obtain
advance consent (opt-in) from the user—before the user begins using the application—informing the
user of what types of information will be sent, for what purposes, to servers, and whether or not any
third-party providers will be involved. More specifically, on first launch the application should display
its application privacy policy and confirm that the user has reviewed it and consented. Also, whenever
an application is updated in such a way that it now transmits new types of user data to external
servers, it must again confirm that the user has reviewed and consented to these changes. If the user
does not consent, the application should terminate or otherwise take steps to ensure that all

All rights reserved © Japan Smartphone Security Association. Handling privacy data 403

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

functions requiring the transmission of data are disabled.

These steps serve to guarantee that users understand how their data will be handled when they use
an application, providing users with a sense of security and enhancing their trust in the application.

MainActivity.java
protected void onStart() {
 super.onStart();

 (some portions omitted)
 if (privacyPolicyAgreed <= VERSION_TO_SHOW_COMPREHENSIVE_AGREEMENT_ANEW) {
 // *** POINT *** On first launch (or application update), obtain broad consent to transmit
user data that will be handled by the application.
 // When the application is updated, it is only necessary to renew the user’s grant of broad
 consent if the updated application will handle new types of user data.

 ConfirmFragment dialog = ConfirmFragment.newInstance(
 R.string.privacyPolicy, R.string.agreePrivacyPolicy,
 DIALOG_TYPE_COMPREHENSIVE_AGREEMENT);
 dialog.setDialogListener(this);
 FragmentManager fragmentManager = getSupportFragmentManager();
 dialog.show(fragmentManager, "dialog");
 }

Figure 5.5-4 Example of broad consent

5.5.2.3. Obtain specific consent before transmitting user data that requires particularly delicate

404 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

handling (Required)

When transmitting to external servers any user data that requires particularly delicate handling, an

application must obtain advance consent (opt-in) from users for each such type of user data (or for
each feature that involves the transmission of user data); this is in addition to the need to obtain
general consent. If the user does not grant consent, the application must not transmit the
corresponding data to the external server.

This ensures that users can obtain a more thorough understanding of the relationship between an
application’s features (and the services it provides) and the transmission of user data for which the
user granted general consent; at the same time, application providers can expect to obtain user
consent on the basis of more precise decision-making.

MainActivity.java
 public void onSendToServer(View view) {
 // *** POINT *** Obtain specific consent before transmitting user data that requires particularly del
icate handling.
 ConfirmFragment dialog = ConfirmFragment.newInstance(R.string.sendLocation, R.string.cofirmSendLocat
ion, DIALOG_TYPE_PRE_CONFIRMATION);
 dialog.setDialogListener(this);
 FragmentManager fragmentManager = getSupportFragmentManager();
 dialog.show(fragmentManager, "dialog");
 }

All rights reserved © Japan Smartphone Security Association. Handling privacy data 405

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.5-5 Example of specific consent

5.5.2.4. Provide methods by which the user can review the application privacy policy (Required)

In general, the Android application marketplace will provide links to application privacy policies for
users to review before choosing to install the corresponding application. In addition to supporting
this feature, it is important for applications to provide methods by which users can review application
privacy policies after installing applications on their devices. It is particularly important to provide
methods by which users can easily review application privacy policies in cases involving consent to
transmit user data to external servers to assist users in making appropriate decisions.

MainActivity.java
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_show_pp:
 // *** POINT *** Provide methods by which the user can review the application privacy polic
y.
 Intent intent = new Intent();
 intent.setClass(this, WebViewAssetsActivity.class);
 startActivity(intent);
 return true;

406 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.5-6 Context menu to show privacy policy

5.5.2.5. Place a summary version of the application privacy policy in the assets folder

 (Recommended)

It is a good idea to place a summary version of the application privacy policy in the assets folder to
ensure that users may review it as necessary. Ensuring that the application privacy policy is present in
the assets folder not only allows users to access it easily at any time, but also avoids the risk that
users may see a counterfeit or corrupted version of the application privacy policy prepared by a
malicious third party.

5.5.2.6. Provide methods by which transmitted data can be deleted and transmitting data can be
stopped by user operations (Recommended)

It is a good idea to provide methods by which user data that has been transmitted to external

servers can be deleted at the user’s request. Similarly, in cases in which the application itself has
stored user data (or a copy thereof) within the device, it is a good idea to provide users with methods
for deleting this data. And, it is a good idea to provide methods by which transmitting user data can
be stopped at the user’s request.
This rule (recommendation) is codified by the “right to be forgotten” promoted in the EU; more

generally, in the future it seems clear that various proposals will call for further strengthening the
rights of users to have their data protected, and for this reason in these guidelines we recommend
the provision of methods for the deletion of user data unless there is some specific reason to do

All rights reserved © Japan Smartphone Security Association. Handling privacy data 407

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

otherwise. And, regarding stop transmitting data, it is the one that is defined by the point of view "Do
Not Track (deny track)" of the correspondence by the browser is progressing mainly.

MainActivity.java
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 (some portions omitted)
 case R.id.action_del_id:
 // *** POINT *** Provide methods by which transmitted data can be deleted by user operation
s.
 new SendDataAsyncTack().execute(DEL_ID_URI, UserId);
 return true;
 }

5.5.2.7. Separate device-specific IDs from UUIDs and cookies (Recommended)

IMEIs and other device-specific IDs should not be transmitted in ways that are tied to user data.
Indeed, if a device -specific ID and a piece of user data are bundled together and released or leaked
to public—even just once—it will be impossible subsequently to change that device -specific ID,
whereupon it will be impossible (or at least difficult) to sever ties between the ID and the user data. In
such cases, it is better to use UUIDs or cookies—that is, variable IDs that are regenerated each time
based on random numbers—in place of device -specific IDs when transmitting together with user
data. This allows an implementation of the notion, discussed above, of the “right to be forgotten.”

MainActivity.java
 @Override
 protected String doInBackground(String... params) {
 // *** POINT *** Use UUIDs or cookies to keep track of user data
 // In this sample we use an ID generated on the server side
 SharedPreferences sp = getSharedPreferences(PRIVACY_POLICY_PREF_NAME, MODE_PRIVATE);
 UserId = sp.getString(ID_KEY, null);
 if (UserId == null) {
 // No token in SharedPreferences; fetch ID from server
 try {
 UserId = NetworkUtil.getCookie(GET_ID_URI, "", "id");
 } catch (IOException e) {
 // Catch exceptions such as certification errors
 extMessage = e.toString();
 }

 // Store the fetched ID in SharedPreferences
 sp.edit().putString(ID_KEY, UserId).commit();
 }
 return UserId;
 }

5.5.2.8. If you will only be using user data within the device, notify the user that data will not be

transmitted externally. (Recommended)

408 All rights reserved © Japan Smartphone Security Association. Handling privacy data

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Even in cases in which user data will only be accessed temporarily within the user’s device, it is a
good idea to communicate this fact to the user to ensure that the user’s understanding of the
application’s behavior remains full and transparent. More specifically, users should be informed that
the user data accessed by an application will only be used within the device for a certain specific
purpose and will not be stored or transmitted externally. Possible methods for communicating this
content to users include specifying it within the description of the application on the application
marketplace. Information that is only used temporarily within a device need not be discussed in the
application privacy policy.

Figure 5.5-7 Description on the marketplace

All rights reserved © Japan Smartphone Security Association. Handling privacy data 409

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.5.3. Advanced Topics

5.5.3.1. Some background and context regarding privacy policies

For cases in which a smartphone application will obtain user data and transmit this data externally,

it is necessary to prepare and display an application privacy policy to inform users of details such as
the types of data will be collected and the ways in which the data will be handled. The content that
should be included in an application privacy policy is detailed in the Smartphone Privacy Initiative
advocated by JMIC’s SPI. The primary objective of the application privacy policy should be to state
clearly all types of user data that will be accessed by an application, the purposes for which the data
will be used, where the data will be stored, and to what destinations the data will be transmitted.
 A second document, separate from and required in addition to the application privacy policy, is the
Enterprise Privacy Policy, which details how all user data gathered by a corporation from its various
applications will be stored, managed, and disposed of. This Enterprise Privacy Policy corresponds to
the privacy policy that would traditionally have been prepared to comply with Japan’s Personal
Information Protection Law.
A detailed description of proper methods for preparing and displaying privacy policies, together with
a discussion of the roles played by the various different types of privacy policies, may be found in the
document “A Discussion of the Creation and Presentation of Privacy Policies for JSSEC Smartphone
Applications”, available at this URL: http://www.jssec.org/event/20140206/03-1_app_policy.pdf
(Japanese only).

5.5.3.2. Glossary of Terms

n the table below we define a number of terms that are used in these guidelines; these definitions are
taken from the document “A Discussion of the Creation and Presentation of Privacy Policies for JSSEC
Smartphone Applications” (http://www.jssec.org/event/20140206/03-1_app_policy.pdf) (Japanese
only).

Table 5.5-1
Term Description

Enterprise Privacy Policy A privacy policy that defines a corporation’s policies for protecting

personal data. Created in accordance with Japan’s Personal

Information Protection Law.

Application Privacy Policy An application-specific privacy policy.

Created in accordance with the guidelines of the Smartphone

Privacy Initiative (SPI) of Japan’s Ministry of Internal Affairs and

Communications (MIC). It is best to provide both summary and

detailed versions containing easily understandable explanations.

Summary version of the Application Privacy

Policy

A brief document that concisely summarizes what user information

an application will use, for what purpose, and whether or not this

information will be provided to third parties.

Detailed version of the Application Privacy

Policy

A detailed document that complies with the 8 items specified by the

the Smartphone Privacy Initiative (SPI) and the Smartphone Privacy

Initiative II (SPI II) of Japan’s Ministry of Internal Affairs and

Communications (MIC).

410 All rights reserved © Japan Smartphone Security Association. Handling privacy data

http://www.jssec.org/event/20140206/03-1_app_policy.pdf
http://www.jssec.org/event/20140206/03-1_app_policy.pdf

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

User data that is easy for users to change Cookies, UUIDs, etc.

User data that is difficulty for users to

change

IMEIs, IMSIs, ICCIDs, MAC addresses, OS-generated IDs, etc.

User data requiring particularly delicate

handling

Location information, address books, telephone numbers, email

addresses, etc.

All rights reserved © Japan Smartphone Security Association. Handling privacy data 411

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.6. Using Cryptography

In the security world, the terms "confidentiality", "integrity", and "availability" are used in analyzing
responses to threats. These three terms refer, respectively, to measures to prevent the third parties
from viewing private data, protections to ensure that the data referenced by users has not been
modified (or techniques for detecting when it has been falsified) and the ability of users to access
services and data at all times. All three of these elements are important to consider when designing
security protections. In particular, encryption techniques are frequently used to ensure
confidentiality and integrity, and Android is equipped with a variety of cryptographic features to
allow applications to realize confidentiality and integrity.

In this section we will use sample code to illustrate methods by which Android applications can
securely implement encryption and decryption (to ensure confidentiality) and message
authentication codes (MAC) or digital signatures (to ensure integrity).

5.6.1. Sample Code

A variety of cryptographic methods have been developed for specific purposes and conditions,
including use cases such as encrypting and decrypting data (to ensure confidentiality) and detecting
falsification of data (to ensure integrity). Here is sample code that is categorised into three broad
groups of cryptography techniques on the basis of the purpose of each technology. The features of
the cryptographic technology in each case should make it possible to choose an appropriate
encryption method and key type. For cases in which more detailed considerations are necessary, see
Section “5.6.3.1 Choosing encryption methods“.

Before designing an implementation that uses encryption technology, be sure to read Section
“5.6.3.3 Measures to Protect against Vulnerabilities in Random-Number Generators“.

 Protecting data from third-party eavesdropping

412 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 5.6-1

 Detecting falsification of data made by a third party

Figure 5.6-2

5.6.1.1. Encrypting and Decrypting With Password-based Keys

You may use password-based key encryption for the purpose of protecting a user’s confidential data
assets.

Start

Encryption / decryption using
shared-key cryptography

Encryption / decryption using
public-key cryptography

Encryption / decryption using
password-based cryptography

Need to protect important
user data

Encryption will be done on
the terminal, but decryption will be done

elsewhere in a safe place

Yes No

Yes No

Start

Detect data falsification using
shared-key cryptography

(MAC: Message Authentication Code)

Detect data falsification using
public-key cryptography

(digital signatures)

Detect data falsification using
password-based cryptography

(MAC: Message Authentication Code)

Need to protect important
user data

Signature verification will be done
on the terminal, but signing will be done

elsewhere in a safe place

Yes No

Yes No

All rights reserved © Japan Smartphone Security Association. Using Cryptography 413

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points:
1. Explicitly specify the encryption mode and the padding.
2. Use strong encryption technologies (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.
3. When generating a key from password, use Salt.
4. When generating a key from password, specify an appropriate hash iteration count.
5. Use a key of length sufficient to guarantee the strength of encryption.

AesCryptoPBEKey.java
package org.jssec.android.cryptsymmetricpasswordbasedkey;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.util.Arrays;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;

public final class AesCryptoPBEKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant criteria
), including algorithms, block cipher modes, and padding modes.
 // Parameters passed to the getInstance method of the Cipher class: Encryption algorithm, block encryption mode,
padding rule
 // In this sample, we choose the following parameter values: encryption algorithm=AES, block encryption mode=CBC,
 padding rule=PKCS7Padding
 private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";

 // A string used to fetch an instance of the class that generates the key
 private static final String KEY_GENERATOR_MODE = "PBEWITHSHAAND128BITAES-CBC-BC";

 // *** POINT 3 *** When generating a key from a password, use Salt.
 // Salt length in bytes
 public static final int SALT_LENGTH_BYTES = 20;

 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
 // Set the number of mixing repetitions used when generating keys via PBE
 private static final int KEY_GEN_ITERATION_COUNT = 1024;

 // *** POINT 5 *** Use a key of length sufficient to guarantee the strength of encryption.
 // Key length in bits
 private static final int KEY_LENGTH_BITS = 128;

 private byte[] mIV = null;
 private byte[] mSalt = null;

 public byte[] getIV() {

414 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return mIV;
 }

 public byte[] getSalt() {
 return mSalt;
 }

 AesCryptoPBEKey(final byte[] iv, final byte[] salt) {
 mIV = iv;
 mSalt = salt;
 }

 AesCryptoPBEKey() {
 mIV = null;
 initSalt();
 }

 private void initSalt() {
 mSalt = new byte[SALT_LENGTH_BYTES];
 SecureRandom sr = new SecureRandom();
 sr.nextBytes(mSalt);
 }

 public final byte[] encrypt(final byte[] plain, final char[] password) {
 byte[] encrypted = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant c
riteria), including algorithms, modes, and padding.
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 // *** POINT 3 *** When generating keys from passwords, use Salt.
 SecretKey secretKey = generateKey(password, mSalt);
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 mIV = cipher.getIV();

 encrypted = cipher.doFinal(plain);
 } catch (NoSuchAlgorithmException e) {
 } catch (NoSuchPaddingException e) {
 } catch (InvalidKeyException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (BadPaddingException e) {
 } finally {
 }

 return encrypted;
 }

 public final byte[] decrypt(final byte[] encrypted, final char[] password) {
 byte[] plain = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant c
riteria), including algorithms, block cipher modes, and padding modes.
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 // *** POINT 3 *** When generating a key from a password, use Salt.
 SecretKey secretKey = generateKey(password, mSalt);

All rights reserved © Japan Smartphone Security Association. Using Cryptography 415

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);
 cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);

 plain = cipher.doFinal(encrypted);
 } catch (NoSuchAlgorithmException e) {
 } catch (NoSuchPaddingException e) {
 } catch (InvalidKeyException e) {
 } catch (InvalidAlgorithmParameterException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (BadPaddingException e) {
 } finally {
 }

 return plain;
 }

 private static final SecretKey generateKey(final char[] password, final byte[] salt) {
 SecretKey secretKey = null;
 PBEKeySpec keySpec = null;

 try {
 // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant c
riteria), including algorithms, block cipher modes, and padding modes.
 // Fetch an instance of the class that generates the key
 // In this example, we use a KeyFactory that uses SHA1 to generate AES-CBC 128-bit keys.
 SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);

 // *** POINT 3 *** When generating a key from a password, use Salt.
 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
 // *** POINT 5 *** Use a key of length sufficient to guarantee the strength of encryption.
 keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);
 // Clear password
 Arrays.fill(password, '?');
 // Generate the key
 secretKey = secretKeyFactory.generateSecret(keySpec);
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeySpecException e) {
 } finally {
 keySpec.clearPassword();
 }

 return secretKey;
 }
}

5.6.1.2. Encrypting and Decrypting With Public Keys

In some cases, only data encryption will be performed -using a stored public key- on the application
side, while decryption is performed in a separate safe location (such as a server) under a private key.
In cases such as this, it is possible to use public-key (asymmetric-key) encryption.

416 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points:
1. Explicitly specify the encryption mode and the padding
2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.
3. Use a key of length sufficient to guarantee the strength of encryption.

RsaCryptoAsymmetricKey.java
package org.jssec.android.cryptasymmetrickey;

import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;

public final class RsaCryptoAsymmetricKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in
cluding algorithms, block cipher modes, and padding modes..
 // Parameters passed to getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padd
ing rule
 // In this sample, we choose the following parameter values: encryption algorithm=RSA, block encryption mode=NONE
, padding rule=OAEPPADDING.
 private static final String TRANSFORMATION = "RSA/NONE/OAEPPADDING";

 // encryption algorithm
 private static final String KEY_ALGORITHM = "RSA";

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption.
 // Check the length of the key
 private static final int MIN_KEY_LENGTH = 2000;

 RsaCryptoAsymmetricKey() {
 }

 public final byte[] encrypt(final byte[] plain, final byte[] keyData) {
 byte[] encrypted = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes..
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 PublicKey publicKey = generatePubKey(keyData);
 if (publicKey != null) {
 cipher.init(Cipher.ENCRYPT_MODE, publicKey);
 encrypted = cipher.doFinal(plain);

All rights reserved © Japan Smartphone Security Association. Using Cryptography 417

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }
 } catch (NoSuchAlgorithmException e) {
 } catch (NoSuchPaddingException e) {
 } catch (InvalidKeyException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (BadPaddingException e) {
 } finally {
 }

 return encrypted;
 }

 public final byte[] decrypt(final byte[] encrypted, final byte[] keyData) {
 // In general, decryption procedures should be implemented on the server side;
 // however, in this sample code we have implemented decryption processing within the application to ensure co
nfirmation of proper execution.
 // When using this sample code in real-world applications, be careful not to retain any private keys within th
e application.

 byte[] plain = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes..
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 PrivateKey privateKey = generatePriKey(keyData);
 cipher.init(Cipher.DECRYPT_MODE, privateKey);

 plain = cipher.doFinal(encrypted);
 } catch (NoSuchAlgorithmException e) {
 } catch (NoSuchPaddingException e) {
 } catch (InvalidKeyException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (BadPaddingException e) {
 } finally {
 }

 return plain;
 }

 private static final PublicKey generatePubKey(final byte[] keyData) {
 PublicKey publicKey = null;
 KeyFactory keyFactory = null;

 try {
 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
 publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));
 } catch (IllegalArgumentException e) {
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeySpecException e) {
 } finally {
 }

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption.
 // Check the length of the key
 if (publicKey instanceof RSAPublicKey) {
 int len = ((RSAPublicKey) publicKey).getModulus().bitLength();
 if (len < MIN_KEY_LENGTH) {

418 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 publicKey = null;
 }
 }

 return publicKey;
 }

 private static final PrivateKey generatePriKey(final byte[] keyData) {
 PrivateKey privateKey = null;
 KeyFactory keyFactory = null;

 try {
 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
 privateKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));
 } catch (IllegalArgumentException e) {
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeySpecException e) {
 } finally {
 }

 return privateKey;
 }
}

5.6.1.3. Encrypting and Decrypting Using Pre Shared Keys

Pre shared keys may be used when working with large data sets or to protect the confidentiality of an
application’s or a user’s assets.

Points:
1. Explicitly specify the encryption mode and the padding
2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.
3. Use a key of length sufficient to guarantee the strength of encryption.

AesCryptoPreSharedKey.java
package org.jssec.android.cryptsymmetricpresharedkey;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

public final class AesCryptoPreSharedKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in

All rights reserved © Japan Smartphone Security Association. Using Cryptography 419

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

cluding algorithms, block cipher modes, and padding modes.
 // Parameters passed to getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padd
ing rule
 // In this sample, we choose the following parameter values: encryption algorithm=AES, block encryption mode=CBC,
 padding rule=PKCS7Padding
 private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";

 // Encryption algorithm
 private static final String KEY_ALGORITHM = "AES";

 // Length of IV in bytes
 public static final int IV_LENGTH_BYTES = 16;

 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption
 // Check the length of the key
 private static final int MIN_KEY_LENGTH_BYTES = 16;

 private byte[] mIV = null;

 public byte[] getIV() {
 return mIV;
 }

 AesCryptoPreSharedKey(final byte[] iv) {
 mIV = iv;
 }

 AesCryptoPreSharedKey() {
 }

 public final byte[] encrypt(final byte[] keyData, final byte[] plain) {
 byte[] encrypted = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 SecretKey secretKey = generateKey(keyData);
 if (secretKey != null) {
 cipher.init(Cipher.ENCRYPT_MODE, secretKey);
 mIV = cipher.getIV();

 encrypted = cipher.doFinal(plain);
 }
 } catch (NoSuchAlgorithmException e) {
 } catch (NoSuchPaddingException e) {
 } catch (InvalidKeyException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (BadPaddingException e) {
 } finally {
 }

 return encrypted;
 }

 public final byte[] decrypt(final byte[] keyData, final byte[] encrypted) {
 byte[] plain = null;

420 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 SecretKey secretKey = generateKey(keyData);
 if (secretKey != null) {
 IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);
 cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);

 plain = cipher.doFinal(encrypted);
 }
 } catch (NoSuchAlgorithmException e) {
 } catch (NoSuchPaddingException e) {
 } catch (InvalidKeyException e) {
 } catch (InvalidAlgorithmParameterException e) {
 } catch (IllegalBlockSizeException e) {
 } catch (BadPaddingException e) {
 } finally {
 }

 return plain;
 }

 private static final SecretKey generateKey(final byte[] keyData) {
 SecretKey secretKey = null;

 try {
 // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption
 if (keyData.length >= MIN_KEY_LENGTH_BYTES) {
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant cr
iteria), including algorithms, block cipher modes, and padding modes.
 secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);
 }
 } catch (IllegalArgumentException e) {
 } finally {
 }

 return secretKey;
 }
}

5.6.1.4. Using Password-based Keys to Detect Data Falsification

You may use password-based (shared-key) encryption to verify the integrity of a user’s data.

All rights reserved © Japan Smartphone Security Association. Using Cryptography 421

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Points:
1. Explicitly specify the encryption mode and the padding.
2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.
3. When generating a key from a password, use Salt.
4. When generating a key from a password, specify an appropriate hash iteration count.
5. Use a key of length sufficient to guarantee the MAC strength.

HmacPBEKey.java
package org.jssec.android.signsymmetricpasswordbasedkey;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.util.Arrays;

import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;

public final class HmacPBEKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in
cluding algorithms, block cipher modes, and padding modes.
 // Parameters passed to the getInstance method of the Mac class: Authentication mode
 private static final String TRANSFORMATION = "PBEWITHHMACSHA1";

 // A string used to fetch an instance of the class that generates the key
 private static final String KEY_GENERATOR_MODE = "PBEWITHHMACSHA1";

 // *** POINT 3 *** When generating a key from a password, use Salt.
 // Salt length in bytes
 public static final int SALT_LENGTH_BYTES = 20;

 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
 // Set the number of mixing repetitions used when generating keys via PBE
 private static final int KEY_GEN_ITERATION_COUNT = 1024;

 // *** POINT 5 *** Use a key of length sufficient to guarantee the MAC strength.
 // Key length in bits
 private static final int KEY_LENGTH_BITS = 160;

 private byte[] mSalt = null;

 public byte[] getSalt() {
 return mSalt;
 }

 HmacPBEKey() {
 initSalt();
 }

 HmacPBEKey(final byte[] salt) {
 mSalt = salt;

422 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 }

 private void initSalt() {
 mSalt = new byte[SALT_LENGTH_BYTES];
 SecureRandom sr = new SecureRandom();
 sr.nextBytes(mSalt);
 }

 public final byte[] sign(final byte[] plain, final char[] password) {
 return calculate(plain, password);
 }

 private final byte[] calculate(final byte[] plain, final char[] password) {
 byte[] hmac = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 Mac mac = Mac.getInstance(TRANSFORMATION);

 // *** POINT 3 *** When generating a key from a password, use Salt.
 SecretKey secretKey = generateKey(password, mSalt);
 mac.init(secretKey);

 hmac = mac.doFinal(plain);
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeyException e) {
 } finally {
 }

 return hmac;
 }

 public final boolean verify(final byte[] hmac, final byte[] plain, final char[] password) {

 byte[] hmacForPlain = calculate(plain, password);

 if (Arrays.equals(hmac, hmacForPlain)) {
 return true;
 }
 return false;
 }

 private static final SecretKey generateKey(final char[] password, final byte[] salt) {
 SecretKey secretKey = null;
 PBEKeySpec keySpec = null;

 try {
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 // Fetch an instance of the class that generates the key
 // In this example, we use a KeyFactory that uses SHA1 to generate AES-CBC 128-bit keys.
 SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);

 // *** POINT 3 *** When generating a key from a password, use Salt.
 // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
 // *** POINT 5 *** Use a key of length sufficient to guarantee the MAC strength.
 keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);
 // Clear password

All rights reserved © Japan Smartphone Security Association. Using Cryptography 423

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 Arrays.fill(password, '?');
 // Generate the key
 secretKey = secretKeyFactory.generateSecret(keySpec);
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeySpecException e) {
 } finally {
 keySpec.clearPassword();
 }

 return secretKey;
 }

}

5.6.1.5. Using Public Keys to Detect Data Falsification

When working with data whose signature is determined using private keys stored in distinct, secure
locations (such as servers), you may utilize public-key (asymmetric-key) encryption for applications
involving the storage of public keys on the application side solely for the purpose of authenticating
data signatures.

Points:
1. Explicitly specify the encryption mode and the padding.
2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.
3. Use a key of length sufficient to guarantee the signature strength.

RsaSignAsymmetricKey.java
package org.jssec.android.signasymmetrickey;

import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

public final class RsaSignAsymmetricKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in
cluding algorithms, block cipher modes, and padding modes.
 // Parameters passed to the getInstance method of the Cipher class: Encryption algorithm, block encryption mode,
padding rule
 // In this sample, we choose the following parameter values: encryption algorithm=RSA, block encryption mode=NONE
, padding rule=OAEPPADDING.
 private static final String TRANSFORMATION = "SHA256withRSA";

 // encryption algorithm

424 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private static final String KEY_ALGORITHM = "RSA";

 // *** POINT 3 *** Use a key of length sufficient to guarantee the signature strength.
 // Check the length of the key
 private static final int MIN_KEY_LENGTH = 2000;

 RsaSignAsymmetricKey() {
 }

 public final byte[] sign(final byte[] plain, final byte[] keyData) {
 // In general, signature procedures should be implemented on the server side;
 // however, in this sample code we have implemented signature processing within the application to ensure con
firmation of proper execution.
 // When using this sample code in real-world applications, be careful not to retain any private keys within th
e application.

 byte[] sign = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 Signature signature = Signature.getInstance(TRANSFORMATION);

 PrivateKey privateKey = generatePriKey(keyData);
 signature.initSign(privateKey);
 signature.update(plain);

 sign = signature.sign();
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeyException e) {
 } catch (SignatureException e) {
 } finally {
 }

 return sign;
 }

 public final boolean verify(final byte[] sign, final byte[] plain, final byte[] keyData) {

 boolean ret = false;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 Signature signature = Signature.getInstance(TRANSFORMATION);

 PublicKey publicKey = generatePubKey(keyData);
 signature.initVerify(publicKey);
 signature.update(plain);

 ret = signature.verify(sign);

 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeyException e) {
 } catch (SignatureException e) {
 } finally {
 }

All rights reserved © Japan Smartphone Security Association. Using Cryptography 425

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return ret;
 }

 private static final PublicKey generatePubKey(final byte[] keyData) {
 PublicKey publicKey = null;
 KeyFactory keyFactory = null;

 try {
 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
 publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));
 } catch (IllegalArgumentException e) {
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeySpecException e) {
 } finally {
 }

 // *** POINT 3 *** Use a key of length sufficient to guarantee the signature strength.
 // Check the length of the key
 if (publicKey instanceof RSAPublicKey) {
 int len = ((RSAPublicKey) publicKey).getModulus().bitLength();
 if (len < MIN_KEY_LENGTH) {
 publicKey = null;
 }
 }

 return publicKey;
 }

 private static final PrivateKey generatePriKey(final byte[] keyData) {
 PrivateKey privateKey = null;
 KeyFactory keyFactory = null;

 try {
 keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
 privateKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));
 } catch (IllegalArgumentException e) {
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeySpecException e) {
 } finally {
 }

 return privateKey;
 }
}

5.6.1.6. Using Pre Shared Keys to Detect Data Falsification

You may use pre-shared keys to verify the integrity of application assets or user assets.

Points:
1. Explicitly specify the encryption mode and the padding.
2. Use strong encryption methods (specifically, technologies that meet the relevant criteria),

including algorithms, block cipher modes, and padding modes.
3. Use a key of length sufficient to guarantee the MAC strength.

426 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

HmacPreSharedKey.java
package org.jssec.android.signsymmetricpresharedkey;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;

import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

public final class HmacPreSharedKey {

 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), in
cluding algorithms, block cipher modes, and padding modes.
 // Parameters passed to the getInstance method of the Mac class: Authentication mode
 private static final String TRANSFORMATION = "HmacSHA1";

 // Encryption algorithm
 private static final String KEY_ALGORITHM = "HmacSHA1";

 // *** POINT 3 *** Use a key of length sufficient to guarantee the MAC strength.
 // Check the length of the key
 private static final int MIN_KEY_LENGTH_BYTES = 16;

 HmacPreSharedKey() {
 }

 public final byte[] sign(final byte[] plain, final byte[] keyData) {
 return calculate(plain, keyData);
 }

 public final byte[] calculate(final byte[] plain, final byte[] keyData) {
 byte[] hmac = null;

 try {
 // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criter
ia), including algorithms, block cipher modes, and padding modes.
 Mac mac = Mac.getInstance(TRANSFORMATION);

 SecretKey secretKey = generateKey(keyData);
 if (secretKey != null) {
 mac.init(secretKey);

 hmac = mac.doFinal(plain);
 }
 } catch (NoSuchAlgorithmException e) {
 } catch (InvalidKeyException e) {
 } finally {
 }

 return hmac;
 }

 public final boolean verify(final byte[] hmac, final byte[] plain, final byte[] keyData) {
 byte[] hmacForPlain = calculate(plain, keyData);

 if (hmacForPlain != null && Arrays.equals(hmac, hmacForPlain)) {

All rights reserved © Japan Smartphone Security Association. Using Cryptography 427

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 return true;
 }

 return false;
 }

 private static final SecretKey generateKey(final byte[] keyData) {
 SecretKey secretKey = null;

 try {
 // *** POINT 3 *** Use a key of length sufficient to guarantee the MAC strength.
 if (keyData.length >= MIN_KEY_LENGTH_BYTES) {
 // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant cr
iteria), including algorithms, block cipher modes, and padding modes.
 secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);
 }
 } catch (IllegalArgumentException e) {
 } finally {
 }

 return secretKey;
 }
}

428 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.6.2. Rule Book

When using encryption technology, it is important to obey the following rules.

1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the Padding

 (Required)
2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)
3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)
4. When Generating Keys from Passwords, Use Salt (Required)
5. When Generating Key from Password, Specify Appropriate Hash Iteration Count

 (Required)
6. Take Steps to Increase the Strengths of Passwords (Recommended)

5.6.2.1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the

Padding (Required)

When using cryptographic technologies such as encryption and data verification, it is important that
the encryption mode and the padding be explicitly specified. When using encryption in Android
application development, you will primarily use the Cipher class within java.crypto. To use the Cipher
class, you will first create an instance of Cipher class object by specifying the type of encryption to
use. This specification is called a Transformation, and there are two formats in which
Transformations may be specified:

 “algorithm/mode/padding”
 “algorithm”

In the latter case, the encryption mode and the padding will be implicitly set to the appropriate
default values for the encryption service provider that Android may access. These default values are
chosen to prioritize convenience and compatibility and in some cases may not be particularly secure
choices. For this reason, to ensure proper security protections it is mandatory to use the former of
the two formats, in which the encryption mode and padding are explicitly specified.

5.6.2.2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)

When using cryptographic technologies it is important to choose strong algorithms which meet
certain criteria. In addition, in cases where an algorithm allows multiple key lengths, it is important to
consider the application’s full product lifetime and to choose keys of length sufficient to guarantee
security. Moreover, for some encryption modes and padding modes there exist known strategies of
attack; it is important to make choices that are robust against such threats.

Indeed, choosing weak encryption methods can have disastrous consequences; for example, files
which were supposedly encrypted to prevent eavesdropping by a third party may in fact be only
ineffectually protected and may allow third-party eavesdropping. Because the continual progress of
IT leads to continual improvements in encryption-analysis technologies, it is crucial to consider and
select algorithms that can guarantee security throughout the entire period during which you expect
All rights reserved © Japan Smartphone Security Association. Using Cryptography 429

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

an application to remain in operation.

Standards for actual encryption technologies differ from country to country, as detailed in the tables
below.

Table 5.6-1 NIST(USA) NIST SP800-57

Algorithm
Lifetime

Symmetric-key
encryption

Asymmetric-key
encryption

Elliptic-curve
encryption

HASH
(digital
signature,
HASH)

HASH (HMA, KD,
random-number
generation)

～2010 80 1024 160 160 160
～2030 112 2048 224 224 160
2030～ 128 3072 256 256 160

Unit:bit

Table 5.6-2 ECRYPT II (EU)
Algorithm lifetime Symmetric-key

encryption
Asymmetric-key
encryption

Elliptic-curve
encryption

HASH

2009～2012 80 1248 160 160
2009～2020 96 1776 192 192
2009～2030 112 2432 224 224
2009～2040 128 3248 256 256
2009～ 256 15424 512 512

Unit:bit

Table 5.6-3 CRYPTREC(Japan) CRYPTREC Ciphers List
Technology family Name

Public-key
cryptography

Signature DSA,ECDSA,RSA-PSS,RSASSA-PKCS1-V1_5
Confidentiality RSA-OAEP
Key sharing DH,ECDH

Shared-key
cryptography

64 bit block
encryption

3-key Triple DES

128 bit block
encryption

AES,Camellia

Stream encryption KCipher-2
Hash function SHA-256,SHA-384,SHA-512

Encrpytion usage
mode

Cipher mode CBC,CFB,CTR,OFB
Authenticated
cipher modes

CCM,GCM

Message authentication codes CMAC,HMAC
Entity authentication ISO/IEC 9798-2,ISO/IEC 9798-3

430 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.6.2.3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)

In password-based encryption, when generating an encryption key based on a password input by a
user, do not store the password within the device. The advantage of password-based encryption is
that it eliminates the need to manage encryption keys; storing the password on the device eliminates
this advantage. Needless to say, storing passwords on a device invites the risk of eavesdropping by
other applications, and thus storing passwords on devices is also unacceptable for security reasons.

5.6.2.4. When Generating Keys from Passwords, Use Salt (Required)

In password-based encryption, when generating an encryption key based on a password input by a
user, always use Salt. In addition, if you are providing features to different users within the same
device, use a different Salt for each user. The reason for this is that, if you generate encryption keys
using only a simple hash function without using Salt, the passwords may be easily recovered using a
technique known as a “rainbow table.” When Salt is applied, keys generated from the same password
will be distinct (different hash values), preventing the use of a rainbow table to search for keys.

(Sample) When generating keys from passwords, use salt
 public final byte[] encrypt(final byte[] plain, final char[] password) {
 byte[] encrypted = null;

 try {
 // *** POINT *** Explicitly specify the encryption mode and the padding.
 // *** POINT *** Use strong encryption methods (specifically, technologies that meet the re
levant criteria), including algorithms, block cipher modes, and padding modes.
 Cipher cipher = Cipher.getInstance(TRANSFORMATION);

 // *** POINT *** When generating keys from passwords, use Salt.
 SecretKey secretKey = generateKey(password, mSalt);

5.6.2.5. When Generating Key from Password, Specify Appropriate Hash Iteration Count

 (Required)

In password-based encryption, when generating an encryption key based on a password input by a
user, you will choose a number of times for the hashing procedure to be repeated during the process
of key generation (“stretching”); it is important to specify this number large enough to ensure
security. In general, the iteration count equal to 1,000 or greater is considered sufficient. If you are
using the key to protect even more valuable assets, specify a count equal to 1,000,000 or greater.
Because the processing time required for a single computation of the hash function is minuscule, it
may be easy for attackers to launch brute-force attacks. Thus, by using the stretching method - in
which hash processing is repeated many times - we can purposely ensure that the process consumes
significant time and thus that brute-force attacks are more costly. Note that the number of stretching
repetitions will also affect your application’s processing speed, so take care in choosing an
appropriate value.

(Sample) When generating key from password, Set hash iteration counts
 private static final SecretKey generateKey(final char[] password, final byte[] salt) {
 SecretKey secretKey = null;

All rights reserved © Japan Smartphone Security Association. Using Cryptography 431

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 PBEKeySpec keySpec = null;

 (Omit)

 // *** POINT *** When generating a key from password, use Salt.
 // *** POINT *** When generating a key from password, specify an appropriate hash iteration
 count.
 // *** POINT *** Use a key of length sufficient to guarantee the strength of encryption.
 keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);

5.6.2.6. Take Steps to Increase the Strengths of Passwords (Recommended)

In password-based encryption, when generating an encryption key based on a password input by a
user, the strength of the generated key is strongly affected by the strength of the user’s password,
and thus it is desirable to take steps to strengthen the passwords received from users. For example,
you might require that passwords be at least 8 characters long and contain multiple types of
characters—perhaps at least one letter, one numeral, and one symbol.

432 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

5.6.3. Advanced Topics

5.6.3.1. Choosing encryption methods

In the above sample codes, we showed implementation examples involving three types of
cryptographic methods each for encryption and decryption and for detecting data falsification. You
may use “Figure 5.6-1“, “Figure 5.6-2“ to make a coarse-grained choice of which cryptographic
method to use based on your application. On the other hand, more fine-tuned choices of
cryptographic methods require more detailed comparisons of the features of various methods. In
what follows we consider some of these comparisons.

 Comparison of cryptographic methods for encryption and decryption

Public-key cryptography has high processing cost and thus is not well suited for large-scale data
processing. However, because the keys used for encryption and for decryption are different, it is
relatively easy to manage keys in cases where you handle only the public key on the application side
(i.e. you only perform encryption) and perform decryption in a separate (secure) location. Shared-key
cryptography is an all-purpose encryption scheme with few limitations, but in this case the same key
is used for encryption and decryption, and thus it is necessary to store the key securely within the
application, making key management difficult. Password-based cryptography (shared-key
cryptography based on a password) generates keys from user-specified passwords, obviating the
need to store key-related secrets within devices. This method is used for applications protecting only
user assets but not application assets. Because the strength of the encryption depends on the
strength of the password, it is necessary to choose passwords whose complexity grows in proportion
to the value of assets to be protected. Please refer to “5.6.2.6 Take Steps to Increase the Strengths of
Passwords (Recommended)“.

Talbe 5.6-4 Comparison of cryptographic methods for encryption and decryption
Encryption method

Item

Public key Shared key Password-based

Processing of large-scale
data

NO (processing cost
too high)

OK OK

Protecting application (or
service) assets

OK OK NO (allows
eavesdropping by
users)

Protecting user assets OK OK OK
Strength of encryption Depends on key

length
Depends on key
length

Depends on strength
of password, on Salt,
and on the number of
hash repetitions

Key storage Easy (only public keys) Difficult Easy
Processing carried out by
application

Encryption (decryption
is done on servers or

Encryption and
decryption

Encryption and
decryption

All rights reserved © Japan Smartphone Security Association. Using Cryptography 433

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

elsewhere)

 Comparison of cryptographic methods for detecting data falsification

The comparison here is similar to that discussed above for encryption and decryption, with the
exception that that table item corresponding to data size is no longer relevant.

Table 5.6-5 Comparison of cryptographic methods for detecting data falsification
Encryption method

Item

Public key Shared key Password-based

Protecting application (or
service) assets

OK OK NO (allows
falsification by
users)

Protecting user assets OK OK OK
Strength of encryption Depends on key

length
Depends on key
length

Depends on strength
of password, on Salt,
and on the number of
hash repetitions

Key storage Easy (only public keys) Difficult
Please refer to
“5.6.3.4Protecting
Key“

Easy

Processing carried out by
application

Signature verification
(signing is done on
servers or elsewhere)

MAC computation;
MAC verification

MAC computation;
MAC verification

MAC: Message authentication code

Note that these guidelines are primarily concerned with the protection of assets deemed low-level or
medium-level assets according to the classification discussed in Section “3.1.3 Asset Classification
and Protective Countermeasures“. Because the use of encryption involves the consideration of a
greater number of issues—such as the problem of key storage—than other preventative measures
(such as access controls), encryption should only be considered for cases in which assets cannot be
adequately protected within the Android OS security mode.

5.6.3.2. Generation of random numbers

When using cryptographic technologies, it is extremely important to choose strong encryption
algorithms and encryption modes and sufficiently long keys in order to ensure the security of the
data handled by applications and services. However, even if all of these choices are made
appropriately, the strength of the security guaranteed by the algorithms in use plummets
immediately to zero when the keys that form the linchpin of the security protocol are leaked or
guessed.
434 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Even for the initial vector (IV) used for shared-key encryption under AES and similar protocols, or the
Salt used for password-based encryption, large biases can make it easy for third parties to launch
attacks, heightening the risk of exposure to data leakage or corruption. To prevent such situations, it
is necessary to generate keys and IVs in such a way as to make it difficult for third parties to guess
their values, and random numbers play an immensely important role in ensuring the realization of
this imperative. A device that generates random numbers is called a random-number generator.
Whereas hardware random-number generators (RNGs) may use sensors or other devices to produce
random numbers by measuring natural phenomena that cannot be predicted or reproduced, it is
more common to encounter software-implemented random-number generators, known as
pseudorandom-number generators (PRNGS).

In Android applications, random numbers of sufficient security for use in encryption may be
generated via the SecureRandom class. The functionality of the SecureRandom class is provided by
an implementation known as Provider. It is possible for multiple Providers (implementations) to exist
internally, and if no Provider is clearly specified than the default Provider will be selected. For this
reason, it is also possible to use SecureRandom in implementation without being aware of the
existence of Providers. In what follows we offer examples to demonstrate the use of SecureRandom.

Note that SecureRandom may exhibit a number of weaknesses depending on the Android version,
requiring preventative measures to be put in place in implementations. Please refer to “5.6.3.3

Measures to Protect against Vulnerabilities in Random-Number Generators“.

Using SecureRandom (using the default implementation)
import java.security.SecureRandom;
(snip...)
 SecureRandom random = new SecureRandom();
 byte[] randomBuf = new byte [128];

 random.nextBytes(randomBuf);
(snip...)

Using SecureRandom (with explicit specification of the algorithm)
import java.security.SecureRandom;
(snip...)
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
 byte[] randomBuf = new byte [128];

 random.nextBytes(randomBuf);
(snip...)

Using SecureRandom (with explicit specification of the implementation (Provider))
import java.security.SecureRandom;
(snip...)
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG", “Crypto”);
 byte[] randomBuf = new byte [128];

 random.nextBytes(randomBuf);
(snip...)

All rights reserved © Japan Smartphone Security Association. Using Cryptography 435

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

The pseudorandom-number generators found in programs like SecureRandom typically operate on
the basis of a process like that illustrated in “Figure 5.6-3 Inner process of pseudorandom number
generator“. A random number seed is entered to initialize the internal state; thereafter, the internal
state is updated each time a random number is generated, allowing the generation of a sequence of
random numbers.

Figure 5.6-3 Inner process of pseudorandom number generator

Random number seeds

The seed plays an extremely important role in a pseudorandom number generator (PRNG).

As noted above, PRNGs must be initialized by specifying a seed. Thereafter, the process used to
generate random numbers is a deterministic algorithm, so if you specify the same seed you will get
the same sequence of random numbers. This means that if a third party gains access to (that is,
eavesdrops upon) or guesses the seed of a PRNG, he can produce the same sequence of random
numbers, thus destroying the properties of confidentiality and integrity that the random numbers
provide.

For this reason, the seed of a random number generator is itself a highly confidential piece of
information—and one which must be chosen in such a way as to be impossible to predict or guess.
For example, time information or device-specific data (such as a MAC address, IMEI, or Android ID)
should not be used to construct RNG seeds. On many Android devices, /dev/urandom or
/dev/random is available, and the default implementation of SecureRandom provided by Android
uses these device files to determine seeds for random number generators. As far as confidentiality is
concerned, as long as the RNG seed exists only in memory, there is little risk of discovery by third
parties with the exception of malware tools that acquire root privileges. If you need to implement
security measures that remain effective even on rooted devices, consult an expert in secure design
and implementation.

The internal state of a pseudorandom number generator

The internal state of a pseudorandom number generator is initialized by the seed, then updated each
time a random number is generated. Just as for the case of PRNGs initialized by the same seed, two
PRNGs with the same internal state will subsequently produce precisely the same sequence of
random numbers. Consequently, it is also important to protect the internal state against

Seed Internal
state

Random
number

Random-
number

generation

Update internal state

436 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

eavesdropping by third parties. However, because the internal state exists in memory, there is little
risk of discovery by third parties except in cases involving malware tools that acquire root access. If
you need to implement security measures that remain effective even on rooted devices, consult an
expert in secure design and implementation.

5.6.3.3. Measures to Protect against Vulnerabilities in Random-Number Generators

The “Crypto” Provider implementation of SecureRandom, found in Android versions 4.3.x and earlier,
suffered from the defect of insufficient entropy (randomness) of the internal state. In particular, in
Android versions 4.1.x and earlier, the “Crypto” Provider was the only available implementation of
SecureRandom, and thus most applications that use SecureRandom either directly or indirectly were
affected by this vulnerability. Similarly, the “AndroidOpenSSL” Provider offered as the default
implementation of SecureRandom in Android versions 4.2 and later exhibited the defect that the
majority of the data items used by OpenSSL as random-number seeds were shared between
applications (Android versions 4.2.x—4.3.x), creating a vulnerability in which any one application can
easily predict the random numbers generated by other applications. The table below details the
impact of the vulnerabilities present in various versions of Android OS.

Table 5.6-6 Android OS version and feature influenced by each vulnerabilities
Vulnerability

Android OS

Insufficient entropy in the
“Crypto” Provider implementation
of SecureRandom

Can guess the random number seeds
used by OpenSSL in other applications

Android 4.1.x and
before

-Default implementation of
SecureRandom
-Explicit use of Crypto Provider
-Encryption functionality
provided by the Cipher class
-HTTPS communication
functionality, etc.

No impact

Android 4.2 - 4.3.x -Use a clearly identified Crypto
Provider

-Default implementation of
SecureRandom
-Explicit use of AndroidOpenSSL Provider
-Direct use of random-number
generation functionality provided by
OpenSSL
-Encryption functionality provided by the
Cipher class
-HTTPS communication functionality,
etc.

Android 4.4 and
later

No impact No impact

Since August 2013, patches that remove these Android OS vulnerabilities have been distributed by
Google to its partners (device makers, etc.)

All rights reserved © Japan Smartphone Security Association. Using Cryptography 437

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

However, these vulnerabilities associated with SecureRandom affected a wide range of
applications—including encryption functionality and HTTPS communication functionality—and
presumably many devices remain unpatched. For this reason, when designing applications targeted
at Android 4.3.x and earlier, we recommend that you incorporate the countermeasures
(implementations) discussed in the following site.

http://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html

5.6.3.4. Protecting Key

When using encryption techniques to ensure the security (confidentiality and integrity) of sensitive
data, even the most robust encryption algorithm and key lengths will not protect data from
third-party attacks if the data content of the keys themselves are readily available. For this reason,
the proper handling of keys is among the most important items to consider when using encryption.
Of course, depending on the level of the assets you are attempting to protect, the proper handling of
keys may require extremely sophisticated design and implementation techniques which exceed the
scope of these guidelines. Here we can only offer some basic ideas regarding the secure handling of
keys for various applications and key storage locations; our discussion does not extend to specific
implementation methods, and as necessary we recommend that you consult an expert in secure
design and implementation for Android.

To begin, “Figure 5.6-4 Places of encrypt keys and strategies for protecting them.“ illustrates the
various places in which keys used for encryption and related purposes in Android smartphones and
tablets may exist, and outlines strategies for protecting them.

Figure 5.6-4 Places of encrypt keys and strategies for protecting them.

The table below summarizes the asset classes of the assets protected by keys, as well as the

Application directory
(/data/data/<app>/)

Application process

Memory

External memory device
(e.g. SD cards)Encrypti

on /
obfuscati

on

Password

Protected
by user’s
memory

APK file

Obfuscat
ion

Prevent access
from other
applications

and/or encrypt
/ obfuscate

438 All rights reserved © Japan Smartphone Security Association. Using Cryptography

http://android-developers.blogspot.jp/2013/08/some-securerandom-thoughts.html

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

protection policies appropriate for various asset owners. For more information on asset classes,
please refer to “3.1.3 Asset Classification and Protective Countermeasures“.

Table 5.6-7 Asset classification and protective countermeasures

Asset owner Device User Application / Service Provider
Asset level High Medium / Low High Medium / Low
Key storage
location

Protection policy

User’s memory Improve password strength Disallow the use of user
passwords

Application
directory
(non-public
storage)

Encryption or
obfuscation of
key data

Forbid
read/write
operations
from outside
the application

Encryption or
obfuscation of
key data

Forbid
read/write
operations
from outside
the application

APK file Obfuscation of key data
Note: Be aware that most Java obfuscation tools, such as Proguard, do
not obfuscate data (character) strings.

SD card or
elsewhere (public
storage)

Encryption or obfuscation of key data

In what follows, we will augment the discussion of protective measures appropriate for the various
places in which keys may be stored.

Keys stored in a user’s memory

Here we are considering password-based encryption. When keys are generated from passwords, the
key storage location is the user’s memory, so there is no danger of leakage due to malware. However,
depending on the strength of the password, it may be easy to reproduce keys. For this reason, it is
necessary to take steps—similar to those taken when asking users to specify service login
passwords—to ensure the strength of passwords; for example, passwords may be restricted by the UI,
or warning messages may be used. Please refer to “5.6.2.6 Take Steps to Increase the Strengths of
Passwords (Recommended)“. Of course, when passwords are stored in a user’s memory one must
keep in mind the possibility that the password will be forgotten. To ensure that data may be
recovered in the event of a forgotten password, it is necessary to store backup data in a secure
location other than the device (for example, on a server).

Keys stored in application directories

When keys are stored in Private mode in application directories, the key data cannot be read by other
applications. In addition, if the application has disabled backup functionality, users will also be
unable to access the data. Thus, when storing keys used to protect application assets in application
directories, you should disable backups.
All rights reserved © Japan Smartphone Security Association. Using Cryptography 439

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

However, if you also need to protect keys from applications or users with root privileges, you must
encrypt or obfuscate the keys. For keys used to protect user assets, you may use password-based
encryption. For keys used to encrypt application assets that you wish to keep private from users as
well, you must store the key used for key encryption in an APK file, and the key data must be
obfuscated.

Keys stored in APK Files

Because data in APK files may be accessed, in general this is not an appropriate place to store
confidential data such as keys. When storing keys in APK files, you must obfuscate the key data and
take steps to ensure that the data may not be easily read from the APK file.

Keys stored in public storage locations (such as SD cards)

Because public storage can be accessed by all applications, in general it is not an appropriate place to
store confidential data such as passwords. When storing keys in public locations, it is necessary to
encrypt or obfuscate the key data to ensure that the data cannot be easily accessed. See also the
protections suggested above under “Keys stored in application directories” for cases in which keys
must also be protected from applications or users with root privileges.

Handling of keys within process memory

When using the cryptographic technologies available in Android, key data that have been encrypted
or obfuscated somewhere other than the application process shown in the figure above must be
decrypted (or, for password-based keys, generated) in advance of the encryption procedure; in this
case, key data will reside in process memory in unencrypted form. On the other hand, the memory of
an application process may not generally be read by other applications, so if the asset class falls
within the range covered by these guidelines there is no particular need to take specific steps to
ensure security. In cases where—due to the specific objective in question or to the level of the assets
handled by an application—it is unacceptable for key data to appear in unencrypted form (even
though they are present that way in process memory), it may be necessary to resort to obfuscation or
other techniques for key data and encryption logic. However, these methods are difficult to realize at
the Java level; instead, you will use obfuscation tools at the JNI level. Such measures fall outside the
scope of these guidelines; consult an expert in secure design and implementation.

440 All rights reserved © Japan Smartphone Security Association. Using Cryptography

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

6. Difficult Problems

In Android, there are some problems that it is difficult to assure a security by application
implementation due to a specification of Android OS or a function which Android OS provides. By
being abused by the malicious third party or used by users carelessly, these functions are always
holding risks that may lead to security problems like information leakage. In this chapter, by
indicating risk mitigation plans that developers can take against these functions, some topics that
needs calling attentions, are picked up as articles.

6.1. Risk of Information Leakage from Clipboard

Copy & paste are the functions which users often use in a casual manner. For example, not a few
users use these functions to store curious information or important information to remember in a
mail or a web page into a notepad, or to copy and to paste a password from a notepad in which
passwords are stored in order not to forget in advance. These are very casual actions at a glance, but
actually there's a hidden risk that user handling information may be stolen.

The risk is related to mechanism of copy & paste in Android system. The information which was
copied by user or application, is once stored in the buffer called Clipboard. The information stored in
Clipboard is distributed to other applications when it is pasted by a user or an application. So there is
a risk which leads to information leakage in this Clipboard function. It is because the entity of
Clipboard is single in a system and any application can obtain the information stored in Clipboard at
any time by using ClipboardManager. It means that all the information which user copied/cut, is
leaked out to the malicious application.

Hence, application developers need to take measures to minimize the possibility of information
leakage, considering the Android OS specifications.

6.1.1. Sample Code

Roughly speaking, there are two outlooks of counter-measures to mitigate the risk of information
leakage form Clipboard.

1. Counter-measure when copying from other applications to your application.
2. Counter-measure when copying from your application to other applications.

Firstly, let us discuss the countermeasure 1 above. Supposing that a user copies character strings
from other applications like note pad, Web browser or mailer application, and then paste it to
EditText in your application. As it turns out, there's no basic counter-measure to prevent from
sensitive information leakage due to copy & paste, in this scenario. Since there's no function in
Android to control copy operations by the third party application.

So, regarding the countermeasure 1, there's no method other than explaining users the risk of
copying & pasting sensitive information, and just continuing to enlighten users to decrease the
All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 441

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

actions themselves continuously.

Next discussion is the countermeasure 2 above, supposing that the scenario that a user copies
sensitive information displayed in your application. In this case, the sound counter-measure for
leakage is to prohibit copying/cutting operations from View (TextView, EditText etc). If there are no
copy/cut functions in View where the sensitive information (like personal information) is
input/output, information leakage will never happen from your application via Clipboard.

There are several methods to prohibit copying/cutting. This section herein describes the easy and
effective methods: One method is to disable long press View and another method is to delete
copy/cut items from menu when selecting character string. "OK" in Table 6.1-1 stands for realizable,
and "NG" stands for unrealizable. As per shown in Table 6.1-1, pay attention that copy/cut item
cannot be deleted from the menu of character string selection in the case of API level is 10 or earlier.

Table 6.1-1Method to prohibit copying/cutting in View which sensitive information is input/output

Necessary of counter-measure can be determined as per the flow of Figure 6.1-1. In Figure 6.1-1,
"Input type is fixed to Password attribute" means, the input type is necessarily either of the followings
three when application is running. In this case, no counter-measures are required since copy/cut are
prohibited as default.

 InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD
 InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_WEB_PASSWORD
 InputType.TYPE_CLASS_NUMBER | InputType.TYPE_NUMBER_VARIATION_PASSWORD

API Level Disabling LongClick View
Delete copy/cut item from
menu when character
strings selected

10 or eariler OK NG
11 or later OK OK

442 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Figure 6.1-1Decision flow of counter-measure is required or not.

The following subsections detail each countermeasure shown in Table 6.1-1 along with sample
codes.

6.1.1.1. Delete copy/cut from the menu when character string selection

TextView.setCustomSelectionActionMODECallback() method cannot be used in before Android
3.0(API Level 11). In this case, the easiest method to prohibit copying/cutting is to disable Long Click
View. Disabling Long Click View can be specified in layout xml file.

Sample code to delete copy/cut item from menu of character string selection in EditText, is shown as
per below.

Points:
1. Delete android.R.id.copy from the menu of character string selection.
2. Delete android.R.id.cut from the menu of character string selection.

UncopyableActivity.java
package org.jssec.android.clipboard.leakage;

import android.app.Activity;
import android.os.Bundle;
import android.support.v4.app.NavUtils;
import android.view.ActionMode;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.EditText;

Start

Input/Output
the sensitive information?

No Counter-measure needed

No

Yes

Prohibit copy/cut

Is input type of view
fixed to password attribute?

Yes No

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 443

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

public class UncopyableActivity extends Activity {
 private EditText copyableEdit;
 private EditText uncopyableEdit;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.uncopyable);

 copyableEdit = (EditText) findViewById(R.id.copyable_edit);
 uncopyableEdit = (EditText) findViewById(R.id.uncopyable_edit);
 // When API Level 11 and more, by setCustomSelectionActionMODECallback method,
 // Possible to customize menu of character string selection.
 uncopyableEdit.setCustomSelectionActionModeCallback(actionModeCallback);
 }

 private ActionMode.Callback actionModeCallback = new ActionMode.Callback() {
 public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
 return false;
 }

 public void onDestroyActionMode(ActionMode mode) {
 }

 public boolean onCreateActionMode(ActionMode mode, Menu menu) {
 // *** POINT 1 *** Delete android.R.id.copy from the menu of character string selection.
 MenuItem itemCopy = menu.findItem(android.R.id.copy);
 if (itemCopy != null) {
 menu.removeItem(android.R.id.copy);
 }
 // *** POINT 2 *** Delete android.R.id.cut from the menu of character string selection.
 MenuItem itemCut = menu.findItem(android.R.id.cut);
 if (itemCut != null) {
 menu.removeItem(android.R.id.cut);
 }
 return true;
 }

 public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
 return false;
 }
 };

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.uncopyable, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 NavUtils.navigateUpFromSameTask(this);
 return true;
 }
 return super.onOptionsItemSelected(item);
 }

444 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

}

6.1.1.2. Disable Long Click View

TextView.setCustomSelectionActionMODECallback() method cannot be used in before Android 3.0
(API Level 11). In this case, the easiest method to prohibit copying/cutting is to disable Long Click
View. Disabling Long Click View can be specified in layout xml file.

Point:
1. Set false to android:longClickable in View to prohibit copy/cut.

unlongclickable.xml
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/unlongclickable_description" />

 <!-- EditText to prohibit copy/cut EditText -->
 <!-- *** POINT 1 *** Set false to android:longClickable in View to prohibit copy/cut. -->
 <EditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:longClickable="false"
 android:hint="@string/unlongclickable_hint" />
</LinearLayout>

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 445

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

6.1.2. Rule Book

Follow the rule below when copying sensitive information from your application to other
applications.

1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

6.1.2.1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

If there's a View which displays sensitive information in an application and besides the information is
allowed to be copied/cut like EditText in the View, the information may be leaked via Clipboard.
Therefore, copy/cut must be disabled in View where sensitive information is displayed.

There are two methods to disable copy/cut. One method is to delete items of copy/cut from menu of
character string selection, and another method is to disable Long Click View. The former method can
be achieved by using setCustomSelectionActionMODECallback() method in Android 3.0 (API Level 11)
and later version. And the latter one can be achieved in whatever before and after Android 3.0 (API
Level 11).

Please refer to "6.1.3.1 Precautions When Applying Rules."

446 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

6.1.3. Advanced Topics

6.1.3.1. Precautions When Applying Rules

In TextView, selecting character string is impossible as default, so normally no counter-measure is
required, but in some cases copying is possible depends on application's specifications. In
Android3.0(API Level 11) and later, possible to select/copy character strings or not can be
dynamically set by using TextView.setTextIsSelectable() method. When setting copying possible in
TextView, investigate the possibility that any sensitive information is displayed in TextView, and if
there are any possibilities, it should not be set as possible to copy.

In addition, described in the decision flow of "6.1.1Sample Code" regarding EditText which is input
type (InputType.TYPE_CLASS_TEXT | InputType.TYPE_TEXT_VARIATION_PASSWORD etc), supposing
password input, normally any counter-measures are not required since copying character strings are
prohibited as default. However, as described in "5.1.2.2 Provide the Option to Display Password in a
Plain Text (Required)," when the option to [display password in a plain text] is prepared, in case of
displaying password in a plain text, input type will change and copy/cut is enabled. So the same
counter-measure should be required.

Note that, developers should also take usability of application into consideration when applying rules.
For example, in the case of View which user can input text freely, if copy/cut is disabled because
there is the slight possibility that sensitive information is input, users may feel inconvenience. Of
course, the rule should unconditionally be applied to View which treats highly important information
or independent sensitive information, but in the case of View other than those, the following
questions will help developers to understand how properly to treat View.

 Prepare some other component for the exclusive use of sensitive information
 Send information with alternative methods when the pasted-to application is obvious
 Call users for cautions about inputting/outputting information
 Reconsider the necessity of View

The root cause of the information leakage risk is that the specifications of Clipboard and
ClipboardManager in Android OS leave the security risk out of consideration. Application developers
need to create higher quality applications in terms of user integrity, usability, functions, and so forth.

6.1.3.2. Operating Information Stored in Clipboard

As mentioned in "6.1 Risk of Information Leakage from Clipboard," an application can manipulate
information stored in Clipboard by using ClipboardManager. In addition, there is no need to set
particular Permission for using ClipboardManager and thus the application can use
ClipboardManager without being recognized by user.

Here is how to realize the above mentioned implementation in API Level 11 and later, for your
reference.

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 447

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

Information, called ClipData, stored in Clipboard can be obtained with
ClipboardManager.getPrimaryClip() method. If a listener is registered to ClipboardManager by
ClipboardManager.addPrimaryClipChangedListener() method implementing
OnPrimaryClipChangedListener, the listener is called every time copy/cut operations occurred by
user. Therefore ClipData can be got without overlooking the timing. Listener call is executed when
copy/cut operations occur in any application regardless.

The following shows the source code of Service, which gets ClipData whenever copy/cut is executed
in a device and displays it through Toast. You can realize that information stored in Clipboard is
leaked out doe to simple codes as follows. It's necessary to pay attention that the sensitive
information is not taken at least by the following source code.

ClipboardListeningService.java
package org.jssec.android.clipboard;

import android.app.Service;
import android.content.ClipData;
import android.content.ClipboardManager;
import android.content.ClipboardManager.OnPrimaryClipChangedListener;
import android.content.Context;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import android.widget.Toast;

public class ClipboardListeningService extends Service {
 private static final String TAG = "ClipboardListeningService";
 private ClipboardManager mClipboardManager;

 @Override
 public IBinder onBind(Intent arg0) {
 return null;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 mClipboardManager = (ClipboardManager) getSystemService(Context.CLIPBOARD_SERVICE);
 if (mClipboardManager != null) {
 mClipboardManager.addPrimaryClipChangedListener(clipListener);
 } else {
 Log.e(TAG, "Failed to get ClipboardService . Service is closed.");
 this.stopSelf();
 }
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 if (mClipboardManager != null) {
 mClipboardManager.removePrimaryClipChangedListener(clipListener);
 }
 }

448 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 private OnPrimaryClipChangedListener clipListener = new OnPrimaryClipChangedListener() {
 public void onPrimaryClipChanged() {
 if (mClipboardManager != null && mClipboardManager.hasPrimaryClip()) {
 ClipData data = mClipboardManager.getPrimaryClip();
 ClipData.Item item = data.getItemAt(0);
 Toast
 .makeText(
 getApplicationContext(),
 "Character stirng that is copied or cut:¥n"
 + item.coerceToText(getApplicationContext()),
 Toast.LENGTH_SHORT)
 .show();
 }
 }
 };
}

Next, below shows an example code of Activity which uses ClipboardListeningService touched in the
above.

ClipboardListeningActivity.java
package org.jssec.android.clipboard;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Intent;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Toast;

public class ClipboardListeningActivity extends Activity {
 private static final String TAG = "ClipboardListeningActivity";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_clipboard_listening);
 }

 public void onClickStartService(View view) {
 if (view.getId() != R.id.start_service_button) {
 Log.w(TAG, "View ID is incorrect.");
 } else {
 ComponentName cn = startService(
 new Intent(ClipboardListeningActivity.this, ClipboardListeningService.class));
 if (cn == null) {
 Log.e(TAG, "Failed to launch the service.");
 Toast.makeText(this, "Failed to launch the service.", Toast.LENGTH_SHORT).show();
 }
 }
 }

 public void onClickStopService(View view) {
 if (view.getId() != R.id.stop_service_button) {
 Log.w(TAG, "View ID is incorrect.");
 } else {

All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard 449

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

 stopService(new Intent(ClipboardListeningActivity.this, ClipboardListeningService.class));
 }
 }
}

By the way, ClipboardManager in before API Level 11 does not have any method to register Listener
like setOnPrimaryClipChangedListener(). Hence, an application cannot get ClipData whenever copy
/cut operations are executed by user, but an application which is equivalent in behavior can be made
in such a manner as to continuously obtain information stored in Clipboard at short intervals by
using AlarmManager and the like. Note also that, when implementing before API Level 11,
getPrimaryClip() method cannot be used. Therefore the information stored in Clipboard should be
obtained as character strings with getText() method. Sample codes for this are omitted here.

How to obtain information stored in Clipboard is described so far. On the other hand it is also
possible to store new information in Clipboard. In the case of API Level 11 or later,
ClipboardManager.setPrimaryClip() can be used. And in the case of before that API 11,
ClipboardManager.setText() method can be used.

Note that setPrimaryClip() or setText() method will overwrite the information stored in Clipboard,
therefore the information stored by user's copy/cut may be lost. When providing custom copy/cut
functions with these methods, it's necessary to design/implement in order not that the contents
stored in Clipboard are changed to unexpected contents, by displaying a dialogue to notify the
contents are to be changed, according the necessity.

450 All rights reserved © Japan Smartphone Security Association. Risk of Information Leakage from Clipboard

	1. Introduction
	1.1. Building a Secure Smartphone Society
	1.2. Timely Feedback on a Regular Basis Through the Beta Version
	1.3. Usage Agreement of the Guidebook
	1.4. Correction articles of April 1 2014 edtion

	2. Composition of the Guidebook
	2.1. Developer's Context
	2.2. Sample Code, Rule Book, Advanced Topics
	2.2.1. Sample Code
	2.2.2. Rule Book
	2.2.3. Advanced Topics

	2.3. The Scope of the Guidebook
	2.4. Literature on Android Secure Coding
	2.5. Steps to Install Sample Codes into Eclipse
	2.5.1. Installing the Sample Project
	2.5.2. Install by Selecting Individual Projects of the Sample Project
	2.5.3. Setup the Sample Code Validator debug.keystore

	3. Basic Knowledge of Secure Design and Secure Coding
	3.1. Android Application Security
	3.1.1. Asset: Object of Protection
	3.1.1.1. Information Asset of an Android Smartphone
	3.1.1.2. Function Assets of an Android Smartphone

	3.1.2. Threats: Attacks that Threaten Assets
	3.1.2.1. Network-based Third-Party
	3.1.2.2. Threat Due to User-Installed Malware
	3.1.2.3. Threat of an Malicious File that Exploits a Vulnerability in an Application
	3.1.2.4. Threats from a Malicious Smartphone User
	3.1.2.5. Threats from Third Party in the Proximity of a Smartphone
	3.1.2.6. Summary of Threats

	3.1.3. Asset Classification and Protective Countermeasures
	3.1.4. Sensitive Information

	3.2. Handling Input Data Carefully and Securely

	4. Using Technology in a Safe Way
	4.1. Creating/Using Activities
	4.1.1. Sample Code
	4.1.1.1. Creating/Using Private Activities
	4.1.1.2. Creating/Using Public Activities
	4.1.1.3. Creating/Using Partner Activities
	4.1.1.4. Creating/Using In-house Activities

	4.1.2. Rule Book
	4.1.2.1. Activities that are Used Only Internally to the Application Must be Set Private (Required)
	4.1.2.2. Do Not Specify taskAffinity (Required)
	4.1.2.3. Do Not Specify launchMode (Required)
	4.1.2.4. Do Not Set the FLAG_ACTIVITY_NEW_TASK Flag for Intents that Start an Activity (Required)
	4.1.2.5. Handling the Received Intent Carefully and Securely (Required)
	4.1.2.6. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-House Application (Required)
	4.1.2.7. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Destination Application (Required)
	4.1.2.8. Use the explicit Intents if the destination Activity is predetermined. (Required)
	4.1.2.9. Handle the Returned Data from a Requested Activity Carefully and Securely (Required)
	4.1.2.10. Verify the Destination Activity if Linking with Another Company's Application (Required)
	4.1.2.11. When Providing an Asset Secondhand, the Asset should be Protected with the Same Level of Protection (Required)
	4.1.2.12. Sending Sensitive Information Should Be Limited as much as possible (Recommended)

	4.1.3. Advanced Topics
	4.1.3.1. Combining Exported Attributes and Intent Filter Settings (For Activities)
	4.1.3.2. Validating the Requesting Application
	4.1.3.3. Reading Intents Sent to an Activity
	4.1.3.4. Root Activity
	standard
	singleTop
	singleTask
	singleInstance

	4.1.3.5. Log Output When using Activities

	4.2. Receiving/Sending Broadcasts
	4.2.1. Sample Code
	4.2.1.1. Private Broadcast Receiver - Receiving/Sending Broadcasts
	4.2.1.2. Public Broadcast Receiver - Receiving/Sending Broadcasts
	4.2.1.3. In-house Broadcast Receiver - Receiving/Sending Broadcasts

	4.2.2. Rule Book
	4.2.2.1. Broadcast Receiver that Is Used Only in an Application Must Be Set as Private (Required)
	4.2.2.2. Handle the Received Intent Carefully and Securely (Required)
	4.2.2.3. Use the In-house Defined Signature Permission after Verifying that it's Defined by an In-house Application (Required)
	4.2.2.4. When Returning a Result Information, Pay Attention to the Result Information Leakage from the Destination Application (Required)
	4.2.2.5. When Sending Sensitive Information with a Broadcast, Limit the Receivable Receiver (Required)
	4.2.2.6. Sensitive Information Must Not Be Included in the Sticky Broadcast (Required)
	4.2.2.7. Pay Attention that the Ordered Broadcast without Specifying the receiverPermission May Not Be Delivered (Required)
	4.2.2.8. Handle the Returned Result Data from the Broadcast Receiver Carefully and Securely (Required)
	4.2.2.9. When Providing an Asset Secondarily, the Asset should be protected with the Same Protection Level (Required)

	4.2.3. Advanced Topics
	4.2.3.1. Combinations of the exported Attribute and the Intent-filter setting (For Receiver)
	4.2.3.2. Receiver Won't Be Registered before Launching the Application in Android 3.1 or later
	4.2.3.3. Private Broadcast Receiver Can Receive the Broadcast that Was Sent by the Same UID Application
	4.2.3.4. Types and Features of Broadcasts
	4.2.3.5. Broadcasted Information May be Output to the LogCat

	4.3. Creating/Using Content Providers
	4.3.1. Sample Code
	4.3.1.1. Creating/Using Private Content Providers
	4.3.1.2. Creating/Using Public Content Providers
	4.3.1.3. Creating/Using Partner Content Providers
	4.3.1.4. Creating/Using In-house Content Providers
	4.3.1.5. Creating/Using Temporary permit Content Providers

	4.3.2. Rule Book
	4.3.2.1. Content Provider that Is Used Only in an Application Can Not Be Created in Android 2.2 (API Level 8) or Earlier (Required)
	4.3.2.2. Content Provider that Is Used Only in an Application Must Be Set as Private (Required)
	4.3.2.3. Handle the Received Request Parameter Carefully and Securely (Required)
	4.3.2.4. Use an In-house Defined Signature Permission after Verifying that it is Defined by an In-house Application (Required)
	4.3.2.5. When Returning a Result, Pay Attention to the Possibility of Information Leakage of that Result from the Destination Application (Required)
	4.3.2.6. When Providing an Asset Secondarily, the Asset should be Protected with the Same Level of Protection (Required)
	4.3.2.7. Handle the Returned Result Data from the Content Provider Carefully and Securely (Required)

	4.4. Creating/Using Services
	4.4.1. Sample Code
	4.4.1.1. Creating/Using Private Services
	4.4.1.2. Creating/Using Public Services
	4.4.1.3. Creating/Using Partner Services
	4.4.1.4. Creating/Using In-house Services

	4.4.2. Rule Book
	4.4.2.1. Service that Is Used Only in an application, Must Be Set as Private (Required)
	4.4.2.2. Handle the Received Data Carefully and Securely (Required)
	4.4.2.3. Use the In-house Defined Signature Permission after Verifying If it's Defined by an In-house Application (Required)
	4.4.2.4. Do Not Determine Whether the Service Provides its Functions, in onCreate (Required)
	4.4.2.5. When Returning a Result Information, Pay Attention the Result Information Leakage from the Destination Application (Required)
	4.4.2.6. Use the Explicit Intent if the Destination Service Is fixed (Required)
	4.4.2.7. Verify the Destination Service If Linking with the Other Company's Application (Required)
	4.4.2.8. When Providing an Asset Secondarily, the Asset should be protected with the Same Level Protection (Required)
	4.4.2.9. Sensitive Information Should Not Be Sent As Much As Possible (Recommended)

	4.4.3. Advanced Topics
	4.4.3.1. Combination of Exported Attribute and Intent-filter Setting (In the Case of Service)
	4.4.3.2. How to Implement Service
	startService type
	IntentService type
	local bind type
	Messenger bind type
	AIDL bind type

	4.5. Using SQLite
	4.5.1. Sample Code
	4.5.1.1. Creating/Operating Database

	4.5.2. Rule Book
	4.5.2.1. Set DB File Location and Access Right Correctly (Required)
	Using SQLiteOpenHelper
	Using Context#openOrCreateDatabase

	4.5.2.2. Use Content Provider for Access Control When Sharing DB Data with Other Application (Required)
	4.5.2.3. Place Holder Must Be Used in the Case Handling Variable Parameter during DB Operation. (Required)
	When Using SQLiteDatabase#compileStatement():
	In the Case Using Method for Each Process which SQLiteDatabase provides:

	4.5.3. Advanced Topics
	4.5.3.1. When Using Wild Card in LIKE Predicate of SQL Statement, Escape Process Should Be Implemented
	4.5.3.2. Use External Input to SQL Command in which Place Holder Cannot Be Used
	4.5.3.3. Take a Countermeasure that Database Is Not Overwritten Unexpectedly
	4.5.3.4. Verify the Validity of Input/Output Data of DB, According to Application's Requirement
	4.5.3.5. Consideration - the Data Stored into Database
	4.5.3.6. [Reference] Encrypt SQLite Database (SQLCipher for Android)
	How to Use
	Library Structure

	4.6. Handling Files
	4.6.1. Sample Code
	4.6.1.1. Using Private Files
	4.6.1.2. Using Public Read Only Files
	4.6.1.3. Using Public Read/Write Files
	4.6.1.4. Using Eternal Memory (Read Write Public) Files

	4.6.2. Rule Book
	4.6.2.1. File Must Be Created as a Private File in Principle (Required)
	4.6.2.2. Must Not Create Files that Be Allowed to Read/Write Access from Other Applications (Required)
	4.6.2.3. Using Files Stored in External Device (e.g. SD Card) Should Be Requisite Minimum (Required)
	4.6.2.4. Application Should Be Designed Considering the Scope of File (Required)

	4.6.3. Advanced Topics
	4.6.3.1. File Sharing Through File Descriptor
	4.6.3.2. Access Permission Setting for the Directory
	MODE_WORLD_READABLE
	MODE_WORLD_WRITABLE

	4.6.3.3. Access Permission Setting for Shared Preference and Database File

	4.7. Using Browsable Intent
	4.7.1. Sample Code
	4.7.2. Rule Book
	4.7.2.1. (Webpage side) Sensitive Information Must Not Be Included in Parameter of Corresponding Link (Required)
	4.7.2.2. Handle the URL Parameter Carefully and Securely (Required)

	4.8. Outputting Log to LogCat
	4.8.1. Sample Code
	4.8.2. Rule Book
	4.8.2.1. Sensitive Information Must Not Be Included in Operation Log Information (Required)
	4.8.2.2. Construct the Build System to Auto-delete Codes which Output Development Log Information When Build for the Release (Recommended)
	4.8.2.3. Use Log.d()/v() Method When Outputting Throwable Object (Recommended)
	4.8.2.4. Use Only Methods of the android.util.Log Class for the Log Output (Recommended)

	4.8.3. Advanced Topics
	4.8.3.1. Two Ways of Thinking for the Log Outputting in Release version application
	4.8.3.2. Selection Standards of Log Level and Log Output Method
	4.8.3.3. DEBUG Log and VERBOSE Log Are Not Always Deleted Automatically
	4.8.3.4. BuildConfig.DEBUG Should Be Used in ADT 21 or Later
	4.8.3.5. Remove Sensitive Information from Assembly
	4.8.3.6. The Contents of Intent Is Output to LogCat
	4.8.3.7. Restrain Log which Is Output to System.out/err

	4.9. Using WebView
	4.9.1. Sample Code
	4.9.1.1. Show Only Contents Stored under assets/res Directory in the APK
	4.9.1.2. Show Only Contents which Are Managed In-house
	4.9.1.3. Show Contents which Are Not Managed In-house

	4.9.2. Rule Book
	4.9.2.1. Enable JavaScript Only If Contents Are Managed In-house (Required)
	Services managed In-house
	Services unmanaged in-house

	4.9.2.2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)
	4.9.2.3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)
	4.9.2.4. Handle SSL Error Properly (Required)

	5. How to use Security Functions
	5.1. Creating Password Input Screens
	5.1.1. Sample Code
	5.1.2. Rule Book
	5.1.2.1. Provide the Mask Display Feature, If the Password Is Entered (Required)
	5.1.2.2. Provide the Option to Display Password in a Plain Text (Required)
	5.1.2.3. Mask the Password when Activity Is Launched (Required)
	5.1.2.4. When Displaying the Last Input Password, Dummy Password Must Be Displayed (Required)

	5.1.3. Advanced Topics
	5.1.3.1. Login Process
	Error message when login fail
	Auto Login function

	5.1.3.2. Changing Password
	5.1.3.3. Regarding "Make passwords visible" Setting

	5.2. Permission and Protection Level
	5.2.1. Sample Code
	5.2.1.1. How to Use System Permissions of Android OS
	5.2.1.2. How to Communicate Between In-house Applications with In-house-defined Signature Permission
	5.2.1.3. How to Verify the Hash Value of an Application's Certificate
	How to verify it with Keytool
	How to Verify it with JSSEC Certificate Hash Value Checker

	5.2.2. Rule Book
	5.2.2.1. System Dangerous Permissions of Android OS Must Only Be Used for Protecting User Assets (Required)
	5.2.2.2. Your Own Dangerous Permission Must Not Be Used (Required)
	5.2.2.3. Your Own Signature Permission Must Only Be Defined on the Provider-side Application (Required)
	5.2.2.4. Verify If the In-house-defined Signature Permission Is Defined by an In-house Application (Required)
	5.2.2.5. Your Own Normal Permission Should Not Be Used (Recommended)
	5.2.2.6. The String for Your Own Permission Name Should Be of an Extent of the Package Name of Application (Recommended)

	5.2.3. Advanced Topics
	5.2.3.1. Characteristics of Android OS that Avoids Self-defined Signature Permission and Its Counter-measures
	5.2.3.2. Falsification of AndroidManifest.xml by a User
	5.2.3.3. Detection of APK Falsification
	5.2.3.4. Permission Re-delegation Problem

	5.3. Add In-house Accounts to Account Manager
	5.3.1. Sample Code
	5.3.1.1. Creating In-house accounts
	5.3.1.2. Using In-house Accounts

	5.3.2. Rule Book
	5.3.2.1. Service that Provides Authenticator Must Be Private (Required)
	5.3.2.2. Login Screen Activity Must Be Implemented by Authenticator Application (Required)
	5.3.2.3. The Login Screen Activity Must Be Made as a Public Activity and Suppose Attack Accesses by Other Applications (Required)
	5.3.2.4. Provide KEY_INTENT with Explicit Intent with the Specified Class Name of Login Screen Activity (Required)
	5.3.2.5. Sensitive Information (like Account Information and Authentication Token) Must Not Be Output to the Log (Required)
	5.3.2.6. Password Should Not Be Saved in Account Manager (Recommended)
	5.3.2.7. HTTPS Should Be Used for Communication Between an Authenticator and the Online Service (Required)
	5.3.2.8. Account Process Should Be Executed after verifying if the Authenticator is the regular one (Required)

	5.3.3. Advanced Topics
	5.3.3.1. Usage of Account Manager and Permission
	5.3.3.2. Exception Occurs When Signature Keys of User Application and Authenticator Application Are Different, in Android 4.0.x

	5.4. Communicating via HTTPS
	5.4.1. Sample Code
	5.4.1.1. Communicating via HTTP
	5.4.1.2. Communicating via HTTPS
	5.4.1.3. Communicating via HTTPS with private certificate

	5.4.2. Rule Book
	5.4.2.1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)
	5.4.2.2. Received Data over HTTP Must be Handled Carefully and Securely (Required)
	5.4.2.3. SSLException Must Be Handled Appropriately like Notification to User (Required)
	5.4.2.4. TrustManager Must Not Be Changed and Custom TrustManager Must Not Be Created (Required)
	5.4.2.5. HostnameVerifier Must Not Be Changed and Custom HostnameVerifier Must Not Be Created (Required)

	5.4.3. Advanced Topics
	5.4.3.1. How to Create Private Certificate and Configure Server Settings
	Create private certificate authority
	Create private certificate

	5.4.3.2. Install Root Certificate of Private Certificate Authority to Android OS's Certification Store (Android 4.0 and later)
	5.4.3.3. Risky Code that Disables Certificate Verification

	5.5. Handling privacy data
	5.5.1. Sample Code
	5.5.1.1. Both broad consent and specific consent are granted: Applications that incorporate application privacy policy
	5.5.1.2. Broad consent is granted: Applications that incorporate application privacy policy
	5.5.1.3. Broad consent is not needed: Applications that incorporate application privacy policy
	5.5.1.4. Applications that do not incorporate an application privacy policy

	5.5.2. Rule Book
	5.5.2.1. Restrict transmissions of user data to the minimum necessary (Required)
	5.5.2.2. On first launch (or application update), obtain broad consent to transmit user data that requires particularly delicate handling or that may be difficult for users to change (Required)
	5.5.2.3. Obtain specific consent before transmitting user data that requires particularly delicate handling (Required)
	5.5.2.4. Provide methods by which the user can review the application privacy policy (Required)
	5.5.2.5. Place a summary version of the application privacy policy in the assets folder (Recommended)
	5.5.2.6. Provide methods by which transmitted data can be deleted and transmitting data can be stopped by user operations (Recommended)
	5.5.2.7. Separate device-specific IDs from UUIDs and cookies (Recommended)
	5.5.2.8. If you will only be using user data within the device, notify the user that data will not be transmitted externally. (Recommended)

	5.5.3. Advanced Topics
	5.5.3.1. Some background and context regarding privacy policies
	5.5.3.2. Glossary of Terms

	5.6. Using Cryptography
	5.6.1. Sample Code
	5.6.1.1. Encrypting and Decrypting With Password-based Keys
	5.6.1.2. Encrypting and Decrypting With Public Keys
	5.6.1.3. Encrypting and Decrypting Using Pre Shared Keys
	5.6.1.4. Using Password-based Keys to Detect Data Falsification
	5.6.1.5. Using Public Keys to Detect Data Falsification
	5.6.1.6. Using Pre Shared Keys to Detect Data Falsification

	5.6.2. Rule Book
	5.6.2.1. When Specifying an Encryption Algorithm, Explicitly Specify the Encryption Mode and the Padding (Required)
	5.6.2.2. Use Strong Algorithms (Specifically, Algorithms that Meet the Relevant Criteria) (Required)
	5.6.2.3. When Using Password-based Encryption, Do Not Store Passwords on Device (Required)
	5.6.2.4. When Generating Keys from Passwords, Use Salt (Required)
	5.6.2.5. When Generating Key from Password, Specify Appropriate Hash Iteration Count (Required)
	5.6.2.6. Take Steps to Increase the Strengths of Passwords (Recommended)

	5.6.3. Advanced Topics
	5.6.3.1. Choosing encryption methods
	5.6.3.2. Generation of random numbers
	Random number seeds
	The internal state of a pseudorandom number generator

	5.6.3.3. Measures to Protect against Vulnerabilities in Random-Number Generators
	5.6.3.4. Protecting Key
	Keys stored in a user’s memory
	Keys stored in application directories
	Keys stored in APK Files
	Keys stored in public storage locations (such as SD cards)
	Handling of keys within process memory

	6. Difficult Problems
	6.1. Risk of Information Leakage from Clipboard
	6.1.1. Sample Code
	6.1.1.1. Delete copy/cut from the menu when character string selection
	6.1.1.2. Disable Long Click View

	6.1.2. Rule Book
	6.1.2.1. Disabling Copy/Cut Character Strings that Are Displayed in View (Required)

	6.1.3. Advanced Topics
	6.1.3.1. Precautions When Applying Rules
	6.1.3.2. Operating Information Stored in Clipboard

